File size: 45,889 Bytes
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
e505dda
 
 
c847850
e505dda
 
 
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
 
 
 
 
 
 
 
 
 
 
 
 
 
e505dda
 
 
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
e505dda
6f159ac
e505dda
6f159ac
7b8cfd8
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
7b8cfd8
 
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
7b8cfd8
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929b7b
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
2eb89c1
e505dda
 
6f159ac
e505dda
 
6f159ac
2eb89c1
 
6f159ac
e505dda
 
 
 
 
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc3150
 
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8c018
 
 
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8c018
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8c018
 
e505dda
 
 
 
 
 
 
 
 
 
1f8c018
e505dda
 
 
 
 
 
 
 
 
 
 
1f8c018
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8c018
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc3150
 
 
 
 
 
 
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc3150
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
e505dda
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8c018
e505dda
 
 
 
 
 
 
590ac60
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f159ac
e505dda
 
 
6f159ac
e505dda
 
 
 
 
 
 
 
 
 
 
c847850
e505dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
from IPython.display import clear_output
from subprocess import call, getoutput
from IPython.display import display
import ipywidgets as widgets
import io
from PIL import Image, ImageDraw
import fileinput
import time
import os
from os import listdir
from os.path import isfile
from tqdm import tqdm
import gdown
import random
import sys
import cv2
from io import BytesIO
import requests
from collections import defaultdict
from math import log, sqrt
import numpy as np



def Deps(force_reinstall):

    if not force_reinstall and os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
        ntbk()
        print('Modules and notebooks updated, dependencies already installed')

    else:
        print('Installing the dependencies...')
        call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w'))
        if not os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
            os.chdir('/usr/local/lib/python3.9/dist-packages')
            call("rm -r torch torch-1.12.0+cu116.dist-info torchaudio* torchvision* PIL Pillow* transformers* numpy* gdown*", shell=True, stdout=open('/dev/null', 'w'))
        ntbk()
        if not os.path.exists('/models'):
            call('mkdir /models', shell=True)
        if not os.path.exists('/notebooks/models'):
            call('ln -s /models /notebooks', shell=True)
        if os.path.exists('/deps'):
            call("rm -r /deps", shell=True)
        call('mkdir /deps', shell=True)
        if not os.path.exists('cache'):
            call('mkdir cache', shell=True)
        os.chdir('/deps')
        call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True)
        call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w'))
        call('wget -q https://huggingface.co/TheLastBen/dependencies/resolve/main/pps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
        call('tar -C / --zstd -xf pps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
        call("sed -i 's@~/.cache@/notebooks/cache@' /usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", shell=True)
        os.chdir('/notebooks')
        call("git clone --depth 1 -q --branch updt https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w'))
        if not os.path.exists('/notebooks/diffusers'):
            call('ln -s /diffusers /notebooks', shell=True)
        call("rm -r /deps", shell=True)
        os.chdir('/notebooks')
        clear_output()

        done()
    
    
def ntbk():

    os.chdir('/notebooks')
    if not os.path.exists('Latest_Notebooks'):
        call('mkdir Latest_Notebooks', shell=True)
    else:
        call('rm -r Latest_Notebooks', shell=True)
        call('mkdir Latest_Notebooks', shell=True)
    os.chdir('/notebooks/Latest_Notebooks')
    call('wget -q -i https://huggingface.co/datasets/TheLastBen/PPS/raw/main/Notebooks.txt', shell=True)
    call('rm Notebooks.txt', shell=True)
    os.chdir('/notebooks')


def downloadmodel_hfv2(Path_to_HuggingFace):
  import wget

  if os.path.exists('/models/stable-diffusion-custom'):
    call("rm -r /models/stable-diffusion-custom", shell=True)
  clear_output()
  
  if os.path.exists('/notebooks/Fast-Dreambooth/token.txt'):
    with open("/notebooks/Fast-Dreambooth/token.txt") as f:
       token = f.read()
    authe=f'https://USER:{token}@'
  else:
    authe="https://"

  clear_output()
  call("mkdir /models/stable-diffusion-custom", shell=True)
  os.chdir("/models/stable-diffusion-custom")
  call("git init", shell=True)
  call("git lfs install --system --skip-repo", shell=True)
  call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
  call("git config core.sparsecheckout true", shell=True)
  call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors" > .git/info/sparse-checkout', shell=True)
  call("git pull origin main", shell=True)
  if os.path.exists('unet/diffusion_pytorch_model.bin'):
    call("rm -r .git", shell=True)
    os.chdir('/notebooks')
    clear_output()
    done()
  while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
        print('Check the link you provided')
        os.chdir('/notebooks')
        time.sleep(5)
  

