Datasets:

Modalities:
Text
Languages:
code
Size:
< 1K
Libraries:
Datasets
License:
File size: 4,771 Bytes
2c29590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9db15
 
2c29590
 
 
 
bb9db15
 
 
 
 
 
 
2c29590
 
 
 
 
bb9db15
2c29590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HumanEval-X dataset."""


import json
import datasets



_DESCRIPTION = """
HumanEval-X is a benchmark for the evaluation of the multilingual ability of code generative models. \
It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks.
"""

_HOMEPAGE = "https://github.com/THUDM/CodeGeeX"

def get_url(name):
    url = f"data/{name}/data/humaneval.jsonl"
    return url

def split_generator(dl_manager, name):
    downloaded_files = dl_manager.download(get_url(name))
    return [
        datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={
                "filepath": downloaded_files,
            },
        )
    ]

class HumanEvalXConfig(datasets.BuilderConfig):
    """BuilderConfig """

    def __init__(self, name, description, features, **kwargs):
        super(HumanEvalXConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.name = name
        self.description = description
        self.features = features


class HumanEvalX(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        HumanEvalXConfig(
            name="python",
            description="Python HumanEval",
            features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
        ),
        HumanEvalXConfig(
            name="cpp",
            description="C++ HumanEval",
            features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
        ),

        HumanEvalXConfig(
            name="go",
            description="Go HumanEval",
            features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
        ),
        HumanEvalXConfig(
            name="java",
            description="Java HumanEval",
            features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
        ),

        HumanEvalXConfig(
            name="js",
            description="JavaScript HumanEval",
            features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
        ),
        ]
    DEFAULT_CONFIG_NAME = "python"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"task_id": datasets.Value("string"),
                                        "prompt": datasets.Value("string"),
                                        "declaration": datasets.Value("string"),
                                        "canonical_solution": datasets.Value("string"),
                                        "test": datasets.Value("string"),
                                        "example_test": datasets.Value("string"),
                                        }),
            homepage=_HOMEPAGE,
        )

    def _split_generators(self, dl_manager):
        if self.config.name == "python":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "cpp":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "go":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "java":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "js":
            return split_generator(dl_manager, self.config.name)
           
    def _generate_examples(self, filepath):
        key = 0
        with open(filepath) as f:
            for line in f:
                row = json.loads(line)
                key += 1
                yield key, {
                    "task_id": row["task_id"],
                    "prompt": row["prompt"],
                    "declaration": row["declaration"],
                    "canonical_solution": row["canonical_solution"],
                    "test": row["test"],
                    "example_test": row["example_test"],

                }  
                key += 1