|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Enriched WebNLG corpus""" |
|
|
|
|
|
import itertools |
|
import os |
|
import xml.etree.cElementTree as ET |
|
from collections import defaultdict |
|
from glob import glob |
|
from os.path import join as pjoin |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{ferreiraetal2018, |
|
author = "Castro Ferreira, Thiago and Moussallem, Diego and Wubben, Sander and Krahmer, Emiel", |
|
title = "Enriching the WebNLG corpus", |
|
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation", |
|
year = "2018", |
|
series = {INLG'18}, |
|
publisher = "Association for Computational Linguistics", |
|
address = "Tilburg, The Netherlands", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
WebNLG is a valuable resource and benchmark for the Natural Language Generation (NLG) community. However, as other NLG benchmarks, it only consists of a collection of parallel raw representations and their corresponding textual realizations. This work aimed to provide intermediate representations of the data for the development and evaluation of popular tasks in the NLG pipeline architecture (Reiter and Dale, 2000), such as Discourse Ordering, Lexicalization, Aggregation and Referring Expression Generation. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ThiagoCF05/webnlg" |
|
|
|
_LICENSE = "CC Attribution-Noncommercial-Share Alike 4.0 International" |
|
|
|
_SHA = "12ca34880b225ebd1eb9db07c64e8dd76f7e5784" |
|
|
|
_URL = f"https://github.com/ThiagoCF05/webnlg/archive/{_SHA}.zip" |
|
|
|
_FILE_PATHS = { |
|
"en": { |
|
"train": [f"webnlg-{_SHA}/data/v1.5/en/train/{i}triples/" for i in range(1, 8)], |
|
"dev": [f"webnlg-{_SHA}/data/v1.5/en/dev/{i}triples/" for i in range(1, 8)], |
|
"test": [f"webnlg-{_SHA}/data/v1.5/en/test/{i}triples/" for i in range(1, 8)], |
|
}, |
|
"de": { |
|
"train": [f"webnlg-{_SHA}/data/v1.5/de/train/{i}triples/" for i in range(1, 8)], |
|
"dev": [f"webnlg-{_SHA}/data/v1.5/de/dev/{i}triples/" for i in range(1, 8)], |
|
}, |
|
} |
|
|
|
|
|
def et_to_dict(tree): |
|
"""Takes the xml tree within a dataset file and returns a dictionary with entry data""" |
|
dct = {tree.tag: {} if tree.attrib else None} |
|
children = list(tree) |
|
if children: |
|
dd = defaultdict(list) |
|
for dc in map(et_to_dict, children): |
|
for k, v in dc.items(): |
|
dd[k].append(v) |
|
dct = {tree.tag: dd} |
|
if tree.attrib: |
|
dct[tree.tag].update((k, v) for k, v in tree.attrib.items()) |
|
if tree.text: |
|
text = tree.text.strip() |
|
if children or tree.attrib: |
|
if text: |
|
dct[tree.tag]["text"] = text |
|
else: |
|
dct[tree.tag] = text |
|
return dct |
|
|
|
|
|
def parse_entry(entry, config_name): |
|
"""Takes the dictionary corresponding to an entry and returns a dictionary with: |
|
- Proper feature naming |
|
- Default values |
|
- Proper typing""" |
|
res = {} |
|
otriple_set_list = entry["originaltripleset"] |
|
res["original_triple_sets"] = [{"otriple_set": otriple_set["otriple"]} for otriple_set in otriple_set_list] |
|
mtriple_set_list = entry["modifiedtripleset"] |
|
res["modified_triple_sets"] = [{"mtriple_set": mtriple_set["mtriple"]} for mtriple_set in mtriple_set_list] |
|
res["category"] = entry["category"] |
|
res["eid"] = entry["eid"] |
|
res["size"] = int(entry["size"]) |
|
lex = entry["lex"] |
|
|
|
entry_triples = [ |
|
ex["sortedtripleset"][0] if ex["sortedtripleset"][0] is not None else {"sentence": []} for ex in lex |
