SocialGrep commited on
Commit
6c119b4
1 Parent(s): dfe139d

Create new file

Browse files
Files changed (1) hide show
  1. reddit-r-bitcoin-data-for-jun-2022.py +180 -0
reddit-r-bitcoin-data-for-jun-2022.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The SocialGrep dataset loader base."""
16
+
17
+
18
+ import csv
19
+ import os
20
+
21
+ import datasets
22
+
23
+
24
+ DATASET_NAME = "reddit-r-bitcoin-data-for-jun-2022"
25
+ DATASET_TITLE = "Reddit /r/Bitcoin Data for Jun 2022"
26
+
27
+ DATASET_DESCRIPTION = """\
28
+ Lite version of our Reddit /r/Bitcoin dataset - CSV of all posts & comments to the /r/Bitcoin subreddit over Jun 2022.
29
+ """
30
+
31
+ _HOMEPAGE = f"https://socialgrep.com/datasets/{DATASET_NAME}"
32
+
33
+ _LICENSE = "CC-BY v4.0"
34
+
35
+ URL_TEMPLATE = "https://exports.socialgrep.com/download/public/{dataset_file}.zip"
36
+ DATASET_FILE_TEMPLATE = "{dataset}-{type}.csv"
37
+
38
+ _DATASET_FILES = {
39
+ 'posts': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="posts"),
40
+ 'comments': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="comments"),
41
+ }
42
+
43
+ _CITATION = f"""\
44
+ @misc{{socialgrep:{DATASET_NAME},
45
+ title = {{{DATASET_TITLE}}},
46
+ author={{Lexyr Inc.
47
+ }},
48
+ year={{2022}}
49
+ }}
50
+ """
51
+
52
+
53
+ class redditrbitcoindataforjun2022(datasets.GeneratorBasedBuilder):
54
+ VERSION = datasets.Version("1.0.0")
55
+
56
+ # This is an example of a dataset with multiple configurations.
57
+ # If you don't want/need to define several sub-sets in your dataset,
58
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
59
+
60
+ # If you need to make complex sub-parts in the datasets with configurable options
61
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
62
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
63
+ # You will be able to load one or the other configurations in the following list with
64
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
65
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
66
+ BUILDER_CONFIGS = [
67
+ datasets.BuilderConfig(name="posts", version=VERSION, description="The dataset posts."),
68
+ datasets.BuilderConfig(name="comments", version=VERSION, description="The dataset comments."),
69
+ ]
70
+
71
+ def _info(self):
72
+ if self.config.name == "posts": # This is the name of the configuration selected in BUILDER_CONFIGS above
73
+ features = datasets.Features(
74
+ {
75
+ "type": datasets.Value("string"),
76
+ "id": datasets.Value("string"),
77
+ "subreddit.id": datasets.Value("string"),
78
+ "subreddit.name": datasets.Value("string"),
79
+ "subreddit.nsfw": datasets.Value("bool"),
80
+ "created_utc": datasets.Value("timestamp[s,tz=utc]"),
81
+ "permalink": datasets.Value("string"),
82
+ "domain": datasets.Value("string"),
83
+ "url": datasets.Value("string"),
84
+ "selftext": datasets.Value("large_string"),
85
+ "title": datasets.Value("string"),
86
+ "score": datasets.Value("int32"),
87
+ }
88
+ )
89
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
90
+ features = datasets.Features(
91
+ {
92
+ "type": datasets.ClassLabel(num_classes=2, names=['post', 'comment']),
93
+ "id": datasets.Value("string"),
94
+ "subreddit.id": datasets.Value("string"),
95
+ "subreddit.name": datasets.Value("string"),
96
+ "subreddit.nsfw": datasets.Value("bool"),
97
+ "created_utc": datasets.Value("timestamp[s,tz=utc]"),
98
+ "permalink": datasets.Value("string"),
99
+ "body": datasets.Value("large_string"),
100
+ "sentiment": datasets.Value("float32"),
101
+ "score": datasets.Value("int32"),
102
+ }
103
+ )
104
+ return datasets.DatasetInfo(
105
+ # This is the description that will appear on the datasets page.
106
+ description=DATASET_DESCRIPTION,
107
+ # This defines the different columns of the dataset and their types
108
+ features=features, # Here we define them above because they are different between the two configurations
109
+ # If there's a common (input, target) tuple from the features,
110
+ # specify them here. They'll be used if as_supervised=True in
111
+ # builder.as_dataset.
112
+ supervised_keys=None,
113
+ # Homepage of the dataset for documentation
114
+ homepage=_HOMEPAGE,
115
+ # License for the dataset if available
116
+ license=_LICENSE,
117
+ # Citation for the dataset
118
+ citation=_CITATION,
119
+ )
120
+
121
+ def _split_generators(self, dl_manager):
122
+ """Returns SplitGenerators."""
123
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
124
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
125
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
126
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
127
+ my_urls = [URL_TEMPLATE.format(dataset_file=_DATASET_FILES[self.config.name])]
128
+ data_dir = dl_manager.download_and_extract(my_urls)[0]
129
+ return [
130
+ datasets.SplitGenerator(
131
+ name=datasets.Split.TRAIN,
132
+ # These kwargs will be passed to _generate_examples
133
+ gen_kwargs={
134
+ "filepath": os.path.join(data_dir, _DATASET_FILES[self.config.name]),
135
+ "split": "train",
136
+ },
137
+ )
138
+ ]
139
+
140
+ def _generate_examples(
141
+ self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
142
+ ):
143
+ """ Yields examples as (key, example) tuples. """
144
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
145
+ bool_cols = ["subreddit.nsfw"]
146
+ int_cols = ["score", "created_utc"]
147
+ float_cols = ["sentiment"]
148
+
149
+ with open(filepath, encoding="utf-8") as f:
150
+ reader = csv.DictReader(f)
151
+ for row in reader:
152
+ for col in bool_cols:
153
+ if col in row:
154
+ if row[col]:
155
+ row[col] = (row[col] == "true")
156
+ else:
157
+ row[col] = None
158
+ for col in int_cols:
159
+ if col in row:
160
+ if row[col]:
161
+ row[col] = int(row[col])
162
+ else:
163
+ row[col] = None
164
+ for col in float_cols:
165
+ if col in row:
166
+ if row[col]:
167
+ row[col] = float(row[col])
168
+ else:
169
+ row[col] = None
170
+
171
+ if row["type"] == "post":
172
+ key = f"t3_{row['id']}"
173
+ if row["type"] == "comment":
174
+ key = f"t1_{row['id']}"
175
+ yield key, row
176
+
177
+
178
+ if __name__ == "__main__":
179
+ print("Please use the HuggingFace dataset library, or")
180
+ print("download from https://socialgrep.com/datasets.")