         
def downloadmodel_pthv2(CKPT_Path, Custom_Model_Version):
  import wget
  os.chdir('/models')
  clear_output() 
  if os.path.exists(str(CKPT_Path)):
    wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
    if Custom_Model_Version=='512':
      call('python convertodiffv2.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
    elif Custom_Model_Version=='768':
      call('python convertodiffv2.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
      #if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
         #call('wget -q -O stable-diffusion-custom/unet/config.json https://huggingface.co/stabilityai/stable-diffusion-2-1/raw/main/unet/config.json', shell=True)
    call('rm convertodiffv2.py', shell=True)
    if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
      os.chdir('/notebooks')
      clear_output()
      done()
    while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
      print('Conversion error')
      os.chdir('/notebooks')
      time.sleep(5)
  else:
    while not os.path.exists(str(CKPT_Path)):
       print('Wrong path, use the file explorer to copy the path')
       os.chdir('/notebooks')
       time.sleep(5)



def downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version): 
    import wget
    os.chdir('/models')
    call("gdown --fuzzy " +CKPT_Link+ " -O model.ckpt", shell=True)
    
    if os.path.exists('model.ckpt'):
      if os.path.getsize("model.ckpt") > 1810671599:
        wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
        if Custom_Model_Version=='512':
          call('python convertodiffv2.py model.ckpt stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
        elif Custom_Model_Version=='768':
          call('python convertodiffv2.py model.ckpt stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
          #if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
             #call('wget -q -O stable-diffusion-custom/unet/config.json https://huggingface.co/stabilityai/stable-diffusion-2-1/raw/main/unet/config.json', shell=True)
        call('rm convertodiffv2.py', shell=True)
        if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
          call('rm model.ckpt', shell=True)
          os.chdir('/notebooks')
          clear_output()
          done()
        else:
            while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
              print('Conversion error')
              os.chdir('/notebooks')
              time.sleep(5)
    else:
        while os.path.getsize('/models/model.ckpt') < 1810671599:
           print('Wrong link, check that the link is valid')
           os.chdir('/notebooks')
           time.sleep(5)

      
           

def dlv2(Path_to_HuggingFace, CKPT_Path, CKPT_Link, Model_Version, Custom_Model_Version):

    if Path_to_HuggingFace != "":
      downloadmodel_hfv2(Path_to_HuggingFace)
      MODEL_NAMEv2="/models/stable-diffusion-custom"
    elif CKPT_Path !="":
      downloadmodel_pthv2(CKPT_Path, Custom_Model_Version)
      MODEL_NAMEv2="/models/stable-diffusion-custom"
    elif CKPT_Link !="":
      downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version)
      MODEL_NAMEv2="/models/stable-diffusion-custom"
    else:
      if Model_Version=="512":
        MODEL_NAMEv2="/datasets/stable-diffusion-v2-1-base-diffusers/stable-diffusion-2-1-base"
        print('Using the original V2-512 model')
      elif Model_Version=="768":
        MODEL_NAMEv2="/datasets/stable-diffusion-v2-1/stable-diffusion-2-1"
        print('Using the original V2-768 model')
      else:
        MODEL_NAMEv2=""
        print('Wrong model version')

    return MODEL_NAMEv2


def sessv2(Session_Name, Session_Link_optional, Model_Version, MODEL_NAMEv2):
    import gdown
    os.chdir('/notebooks')
    PT=""

    while Session_Name=="":
      print('Input the Session Name:') 
      Session_Name=input("")
    Session_Name=Session_Name.replace(" ","_")

    WORKSPACE='/notebooks/Fast-Dreambooth'

    if Session_Link_optional !="":
      print('Downloading session...')

      if Session_Link_optional != "":
        if not os.path.exists(str(WORKSPACE+'/Sessions')):
          call("mkdir -p " +WORKSPACE+ "/Sessions", shell=True)
          time.sleep(1)
        os.chdir(WORKSPACE+'/Sessions')
        gdown.download_folder(url=Session_Link_optional, output=Session_Name, quiet=True, remaining_ok=True, use_cookies=False)
        os.chdir(Session_Name)
        call("rm -r " +instance_images, shell=True)
        call("unzip " +instance_images.zip, shell=True, stdout=open('/dev/null', 'w'))
        call("rm -r " +concept_images, shell=True)
        call("unzip " +concept_images.zip, shell=True, stdout=open('/dev/null', 'w'))
        call("rm -r " +captions, shell=True)
        call("unzip " +captions.zip, shell=True, stdout=open('/dev/null', 'w'))
        os.chdir('/notebooks')
        clear_output()

