Datasets:
File size: 4,914 Bytes
3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 f0d0fcf 3e50f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
annotations_creators:
- crowdsourced
language:
- sk
language_creators:
- crowdsourced
- found
license:
- cc-by-sa-4.0
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: squad
pretty_name: skquad
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- wikipedia
task_categories:
- question-answering
- text-retrieval
task_ids:
- open-domain-qa
- extractive-qa
- document-retrieval
train-eval-index:
- col_mapping:
answers:
answer_start: answer_start
text: text
context: context
question: question
config: squad_v2
metrics:
- name: SQuAD v2
type: squad_v2
splits:
eval_split: validation
train_split: train
task: question-answering
task_id: extractive_question_answering
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
SK-QuAD is the first QA dataset for the Slovak language.
It is manually annotated, so it has no distortion caused by
machine translation. The dataset is thematically diverse – it
does not overlap with SQuAD – it brings new knowledge.
It passed the second round of annotation – each question
and the answer were seen by at least two annotators.
### Supported Tasks and Leaderboards
- Question answering
- Document retrieval
### Languages
- Slovak
## Dataset Structure
#### squad_v2
- **Size of downloaded dataset files:** 44.34 MB
- **Size of the generated dataset:** 122.57 MB
- **Total amount of disk used:** 166.91 MB
-
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [94, 87, 94, 94],
"text": ["10th and 11th centuries", "in the 10th and 11th centuries", "10th and 11th centuries", "10th and 11th centuries"]
},
"context": "\"The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave thei...",
"id": "56ddde6b9a695914005b9629",
"question": "When were the Normans in Normandy?",
"title": "Normans"
}
```
### Data Fields
The data fields are the same among all splits.
#### squad_v2
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
| | Train | Dev | Translated |
| ------------- | -----: | -----: | -------: |
| Documents | 8,377 | 940 | 442 |
| Paragraphs | 22,062 | 2,568 | 18,931 |
| Questions | 81,582 | 9,583 | 120,239 |
| Answers | 65,839 | 7,822 | 79,978 |
| Unanswerable | 15,877 | 1,784 | 40,261 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
- Deutsche Telekom Systems Solutions Slovakia
- Technical Univesity of Košice
### Licensing Information
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|