|
] |
|
|
|
sorted_triples = [ |
|
list(itertools.chain.from_iterable(item.get("striple", []) for item in entry["sentence"])) |
|
for entry in entry_triples |
|
] |
|
res["lex"] = { |
|
"comment": [ex.get("comment", "") for ex in lex], |
|
"lid": [ex.get("lid", "") for ex in lex], |
|
|
|
"text": [ex.get("text", [""])[0] for ex in lex], |
|
"template": [ex.get("template", [""])[0] for ex in lex], |
|
"sorted_triple_sets": sorted_triples, |
|
} |
|
|
|
if config_name == "en": |
|
res["lex"]["lexicalization"] = [ex.get("lexicalization", [""])[0] for ex in lex] |
|
res["shape"] = entry.get("shape", "") |
|
res["shape_type"] = entry.get("shape_type", "") |
|
return res |
|
|
|
|
|
def xml_file_to_examples(filename, config_name): |
|
tree = ET.parse(filename).getroot() |
|
examples = et_to_dict(tree)["benchmark"]["entries"][0]["entry"] |
|
return [parse_entry(entry, config_name) for entry in examples] |
|
|
|
|
|
class EnrichedWebNlg(datasets.GeneratorBasedBuilder): |
|
"""The WebNLG corpus""" |
|
|
|
VERSION = datasets.Version("1.5.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="en", description="Enriched English version of the WebNLG data"), |
|
datasets.BuilderConfig(name="de", description="Enriched German version of the WebNLG data"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "en": |
|
features = datasets.Features( |
|
{ |
|
"category": datasets.Value("string"), |
|
"size": datasets.Value("int32"), |
|
"eid": datasets.Value("string"), |
|
"original_triple_sets": datasets.Sequence( |
|
{"otriple_set": datasets.Sequence(datasets.Value("string"))} |
|
), |
|
"modified_triple_sets": datasets.Sequence( |
|
{"mtriple_set": datasets.Sequence(datasets.Value("string"))} |
|
), |
|
"shape": datasets.Value("string"), |
|
"shape_type": datasets.Value("string"), |
|
"lex": datasets.Sequence( |
|
{ |
|
"comment": datasets.Value("string"), |
|
"lid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"template": datasets.Value("string"), |
|
"sorted_triple_sets": datasets.Sequence(datasets.Value("string")), |
|
|
|
"lexicalization": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"category": datasets.Value("string"), |
|
"size": datasets.Value("int32"), |
|
"eid": datasets.Value("string"), |
|
"original_triple_sets": datasets.Sequence( |
|
{"otriple_set": datasets.Sequence(datasets.Value("string"))} |
|
), |
|
"modified_triple_sets": datasets.Sequence( |
|
{"mtriple_set": datasets.Sequence(datasets.Value("string"))} |
|
), |
|
"shape": datasets.Value("string"), |
|
"shape_type": datasets.Value("string"), |
|
"lex": datasets.Sequence( |
|
{ |
|
"comment": datasets.Value("string"), |
|
"lid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"template": datasets.Value("string"), |
|
"sorted_triple_sets": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
|
|
split_files = { |
|
split: [os.path.join(data_dir, dir_suf) for dir_suf in dir_suffix_list] |
|
for split, dir_suffix_list in _FILE_PATHS[self.config.name].items() |
|
} |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
|
|
gen_kwargs={"filedirs": filedirs}, |
|
) |
|
for split, filedirs in split_files.items() |
|
] |
|
|
|
def _generate_examples(self, filedirs): |
|
"""Yields examples.""" |
|
|
|
id_ = 0 |
|
for xml_location in filedirs: |
|
for xml_file in sorted(glob(pjoin(xml_location, "*.xml"))): |
|
for exple_dict in xml_file_to_examples(xml_file, self.config.name): |
|
id_ += 1 |
|
yield id_, exple_dict |
|
|