|
import datasets |
|
import os |
|
import json |
|
|
|
_DESCRIPTION = "lm-polygraph wrapper for xsum dataset" |
|
|
|
_DATA_DIRECTORY = "." |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
_CONFIG = { |
|
"dataset": "xsum", |
|
"splits": ["train", "validation", "test"], |
|
"input_column": "document", |
|
"output_column": "summary", |
|
"prompt": "Here's the text and it's short one-sentence summary.\n\nText:\n{text}\n\nSummary (one sentence):\n", |
|
} |
|
|
|
|
|
def _prepare_dataset(dataset): |
|
x, y = dataset[_CONFIG["input_column"]], dataset[_CONFIG["output_column"]] |
|
if _CONFIG.get("prompt"): |
|
for i in range(len(x)): |
|
x[i] = _CONFIG["prompt"].format(text=x[i]) |
|
return x, y |
|
|
|
|
|
class PolygraphXsum(datasets.GeneratorBasedBuilder): |
|
"""lm-polygraph wrapper for xsum dataset""" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"output": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dataset = datasets.load_dataset(_CONFIG["dataset"], trust_remote_code=True) |
|
|
|
def download_custom_dataset(src_url: str, dst_path: str): |
|
split = src_url |
|
x, y = _prepare_dataset(dataset[split]) |
|
result_dataset = datasets.Dataset.from_dict({"input": x, "output": y}) |
|
result_dataset.save_to_disk(dst_path) |
|
downloaded_files = dl_manager.download_custom({split: split for split in _CONFIG["splits"]}, download_custom_dataset) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["validation"], |
|
}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
}) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
dataset = datasets.Dataset.load_from_disk(filepath) |
|
for i in range(len(dataset)): |
|
yield i, dataset[i] |
|
|