File size: 1,881 Bytes
cba24d6
c405a24
cba24d6
 
 
 
 
 
 
 
c405a24
a1645d5
 
 
 
 
8667933
 
3f8dfea
 
 
 
1c5b3c0
 
 
 
3f8dfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8667933
 
 
 
 
 
 
 
 
c405a24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
task_categories:
- text-classification
- question-answering
- multiple-choice
language:
- zh
size_categories:
- 10K<n<100K
arxiv:
- 2305.10263
---


M3KE, or Massive Multi-Level Multi-Subject Knowledge Evaluation, is a benchmark developed to assess the knowledge acquired by large Chinese language models by evaluating their multitask accuracy in both zero- and few-shot settings. The benchmark comprises 20,477 questions spanning 71 tasks. For further information about M3KE, please consult our [paper](https://arxiv.org/abs/2305.10263) or visit our [GitHub](https://github.com/tjunlp-lab/M3KE) page.


## Load the data
```python
from datasets import load_dataset

ds = load_dataset(
    path="TJUNLP/M3KE", 
    name="Computer Programming Language-Natural Sciences-Other"
)
print(ds)
"""
DatasetDict({
    test: Dataset({
        features: ['id', 'question', 'A', 'B', 'C', 'D', 'answer'],
        num_rows: 236
    })
    dev: Dataset({
        features: ['id', 'question', 'A', 'B', 'C', 'D', 'answer'],
        num_rows: 5
    })
})
"""

print(ds["test"][0])
"""
{'id': 0, 'question': '下面判断正确的是?', 'A': 'char str[10]={"china"}; 等价于 char str[10];str[]="china";', 'B': 'char *s="china"; 等价于 char *s;s="china"; ', 'C': 'char *a="china"; 等价于 char *a;*a="china";', 'D': 'char c[6]="china",d[6]="china"; 等 价 于 char c[6]=d[6]="china"; ', 'answer': ''}
"""

```


```
@misc{liu2023m3ke,
    title={M3KE: A Massive Multi-Level Multi-Subject Knowledge Evaluation Benchmark for Chinese Large Language Models},
    author={Chuang Liu and Renren Jin and Yuqi Ren and Linhao Yu and Tianyu Dong and Xiaohan Peng and Shuting Zhang and Jianxiang Peng and Peiyi Zhang and Qingqing Lyu and Xiaowen Su and Qun Liu and Deyi Xiong},
    year={2023},
    eprint={2305.10263},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```