skquad / skquad.py
dhladek's picture
initial version
f04299e
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
TBD
"""
_DESCRIPTION = """\
Slovak Question Answering Dataset
"""
_URL = "https://files.kemt.fei.tuke.sk/corpora/sk-quad/sk-quad-220614.tar.gz"
_FILES = {
"dev": "sk-quad-220614/sk-quad-220614-dev.json",
"train": "sk-quad-220614/sk-quad-220614-train.json",
}
class SkQuadConfig(datasets.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for SQUAD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SkQuadConfig, self).__init__(**kwargs)
class SkQuad(datasets.GeneratorBasedBuilder):
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
BUILDER_CONFIGS = [
SkQuadConfig(
name="plain_text",
version=datasets.Version("1.1.1", ""),
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://rajpurkar.github.io/SQuAD-explorer/",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
downloaded_dir = dl_manager.download_and_extract(_URL)
print(downloaded_dir)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_dir + "/" + _FILES["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_dir+ "/" + _FILES["dev"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
squad = json.load(f)
for article in squad["data"]:
title = article.get("title", "")
for paragraph in article["paragraphs"]:
context = paragraph["context"] # do not strip leading blank spaces GH-2585
for qa in paragraph["qas"]:
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
assert len(qa["question"]) > 0
#if len(answer_starts) == 0:
# continue
answers = [answer["text"] for answer in qa["answers"]]
assert len(answer_starts) == len(answers)
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield key, {
"title": title,
"context": context,
"question": qa["question"],
"id": qa["id"],
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
key += 1