    INSTANCE_NAME=Session_Name
    OUTPUT_DIR="/models/"+Session_Name
    SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
    CONCEPT_DIR=SESSION_DIR+"/concept_images"
    INSTANCE_DIR=SESSION_DIR+"/instance_images"
    CAPTIONS_DIR=SESSION_DIR+'/captions'
    MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.ckpt')
    resumev2=False
    
    if os.path.exists(str(SESSION_DIR)):
      mdls=[ckpt for ckpt in listdir(SESSION_DIR) if ckpt.split(".")[-1]=="ckpt"]
      if not os.path.exists(MDLPTH) and '.ckpt' in str(mdls):  
        
        def f(n):
          k=0
          for i in mdls:
            if k==n:
              call('mv '+SESSION_DIR+'/'+i+' '+MDLPTH, shell=True)
            k=k+1

        k=0
        print('No final checkpoint model found, select which intermediary checkpoint to use, enter only the number, (000 to skip):\n')

        for i in mdls:
          print(str(k)+'- '+i)
          k=k+1
        n=input()
        while int(n)>k-1:
          n=input()
        if n!="000":
          f(int(n))
          print('Using the model '+ mdls[int(n)]+" ...")
          time.sleep(4)
        else:
          print('Skipping the intermediary checkpoints.')
  

    if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
      print('Loading session with no previous model, using the original model or the custom downloaded model')
      if MODEL_NAMEv2=="":
        print('No model found, use the "Model Download" cell to download a model.')
      else:
        print('Session Loaded, proceed to uploading instance images')

    elif os.path.exists(MDLPTH):
      print('Session found, loading the trained model ...')
      call('wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py', shell=True)
      if Model_Version=='512':
        print('Session found, loading the trained model ...')
        call('python convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
      elif Model_Version=='768':
        print('Session found, loading the trained model ...')
        call('python convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True) 
        if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
           call('wget -q -O '+OUTPUT_DIR+'/unet/config.json https://huggingface.co/stabilityai/stable-diffusion-2-1/raw/main/unet/config.json', shell=True)
      call('rm convertodiff.py', shell=True)
        
      if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
        resumev2=True
        clear_output()
        print('Session loaded.')
      else:     
        print('Conversion error, if the error persists, remove the CKPT file from the current session folder')

    elif not os.path.exists(str(SESSION_DIR)):
        call('mkdir -p '+INSTANCE_DIR, shell=True)
        print('Creating session...')
        if MODEL_NAMEv2=="":
          print('No model found, use the "Model Download" cell to download a model.')
        else:
          print('Session created, proceed to uploading instance images')
        
    return PT, WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, CONCEPT_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMEv2, resumev2
      
      
      
def done():
    done = widgets.Button(
        description='Done!',
        disabled=True,
        button_style='success',
        tooltip='',
        icon='check'
    )
    display(done)
    
    
   
      
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, ren):

    if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
      call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)

    uploader = widgets.FileUpload(description="Choose images",accept='image/*', multiple=True)
    Upload = widgets.Button(
        description='Upload',
        disabled=False,
        button_style='info', 
        tooltip='Click to upload the chosen instance images',
        icon=''
    )


    def up(Upload):
        with out: 
            uploader.close()
            Upload.close()
            upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
            done()
    out=widgets.Output()
    
    if IMAGES_FOLDER_OPTIONAL=="":
      Upload.on_click(up)
      display(uploader, Upload, out)
    else:
       upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
       done()
    

def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren):


    if Remove_existing_instance_images:
        if os.path.exists(str(INSTANCE_DIR)):
            call("rm -r " +INSTANCE_DIR, shell=True)
        if os.path.exists(str(CAPTIONS_DIR)):
            call("rm -r " +CAPTIONS_DIR, shell=True)            


    if not os.path.exists(str(INSTANCE_DIR)):
        call("mkdir -p " +INSTANCE_DIR, shell=True)
    if not os.path.exists(str(CAPTIONS_DIR)):
        call("mkdir -p " +CAPTIONS_DIR, shell=True)        


    if IMAGES_FOLDER_OPTIONAL !="":

        if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"):
          call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True)    
    
        if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
            call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
        if Crop_images:   
            os.chdir(str(IMAGES_FOLDER_OPTIONAL))
            call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
            os.chdir('/notebooks')    
            for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format='  |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
                extension = filename.split(".")[-1]
                identifier=filename.split(".")[0]
                new_path_with_file = os.path.join(INSTANCE_DIR, filename)
                file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
                width, height = file.size
                image = file                
                if file.size !=(Crop_size, Crop_size):
                    image=crop_image(file, Crop_size)
                    if extension.upper()=="JPG" or extension.upper()=="jpg":
                        image[0] = image[0].convert("RGB")
                        image[0].save(new_path_with_file, format="JPEG", quality = 100)
                    else:
                        image[0].save(new_path_with_file, format=extension.upper())
                        
                else:
                   call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)                        

        else:
            for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format='  |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
                call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)

