File size: 7,040 Bytes
b33ee2f
 
 
 
8c8ab30
 
 
67508ed
b33ee2f
d8c1348
fd3caf5
 
80e2bad
f535b63
 
b55815e
d30e6b1
19d34a7
b5a306a
3325fe0
dfb8e6c
6289df1
 
dfb8e6c
6289df1
 
dfb8e6c
 
b33ee2f
 
 
890f548
0a2304d
 
 
b33ee2f
 
d8c1348
f40bd14
f573b09
 
fd3caf5
f40bd14
fd3caf5
 
 
f40bd14
b33ee2f
 
f40bd14
 
b33ee2f
f535b63
 
 
 
 
 
 
 
b55815e
 
 
 
d30e6b1
 
 
 
19d34a7
 
 
 
b5a306a
 
 
 
3325fe0
 
 
 
dfb8e6c
 
 
 
6289df1
 
 
 
 
 
 
 
dfb8e6c
 
 
 
6289df1
 
 
 
 
 
 
 
dfb8e6c
 
 
 
 
 
 
 
b33ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pickle
import datasets
import numpy as np

_DESCRIPTION = """The dataset consists of tuples of (observations, actions, rewards, dones) sampled by agents
    interacting with the CityLearn 2022 Phase 1 environment"""

_BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
_URLS = {
    "s_test": f"{_BASE_URL}/s_test.pkl",
    "s_week": f"{_BASE_URL}/s_week.pkl",
    "s_month": f"{_BASE_URL}/s_month.pkl",
    "s_random": f"{_BASE_URL}/s_random.pkl",
    "s_random2": f"{_BASE_URL}/s_random2.pkl",
    "s_random3": f"{_BASE_URL}/s_random3.pkl",
    "s_random4": f"{_BASE_URL}/s_random4.pkl",
    "f_50": f"{_BASE_URL}/f_50x5x1750.pkl",
    "f_24": f"{_BASE_URL}/f_24x5x364.pkl",
    "fr_24": f"{_BASE_URL}/fr_24x5x364.pkl",
    "fn_24": f"{_BASE_URL}/fn_24x5x3649.pkl",
    "rb_24": f"{_BASE_URL}/rb_24x5x364.pkl",
    "rb_50": f"{_BASE_URL}/rb_50x5x175.pkl",
    "rb_108": f"{_BASE_URL}/rb_108x5x81.pkl",
    "rb_230": f"{_BASE_URL}/rb_230x5x38.pkl",
    "rb_461": f"{_BASE_URL}/rb_461x5x19.pkl",
    "rb_973": f"{_BASE_URL}/rb_973x5x9.pkl",
    "rb_2189": f"{_BASE_URL}/rb_2189x5x4.pkl",
    "rbn_24": f"{_BASE_URL}/rb_24x5x18247.pkl",
}


class DecisionTransformerCityLearnDataset(datasets.GeneratorBasedBuilder):
    
    # You will be able to load one configuration in the following list with
    # data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="s_test",
            description="Small dataset sampled from an expert policy in CityLearn environment. Data size 10x8",
        ),
        datasets.BuilderConfig(
            name="s_week",
            description="Data sampled from an expert policy in CityLearn environment. Data size 260x168",
        ),
        datasets.BuilderConfig(
            name="s_month",
            description="Data sampled from an expert policy in CityLearn environment. Data size 60x720",
        ),
        datasets.BuilderConfig(
            name="s_random",
            description="Random environment interactions in CityLearn environment. Data size 950x461",
        ),
        datasets.BuilderConfig(
            name="s_random2",
            description="Random environment interactions in CityLearn environment. Data size 43795x10",
        ),
        datasets.BuilderConfig(
            name="s_random3",
            description="Random environment interactions in CityLearn environment. Data size 23050x19",
        ),
        datasets.BuilderConfig(
            name="s_random4",
            description="Random environment interactions in CityLearn environment. Data size 437950x1",
        ),
        datasets.BuilderConfig(
            name="f_50",
            description="Data sampled from an expert policy in CityLearn environment. Sequence length = 50, Buildings = 5, Episodes = 10 ",
        ),
        datasets.BuilderConfig(
            name="f_24",
            description="Data sampled from an expert policy in CityLearn environment. Sequence length = 24, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="fr_24",
            description="Data sampled from an expert policy in CityLearn environment. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="fn_24",
            description="Data sampled from an expert policy in CityLearn environment. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 10 ",
        ),
        datasets.BuilderConfig(
            name="rb_24",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_50",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 50, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_108",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 108, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_230",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 230, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_461",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 461, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_973",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 973, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rb_2189",
            description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 2189, Buildings = 5, Episodes = 1 ",
        ),
        datasets.BuilderConfig(
            name="rbn_24",
            description="Data sampled from a simple rule based policy. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 50 ",
        ),
    ]

    def _info(self):

        features = datasets.Features(
            {
                "observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                "actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                "rewards": datasets.Sequence(datasets.Value("float32")),
                "dones": datasets.Sequence(datasets.Value("bool")),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            )
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, "rb") as f:
            trajectories = pickle.load(f)

            for idx, traj in enumerate(trajectories):
                yield idx, {
                    "observations": traj["observations"],
                    "actions": traj["actions"],
                    "rewards": np.expand_dims(traj["rewards"], axis=1),
                    "dones": np.expand_dims(traj.get("dones", traj.get("terminals")), axis=1),
                }