|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
from datasets import Value, Sequence, Features |
|
|
|
|
|
_CITATION = ''' |
|
@article{kirchner2022understanding, |
|
title={Understanding AI Alignment Research: A Systematic Analysis}, |
|
author={Kirchner, Jan H and Smith, Logan and Thibodeau, Jacques and McDonnell, Kyle and Reynolds, Laria}, |
|
journal={arXiv preprint arXiv:2022.4338861}, |
|
year={2022} |
|
} |
|
''' |
|
|
|
_DESCRIPTION = """The AI Alignment Research Dataset is a collection of documents related to AI Alignment and Safety from various books, research papers, and alignment related blog posts.""" |
|
|
|
_HOMEPAGE = "https://github.com/StampyAI/alignment-research-dataset" |
|
|
|
_LICENSE = "MIT license" |
|
|
|
_VERSION_ = '0.0.0' |
|
|
|
|
|
def iterate_file(filename): |
|
print(filename) |
|
with open(filename) as f: |
|
for l in f: |
|
try: |
|
yield json.loads(l) |
|
except Exception as e: |
|
print(f'Could not parse: {l}') |
|
|
|
|
|
|
|
def get_type(value): |
|
"""Recursively get the huggingface type for the provided value.""" |
|
if value is None: |
|
return None |
|
if value and isinstance(value, (tuple, list)): |
|
return features.Sequence( |
|
get_type(value[0]) |
|
) |
|
if value and isinstance(value, dict): |
|
return {k: get_type(v) for k, v in value.items()} |
|
if isinstance(value, str): |
|
return Value('string') |
|
if isinstance(value, int): |
|
return Value('int32') |
|
if isinstance(value, float): |
|
return Value('double') |
|
if isinstance(value, bool): |
|
return Value('bool') |
|
return None |
|
|
|
|
|
def print_extra_features(files): |
|
"""Go through all the provided files, and get the non default features for the given file. |
|
|
|
This can be done manually but would be a hassle. |
|
It's assumed that the files contain a json object on each line. |
|
""" |
|
ignored_keys = [ |
|
'comments', |
|
] |
|
|
|
per_file = {} |
|
for filename in sorted(files): |
|
extra_types = {} |
|
for item in iterate_file(filename): |
|
for k, v in item.items(): |
|
if (k not in extra_types or not extra_types[k]) and k not in ignored_keys and k not in DEFAULT_FEATURES: |
|
extra_types[k] = get_type(v) |
|
per_file[filename] = extra_types |
|
|
|
print('DATASOURCES = {') |
|
for k, features in per_file.items(): |
|
vals = ',\n'.join(f" '{k}': {v}" for k, v in features.items()) |
|
print(f" '{k.stem}': #\n{vals}\n $,".replace('#', '{').replace('$', '}')) |
|
print('}') |
|
|
|
|
|
|
|
DEFAULT_FEATURES = { |
|
'id': Value('string'), |
|
'source': Value('string'), |
|
'title': Value('string'), |
|
'text': Value('large_string'), |
|
'url': Value('string'), |
|
'date_published': Value(dtype='string'), |
|
'authors': Sequence(feature=Value(dtype='string'), length=-1), |
|
'summary': Sequence(feature=Value(dtype='string'), length=-1), |
|
'source_type': Value(dtype='string'), |
|
} |
|
|
|
|
|
|
|
DATASOURCES = { |
|
'agentmodels': { |
|
'book_title': Value(dtype='string'), |
|
}, |
|
'agisf': {}, |
|
'aisafety.info': {}, |
|
'alignmentforum': { |
|
'karma': Value(dtype='int32'), |
|
'votes': Value(dtype='int32'), |
|
'words': Value(dtype='int32'), |
|
'comment_count': Value(dtype='int32'), |
|
'tags': Sequence(feature=Value(dtype='string')), |
|
'modified_at': Value(dtype='string'), |
|
}, |
|
'arbital': { |
|
'alias': Value(dtype='string'), |
|
'tags': Sequence(feature=Value(dtype='string')), |
|
}, |
|
'arxiv': { |
|