    elif IMAGES_FOLDER_OPTIONAL =="":
        up=""  
        for filename, file in uploader.value.items():
          if filename.split(".")[-1]=="txt":
            with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
                f.write(file['content'].decode())            
          up=[(filename, file) for filename, file in uploader.value.items() if filename.split(".")[-1]!="txt"]
        if Crop_images:
            for filename, file_info in tqdm(up, bar_format='  |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
                img = Image.open(io.BytesIO(file_info['content']))
                extension = filename.split(".")[-1]
                identifier=filename.split(".")[0]

                if extension.upper()=="JPG" or extension.upper()=="jpg":
                    img=img.convert("RGB")
                    img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) 
                else:
                    img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())                
                
                new_path_with_file = os.path.join(INSTANCE_DIR, filename)
                file = Image.open(new_path_with_file)
                width, height = file.size
                image = img          
                if file.size !=(Crop_size, Crop_size):
                    image=crop_image(file, Crop_size)
                    if extension.upper()=="JPG" or extension.upper()=="jpg":
                        image[0].save(new_path_with_file, format="JPEG", quality = 100) 
                    else:
                        image[0].save(new_path_with_file, format=extension.upper())

        else:
            for filename, file_info in tqdm(uploader.value.items(), bar_format='  |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
                img = Image.open(io.BytesIO(file_info['content']))
                
                extension = filename.split(".")[-1]
                identifier=filename.split(".")[0]   
                
                if extension.upper()=="JPG" or extension.upper()=="jpg":
                    img=img.convert("RGB")
                    img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) 
                else:
                    img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())                  

    if ren:
        i=0
        for filename in tqdm(os.listdir(INSTANCE_DIR), bar_format='  |{bar:15}| {n_fmt}/{total_fmt} Renamed'):
          extension = filename.split(".")[-1]
          identifier=filename.split(".")[0]
          new_path_with_file = os.path.join(INSTANCE_DIR, "conceptimagedb"+str(i)+"."+extension)
          call('mv "'+os.path.join(INSTANCE_DIR,filename)+'" "'+new_path_with_file+'"', shell=True)
          i=i+1

    os.chdir(INSTANCE_DIR)
    call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
    os.chdir(CAPTIONS_DIR)
    call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)    
    os.chdir('/notebooks')
    
    
def caption(CAPTIONS_DIR, INSTANCE_DIR):
   
  paths=""
  out=""
  widgets_l=""
  clear_output()
  def Caption(path):
      if path!="Select an instance image to caption":
        
        name = os.path.splitext(os.path.basename(path))[0]
        ext=os.path.splitext(os.path.basename(path))[-1][1:]
        if ext=="jpg" or "JPG":
          ext="JPEG"        

        if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
          with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
              text = f.read()
        else:
          with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
              f.write("")
              with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
                  text = f.read()   

        img=Image.open(os.path.join(INSTANCE_DIR,path))
        img=img.convert("RGB")
        img=img.resize((420, 420))
        image_bytes = BytesIO()
        img.save(image_bytes, format=ext, qualiy=10)
        image_bytes.seek(0)
        image_data = image_bytes.read()
        img= image_data  
        image = widgets.Image(
            value=img,
            width=420,
            height=420
        )
        text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
        

        def update_text(text):
            with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
                f.write(text)

        button = widgets.Button(description='Save', button_style='success')
        button.on_click(lambda b: update_text(text_area.value))

        return widgets.VBox([widgets.HBox([image, text_area, button])])


  paths = os.listdir(INSTANCE_DIR)
  widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)


  out = widgets.Output()

  def click(change):
      with out:
          out.clear_output()
          display(Caption(change.new))

  widgets_l.observe(click, names='value')
  display(widgets.HBox([widgets_l, out]))

  
                    
    
def dbtrainv2(Resume_Training, UNet_Training_Steps, UNet_Learning_Rate, Text_Encoder_Training_Steps, Text_Encoder_Concept_Training_Steps, Text_Encoder_Learning_Rate, Style_Training, Resolution, MODEL_NAMEv2, SESSION_DIR, INSTANCE_DIR, CONCEPT_DIR, CAPTIONS_DIR, External_Captions,  INSTANCE_NAME, Session_Name, OUTPUT_DIR, PT, resumev2, Save_Checkpoint_Every_n_Steps, Start_saving_from_the_step, Save_Checkpoint_Every):

    if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
      call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
    if os.path.exists(CONCEPT_DIR+"/.ipynb_checkpoints"):
      call('rm -r '+CONCEPT_DIR+'/.ipynb_checkpoints', shell=True)
    if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"):
      call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True)

    if resumev2 and not Resume_Training:
      print('Overwrite your previously trained model ?, answering "yes" will train a new model, answering "no" will resumev2 the training of the previous model?  yes or no ?')
      while True:
        ansres=input('')
        if ansres=='no':
          Resume_Training = True
          break
        elif ansres=='yes':
          Resume_Training = False
          resumev2= False
          break

    while not Resume_Training and not os.path.exists(MODEL_NAMEv2+'/unet/diffusion_pytorch_model.bin'):
        print('No model found, use the "Model Download" cell to download a model.')
        time.sleep(5) 

