Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
lim142857 commited on
Commit
87a0e1d
ยท
1 Parent(s): 85fff14

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -45,10 +45,13 @@ configs:
45
  ### **UniIR: Training and Benchmarking Universal Multimodal Information Retrievers**
46
  [**๐ŸŒ Homepage**](https://tiger-ai-lab.github.io/UniIR/) | [**๐Ÿค— Paper**](https://huggingface.co/papers/2311.17136) | [**๐Ÿ“– arXiv**](https://arxiv.org/pdf/2311.17136.pdf) | [**GitHub**](https://github.com/TIGER-AI-Lab/UniIR)
47
 
 
 
 
48
 
49
  ## **Dataset Summary**
50
 
51
- M-BEIR, the **M**ultimodal **BE**nchmark for **I**nstructed **R**etrieval, is a comprehensive large-scale retrieval benchmark designed to train and evaluate unified multimodal retrieval models (**UniIR models**).
52
  The M-BEIR benchmark comprises eight multimodal retrieval tasks and ten datasets from a variety of domains and sources.
53
  Each task is accompanied by human-authored instructions, encompassing 1.5 million queries and a pool of 5.6 million retrieval candidates in total.
54
 
@@ -145,10 +148,10 @@ The structure of each candidate JSON object in cand_pool file is as follows::
145
  ```
146
 
147
  ### Instructions
148
- `query_instructions.tsv` contains human-authorized instructions within the UniIR framework. Each task is accompanied by four human-authored instructions.
149
 
150
  ### Qrels
151
- Within the `qrels` directory, you will find qrels for both the validation and test sets. These files serve the purpose of evaluating UniIR models.
152
 
153
  ## **How to Use**
154
  ### Downloading the M-BEIR Dataset
 
45
  ### **UniIR: Training and Benchmarking Universal Multimodal Information Retrievers**
46
  [**๐ŸŒ Homepage**](https://tiger-ai-lab.github.io/UniIR/) | [**๐Ÿค— Paper**](https://huggingface.co/papers/2311.17136) | [**๐Ÿ“– arXiv**](https://arxiv.org/pdf/2311.17136.pdf) | [**GitHub**](https://github.com/TIGER-AI-Lab/UniIR)
47
 
48
+ ## ๐Ÿ””News
49
+
50
+ - **๐Ÿ”ฅ[2023-12-21]: Our M-BEIR Benchmark is now available for use.**
51
 
52
  ## **Dataset Summary**
53
 
54
+ **M-BEIR**, the **M**ultimodal **BE**nchmark for **I**nstructed **R**etrieval, is a comprehensive large-scale retrieval benchmark designed to train and evaluate unified multimodal retrieval models (**UniIR models**).
55
  The M-BEIR benchmark comprises eight multimodal retrieval tasks and ten datasets from a variety of domains and sources.
56
  Each task is accompanied by human-authored instructions, encompassing 1.5 million queries and a pool of 5.6 million retrieval candidates in total.
57
 
 
148
  ```
149
 
150
  ### Instructions
151
+ `query_instructions.tsv` contains human-authorized instructions within the UniIR framework. Each task is accompanied by four human-authored instructions. For detailed usage, please refer to [**GitHub Repo**](https://github.com/TIGER-AI-Lab/UniIR).
152
 
153
  ### Qrels
154
+ Within the `qrels` directory, you will find qrels for both the validation and test sets. These files serve the purpose of evaluating UniIR models. For detailed information, please refer to [**GitHub Repo**](https://github.com/TIGER-AI-Lab/UniIR).
155
 
156
  ## **How to Use**
157
  ### Downloading the M-BEIR Dataset