'data_last_modified': Value(dtype='string'), |
|
'abstract': Value(dtype='string'), |
|
'author_comment': Value(dtype='string'), |
|
'journal_ref': Value(dtype='string'), |
|
'doi': Value(dtype='string'), |
|
'primary_category': Value(dtype='string'), |
|
'categories': Sequence(feature=Value(dtype='string'), length=-1), |
|
}, |
|
'blogs': { |
|
'initial_source': Value(dtype='string'), |
|
}, |
|
'distill': { |
|
'abstract': Value(dtype='string'), |
|
'journal_ref': Value(dtype='string'), |
|
'doi': Value(dtype='string'), |
|
'bibliography_bib': Sequence(feature={'title': Value(dtype='string')}, length=-1), |
|
}, |
|
'eaforum': { |
|
'karma': Value(dtype='int32'), |
|
'votes': Value(dtype='int32'), |
|
'words': Value(dtype='int32'), |
|
'comment_count': Value(dtype='int32'), |
|
'tags': Sequence(feature=Value(dtype='string')), |
|
'modified_at': Value(dtype='string'), |
|
}, |
|
'lesswrong': { |
|
'karma': Value(dtype='int32'), |
|
'votes': Value(dtype='int32'), |
|
'words': Value(dtype='int32'), |
|
'comment_count': Value(dtype='int32'), |
|
'tags': Sequence(feature=Value(dtype='string')), |
|
'modified_at': Value(dtype='string'), |
|
}, |
|
'special_docs': {}, |
|
'youtube': {}, |
|
} |
|
|
|
|
|
def join_features(features, to_join): |
|
"""Recursively join the provided dicts. |
|
|
|
`to_join` can either be a dict to be merged, or a list of dicts to merge. |
|
""" |
|
if not to_join: |
|
return Features(features) |
|
if isinstance(to_join, dict): |
|
return Features(dict(features, **to_join)) |
|
return join_features(dict(features, **to_join[0]), to_join[1:]) |
|
|
|
|
|
class AlignmentResearchDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AlignmentResaerchDataset.""" |
|
|
|
def __init__(self, sources, features, **kwargs): |
|
"""BuilderConfig for AlignmentResaerchDataset. |
|
|
|
:param List[string] sources: the sources which will be used by this config |
|
""" |
|
super().__init__(version=datasets.Version(_VERSION_), **kwargs) |
|
self.sources = sources |
|
self.features = join_features(DEFAULT_FEATURES, features) |
|
|
|
@property |
|
def files(self): |
|
return [f'{source}.jsonl' for source in self.sources] |
|
|
|
|
|
class AlignmentResaerchDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version(_VERSION_) |
|
|
|
BUILDER_CONFIGS = [ |
|
AlignmentResearchDatasetConfig( |
|
name='all', |
|
description='All data files', |
|
sources=list(DATASOURCES.keys()), |
|
features=list(DATASOURCES.values()) |
|
) |
|
] + [ |
|
AlignmentResearchDatasetConfig(name=source, sources=[source], features=features) for source, features in DATASOURCES.items() |
|
] |
|
DEFAULT_CONFIG_NAME = 'all' |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=self.config.features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(self.config.files) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={'files': downloaded_files} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, files): |
|
seen = set() |
|
|
|
def is_good(item): |
|
item_id = item and item.get('id') |
|
if not item_id or item_id in seen: |
|
return False |
|
seen.add(item_id) |
|
|
|
return item['text'] not in [None, '', 'n/a'] |
|
|
|
def prepare_example(item): |
|
return item['id'], {k: item.get(k) for k in self.config.features} |
|
|
|
lines = (item for filename in files for item in iterate_file(filename)) |
|
for item in map(prepare_example, filter(is_good, lines)): |
|
yield item |
|
|