    MODELT_NAME=MODEL_NAMEv2

    Seed=random.randint(1, 999999)
    
    Style=""
    if Style_Training:
      Style="--Style"
      
    extrnlcptn=""
    if External_Captions:
      extrnlcptn="--external_captions"      

    precision="fp16"
    
    GCUNET="--gradient_checkpointing"
    if Resolution<=640:
      GCUNET=""    

    resuming=""
    if Resume_Training and os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
      MODELT_NAME=OUTPUT_DIR
      print('Resuming Training...')
      resuming="Yes"
    elif Resume_Training and not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
      print('Previous model not found, training a new model...') 
      MODELT_NAME=MODEL_NAMEv2
      while MODEL_NAMEv2=="":
        print('No model found, use the "Model Download" cell to download a model.')
        time.sleep(5)      


    trnonltxt=""
    if UNet_Training_Steps==0:
       trnonltxt="--train_only_text_encoder"      
      
    Enable_text_encoder_training= True
    Enable_Text_Encoder_Concept_Training= True
    

    if Text_Encoder_Training_Steps==0:
       Enable_text_encoder_training= False
    else:
      stptxt=Text_Encoder_Training_Steps
      
    if Text_Encoder_Concept_Training_Steps==0:
       Enable_Text_Encoder_Concept_Training= False
    else:
      stptxtc=Text_Encoder_Concept_Training_Steps


    if Save_Checkpoint_Every==None:
      Save_Checkpoint_Every=1
    stp=0
    if Start_saving_from_the_step==None:
      Start_saving_from_the_step=0
    if (Start_saving_from_the_step < 200):
      Start_saving_from_the_step=Save_Checkpoint_Every
    stpsv=Start_saving_from_the_step
    if Save_Checkpoint_Every_n_Steps:
      stp=Save_Checkpoint_Every          


    def dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps):
        call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
        '+trnonltxt+' \
        '+extrnlcptn+' \
        --train_text_encoder \
        --image_captions_filename \
        --dump_only_text_encoder \
        --pretrained_model_name_or_path='+MODELT_NAME+' \
        --instance_data_dir='+INSTANCE_DIR+' \
        --output_dir='+OUTPUT_DIR+' \
        --instance_prompt='+PT+' \
        --seed='+str(Seed)+' \
        --resolution=512 \
        --mixed_precision='+str(precision)+' \
        --train_batch_size=1 \
        --gradient_accumulation_steps=1 --gradient_checkpointing \
        --use_8bit_adam \
        --learning_rate='+str(Text_Encoder_Learning_Rate)+' \
        --lr_scheduler="linear" \
        --lr_warmup_steps=0 \
        --max_train_steps='+str(Training_Steps), shell=True)
        
    def train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps):
        clear_output()
        if resuming=="Yes":
          print('Resuming Training...')    
        print('Training the UNet...')
        call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
        '+Style+' \
        '+extrnlcptn+' \
        --image_captions_filename \
        --train_only_unet \
        --Session_dir='+SESSION_DIR+' \
        --save_starting_step='+str(stpsv)+' \
        --save_n_steps='+str(stp)+' \
        --pretrained_model_name_or_path='+MODELT_NAME+' \
        --instance_data_dir='+INSTANCE_DIR+' \
        --output_dir='+OUTPUT_DIR+' \
        --instance_prompt='+PT+' \
        --seed='+str(Seed)+' \
        --resolution='+str(Resolution)+' \
        --mixed_precision='+str(precision)+' \
        --train_batch_size=1 \
        --gradient_accumulation_steps=1 '+GCUNET+' \
        --use_8bit_adam \
        --learning_rate='+str(UNet_Learning_Rate)+' \
        --lr_scheduler="linear" \
        --lr_warmup_steps=0 \
        --max_train_steps='+str(Training_Steps), shell=True)

    if Enable_text_encoder_training :
      print('Training the text encoder...')
      if os.path.exists(OUTPUT_DIR+'/'+'text_encoder_trained'):
        call('rm -r '+OUTPUT_DIR+'/text_encoder_trained', shell=True)
      dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxt)
      
    if Enable_Text_Encoder_Concept_Training:
      if os.path.exists(CONCEPT_DIR):
        if os.listdir(CONCEPT_DIR)!=[]:
          clear_output()
          if resuming=="Yes":
            print('Resuming Training...')    
          print('Training the text encoder on the concept...')
          dump_only_textenc(trnonltxt, MODELT_NAME, CONCEPT_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxtc)
        else:
          clear_output()
          if resuming=="Yes":
            print('Resuming Training...')      
          print('No concept images found, skipping concept training...')
          Text_Encoder_Concept_Training_Steps=0
          time.sleep(8)
      else:
          clear_output()
          if resuming=="Yes":
            print('Resuming Training...')
          print('No concept images found, skipping concept training...')
          Text_Encoder_Concept_Training_Steps=0
          time.sleep(8)
      
    if UNet_Training_Steps!=0:
      train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps=UNet_Training_Steps)

    if UNet_Training_Steps==0 and Text_Encoder_Concept_Training_Steps==0 and Text_Encoder_Training_Steps==0 :
      print('Nothing to do')
    else:
        if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
        
          call('python /notebooks/diffusers/scripts/convertosdv2.py --fp16 '+OUTPUT_DIR+' '+SESSION_DIR+'/'+Session_Name+'.ckpt', shell=True)
          clear_output()
          if os.path.exists(SESSION_DIR+"/"+INSTANCE_NAME+'.ckpt'):
            clear_output()
            print("DONE, the CKPT model is in the session's folder")
          else:
            print("Something went wrong")    
            
        else:
          print("Something went wrong")

    return resumev2
      
      
def test(Custom_Path, Previous_Session_Name, Session_Name, User, Password, Use_localtunnel):
    
    
    if Previous_Session_Name!="":
      print("Loading a previous session model")
      mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Previous_Session_Name
      path_to_trained_model=mdldir+"/"+Previous_Session_Name+'.ckpt'

            
      while not os.path.exists(path_to_trained_model):
         print("There is no trained model in the previous session")
         time.sleep(5)
          
    elif Custom_Path!="":
      print("Loading model from a custom path")
      path_to_trained_model=Custom_Path

       
      while not os.path.exists(path_to_trained_model):
         print("Wrong Path")
         time.sleep(5)
           
    else:
        print("Loading the trained model")
        mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Session_Name
        path_to_trained_model=mdldir+"/"+Session_Name+'.ckpt'


        while not os.path.exists(path_to_trained_model):
           print("There is no trained model in this session")
           time.sleep(5)
           
    auth=f"--gradio-auth {User}:{Password}"
    if User =="" or Password=="":
      auth=""

    os.chdir('/notebooks')
    if not os.path.exists('/notebooks/sd/stablediffusion'):
       call('wget -q -O sd_rep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_rep.tar.zst', shell=True)
       call('tar --zstd -xf sd_rep.tar.zst', shell=True)
       call('rm sd_rep.tar.zst', shell=True)        
        
    os.chdir('/notebooks/sd')
    if not os.path.exists('stable-diffusion-webui'):
        call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
    
    os.chdir('/notebooks/sd/stable-diffusion-webui/')
    call('git reset --hard', shell=True, stdout=open('/dev/null', 'w'))
    print('')
    call('git pull', shell=True, stdout=open('/dev/null', 'w'))
    os.chdir('/notebooks')
    clear_output()
      
    if not os.path.exists('/usr/lib/node_modules/localtunnel'):
       call('npm install -g localtunnel  --silent', shell=True, stdout=open('/dev/null', 'w'))
    
    share=''
    call('wget -q -O /usr/local/lib/python3.9/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
    
    if not Use_localtunnel:
      share='--share'      

    else:
      share=''
      os.chdir('/notebooks')
      call('nohup lt --port 7860 > srv.txt 2>&1 &', shell=True)
      time.sleep(2)
      call("grep -o 'https[^ ]*' srv.txt >srvr.txt", shell=True)
      time.sleep(2)
      srv= getoutput('cat srvr.txt')

      for line in fileinput.input('/usr/local/lib/python3.9/dist-packages/gradio/blocks.py', inplace=True):
        if line.strip().startswith('self.server_name ='):
            line = f'            self.server_name = "{srv[8:]}"\n'
        if line.strip().startswith('self.server_port ='):
            line = '            self.server_port = 443\n'
        if line.strip().startswith('self.protocol = "https"'):
            line = '            self.protocol = "https"\n'
        if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
            line = ''
        if line.strip().startswith('else "http"'):
            line = ''
        sys.stdout.write(line)

      call('rm srv.txt srvr.txt', shell=True)

    os.chdir('/notebooks/sd/stable-diffusion-webui/modules')
    call('wget -q -O paths.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/paths.py', shell=True) 
    call("sed -i 's@/content/gdrive/MyDrive/sd/stablediffusion@/notebooks/sd/stablediffusion@' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True)   
    os.chdir('/notebooks/sd/stable-diffusion-webui')
    clear_output()

    configf="--disable-console-progressbars --no-half-vae --disable-safe-unpickle --api --no-download-sd-model --xformers --enable-insecure-extension-access --skip-version-check --ckpt "+path_to_trained_model+" "+auth+" "+share
    
    return configf
      
      

def clean():
    
    Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions")

    s = widgets.Select(
        options=Sessions,
        rows=5,
        description='',
        disabled=False
    )

    out=widgets.Output()

    d = widgets.Button(
        description='Remove',
        disabled=False,
        button_style='warning',
        tooltip='Removet the selected session',
        icon='warning'
    )

    def rem(d):
        with out:
            if s.value is not None:
                clear_output()
                print("THE SESSION "+s.value+" HAS BEEN REMOVED FROM THE STORAGE")
                call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True)
                if os.path.exists('/notebooks/models/'+s.value):
                  call('rm -r /notebooks/models/'+s.value, shell=True)
                s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions")       


            else:
                d.close()
                s.close()
                clear_output()
                print("NOTHING TO REMOVE")

    d.on_click(rem)
    if s.value is not None:
        display(s,d,out)
    else:
        print("NOTHING TO REMOVE")
        

        
def hfv2(Name_of_your_concept, Save_concept_to, hf_token_write, INSTANCE_NAME, OUTPUT_DIR, Session_Name, MDLPTH):

    from slugify import slugify
    from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
    from huggingface_hub import create_repo
    from IPython.display import display_markdown

    if(Name_of_your_concept == ""):
      Name_of_your_concept = Session_Name
    Name_of_your_concept=Name_of_your_concept.replace(" ","-")  
      


    if hf_token_write =="":
      print('Your Hugging Face write access token : ')
      hf_token_write=input()

    hf_token = hf_token_write

    api = HfApi()
    your_username = api.whoami(token=hf_token)["name"]

    repo_id = f"{your_username}/{slugify(Name_of_your_concept)}"
    output_dir = f'/notebooks/models/'+INSTANCE_NAME

    def bar(prg):
        clear_output()
        br="Uploading to HuggingFace : " '|'+'█' * prg + ' ' * (25-prg)+'| ' +str(prg*4)+ "%"
        return br

    print(bar(1))
       
    readme_text = f'''---
    license: creativeml-openrail-m
    tags:
    - text-to-image
    - stable-diffusion
    ---
    ### {Name_of_your_concept} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with TheLastBen's fast-DreamBooth notebook

    '''
    #Save the readme to a file
    readme_file = open("README.md", "w")
    readme_file.write(readme_text)
    readme_file.close()

    operations = [
      CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"),
      CommitOperationAdd(path_in_repo=f"{Session_Name}.ckpt",path_or_fileobj=MDLPTH)

    ]
    create_repo(repo_id,private=True, token=hf_token)

    api.create_commit(
      repo_id=repo_id,
      operations=operations,
      commit_message=f"Upload the concept {Name_of_your_concept} embeds and token",
      token=hf_token
    )

    print(bar(8))

    api.upload_folder(
      folder_path=OUTPUT_DIR+"/scheduler",
      path_in_repo="scheduler",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(9))

    api.upload_folder(
      folder_path=OUTPUT_DIR+"/text_encoder",
      path_in_repo="text_encoder",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(12))

    api.upload_folder(
      folder_path=OUTPUT_DIR+"/tokenizer",
      path_in_repo="tokenizer",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(13))

    api.upload_folder(
      folder_path=OUTPUT_DIR+"/unet",
      path_in_repo="unet",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(21))

    api.upload_folder(
      folder_path=OUTPUT_DIR+"/vae",
      path_in_repo="vae",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(23))

    api.upload_file(
      path_or_fileobj=OUTPUT_DIR+"/model_index.json",
      path_in_repo="model_index.json",
      repo_id=repo_id,
      token=hf_token
    )

    print(bar(25))

    print("Your concept was saved successfully at https://huggingface.co/"+repo_id)
    done()        

           
            
def crop_image(im, size):

  GREEN = "#0F0"
  BLUE = "#00F"
  RED = "#F00"    

  def focal_point(im, settings):
      corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
      entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
      face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []

      pois = []

      weight_pref_total = 0
      if len(corner_points) > 0:
        weight_pref_total += settings.corner_points_weight
      if len(entropy_points) > 0:
        weight_pref_total += settings.entropy_points_weight
      if len(face_points) > 0:
        weight_pref_total += settings.face_points_weight

      corner_centroid = None
      if len(corner_points) > 0:
        corner_centroid = centroid(corner_points)
        corner_centroid.weight = settings.corner_points_weight / weight_pref_total 
        pois.append(corner_centroid)

      entropy_centroid = None
      if len(entropy_points) > 0:
        entropy_centroid = centroid(entropy_points)
        entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
        pois.append(entropy_centroid)

      face_centroid = None
      if len(face_points) > 0:
        face_centroid = centroid(face_points)
        face_centroid.weight = settings.face_points_weight / weight_pref_total 
        pois.append(face_centroid)

      average_point = poi_average(pois, settings)
      
      return average_point


  def image_face_points(im, settings):

      np_im = np.array(im)
      gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)

      tries = [
        [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
        [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
        [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
      ]
      for t in tries:
        classifier = cv2.CascadeClassifier(t[0])
        minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
        try:
          faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
            minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
        except:
          continue

        if len(faces) > 0:
          rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
          return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
      return []


  def image_corner_points(im, settings):
      grayscale = im.convert("L")

      
      gd = ImageDraw.Draw(grayscale)
      gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")

      np_im = np.array(grayscale)

      points = cv2.goodFeaturesToTrack(
          np_im,
          maxCorners=100,
          qualityLevel=0.04,
          minDistance=min(grayscale.width, grayscale.height)*0.06,
          useHarrisDetector=False,
      )

      if points is None:
          return []

      focal_points = []
      for point in points:
        x, y = point.ravel()
        focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))

      return focal_points


  def image_entropy_points(im, settings):
      landscape = im.height < im.width
      portrait = im.height > im.width
      if landscape:
        move_idx = [0, 2]
        move_max = im.size[0]
      elif portrait:
        move_idx = [1, 3]
        move_max = im.size[1]
      else:
        return []

      e_max = 0
      crop_current = [0, 0, settings.crop_width, settings.crop_height]
      crop_best = crop_current
      while crop_current[move_idx[1]] < move_max:
          crop = im.crop(tuple(crop_current))
          e = image_entropy(crop)

          if (e > e_max):
            e_max = e
            crop_best = list(crop_current)

          crop_current[move_idx[0]] += 4
          crop_current[move_idx[1]] += 4

      x_mid = int(crop_best[0] + settings.crop_width/2)
      y_mid = int(crop_best[1] + settings.crop_height/2)

      return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]


  def image_entropy(im):
      # greyscale image entropy
      # band = np.asarray(im.convert("L"))
      band = np.asarray(im.convert("1"), dtype=np.uint8)
      hist, _ = np.histogram(band, bins=range(0, 256))
      hist = hist[hist > 0]
      return -np.log2(hist / hist.sum()).sum()

  def centroid(pois):
    x = [poi.x for poi in pois]
    y = [poi.y for poi in pois]
    return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))


  def poi_average(pois, settings):
      weight = 0.0
      x = 0.0
      y = 0.0
      for poi in pois:
          weight += poi.weight
          x += poi.x * poi.weight
          y += poi.y * poi.weight
      avg_x = round(weight and x / weight)
      avg_y = round(weight and y / weight)

      return PointOfInterest(avg_x, avg_y)


  def is_landscape(w, h):
    return w > h


  def is_portrait(w, h):
    return h > w


  def is_square(w, h):
    return w == h


  class PointOfInterest:
    def __init__(self, x, y, weight=1.0, size=10):
      self.x = x
      self.y = y
      self.weight = weight
      self.size = size

    def bounding(self, size):
      return [
        self.x - size//2,
        self.y - size//2,
        self.x + size//2,
        self.y + size//2
      ]

  class Settings:
    def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
      self.crop_width = crop_width
      self.crop_height = crop_height
      self.corner_points_weight = corner_points_weight
      self.entropy_points_weight = entropy_points_weight
      self.face_points_weight = face_points_weight

  settings = Settings(
      crop_width = size,
      crop_height = size,
      face_points_weight = 0.9,
      entropy_points_weight = 0.15,
      corner_points_weight = 0.5,
  )        

  scale_by = 1
  if is_landscape(im.width, im.height):
    scale_by = settings.crop_height / im.height
  elif is_portrait(im.width, im.height):
    scale_by = settings.crop_width / im.width
  elif is_square(im.width, im.height):
    if is_square(settings.crop_width, settings.crop_height):
      scale_by = settings.crop_width / im.width
    elif is_landscape(settings.crop_width, settings.crop_height):
      scale_by = settings.crop_width / im.width
    elif is_portrait(settings.crop_width, settings.crop_height):
      scale_by = settings.crop_height / im.height

  im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
  im_debug = im.copy()

  focus = focal_point(im_debug, settings)

  # take the focal point and turn it into crop coordinates that try to center over the focal
  # point but then get adjusted back into the frame
  y_half = int(settings.crop_height / 2)
  x_half = int(settings.crop_width / 2)

  x1 = focus.x - x_half
  if x1 < 0:
      x1 = 0
  elif x1 + settings.crop_width > im.width:
      x1 = im.width - settings.crop_width

  y1 = focus.y - y_half
  if y1 < 0:
      y1 = 0
  elif y1 + settings.crop_height > im.height:
      y1 = im.height - settings.crop_height

  x2 = x1 + settings.crop_width
  y2 = y1 + settings.crop_height

  crop = [x1, y1, x2, y2]

  results = []

  results.append(im.crop(tuple(crop)))

  return results