|
import numpy as np |
|
import time |
|
import torch |
|
from MyDecisionTransformer import MyDecisionTransformer |
|
from citylearn.citylearn import CityLearnEnv |
|
|
|
""" |
|
This file is used to evaluate a decision transformer loaded form https://huggingface.co/TobiTob/model_name |
|
""" |
|
|
|
|
|
class Constants: |
|
"""Environment Constants""" |
|
episodes = 1 |
|
state_dim = 28 |
|
action_dim = 1 |
|
schema_path = './data/citylearn_challenge_2022_phase_1/schema.json' |
|
|
|
"""Model Constants""" |
|
load_model = "TobiTob/decision_transformer_2" |
|
force_download = False |
|
device = "cpu" |
|
TARGET_RETURN = -2500 |
|
|
|
|
|
state_mean = np.array( |
|
[6.525973284621532, 3.9928073981048064, 12.498801233017467, 16.836990550577212, 16.837287388159297, |
|
16.83684213167729, 16.837161803003287, 73.00388172165772, 73.00331088023746, 73.00445256307798, |
|
73.00331088023746, 208.30597100125584, 208.30597100125584, 208.20287704075807, 208.30597100125584, |
|
201.25448110514898, 201.25448110514898, 201.16189062678387, 201.25448110514898, 0.15652765849893777, |
|
1.0663012570140091, 0.6994348432433195, 0.5023924181838172, 0.49339119658209996, 0.2731373418679261, |
|
0.2731373418679261, 0.2731373418679261, 0.2731373418679261]) |
|
state_std = np.array( |
|
[3.448045414453991, 2.0032677368929734, 6.921673394725967, 3.564552828057008, 3.5647828974724476, |
|
3.5643565817901974, 3.564711987899257, 16.480221141108398, 16.480030755727572, 16.480238315742053, |
|
16.480030755727565, 292.79094956097464, 292.79094956097464, 292.70528837855596, 292.79094956097543, |
|
296.18549714910006, 296.18549714910023, 296.1216266457902, 296.18549714910006, 0.035369600587780235, |
|
0.8889958578862672, 1.0171468928300462, 0.40202104980478576, 2.6674362928093682, 0.11780233435944305, |
|
0.11780233435944333, 0.11780233435944351, 0.11780233435944402]) |
|
|
|
|
|
def preprocess_states(state_list_of_lists, amount_buildings): |
|
for bi in range(amount_buildings): |
|
for si in range(Constants.state_dim): |
|
state_list_of_lists[bi][si] = (state_list_of_lists[bi][si] - Constants.state_mean[si]) / Constants.state_std[si] |
|
|
|
return state_list_of_lists |
|
|
|
|
|
def evaluate(): |
|
print("========================= Start Evaluation ========================") |
|
print("==> Model:", Constants.load_model) |
|
print() |
|
|
|
env = CityLearnEnv(schema=Constants.schema_path) |
|
|
|
agent = MyDecisionTransformer(load_from=Constants.load_model, force_download=Constants.force_download, |
|
device=Constants.device) |
|
|
|
context_length = agent.model.config.max_length |
|
amount_buildings = len(env.buildings) |
|
|
|
scale = 1000.0 |
|
target_return = Constants.TARGET_RETURN / scale |
|
|
|
print("Target Return:", Constants.TARGET_RETURN) |
|
print("Context Length:", context_length) |
|
|
|
|
|
episode_return = np.zeros(amount_buildings) |
|
state_list_of_lists = env.reset() |
|
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings) |
|
|
|
state_list_of_tensors = [] |
|
target_return_list_of_tensors = [] |
|
action_list_of_tensors = [] |
|
reward_list_of_tensors = [] |
|
|
|
for bi in range(amount_buildings): |
|
state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to( |
|
device=Constants.device, |
|
dtype=torch.float32) |
|
target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1, 1) |
|
action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32) |
|
reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32) |
|
|
|
state_list_of_tensors.append(state_bi) |
|
target_return_list_of_tensors.append(target_return_bi) |
|
action_list_of_tensors.append(action_bi) |
|
reward_list_of_tensors.append(reward_bi) |
|
|
|
timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
episodes_completed = 0 |
|
num_steps = 0 |
|
t = 0 |
|
agent_time_elapsed = 0 |
|
episode_metrics = [] |
|
|
|
while True: |
|
|
|
next_actions = [] |
|
for bi in range(amount_buildings): |
|
action_list_of_tensors[bi] = torch.cat( |
|
[action_list_of_tensors[bi], torch.zeros((1, Constants.action_dim), device=Constants.device)], dim=0) |
|
reward_list_of_tensors[bi] = torch.cat( |
|
[reward_list_of_tensors[bi], torch.zeros(1, device=Constants.device)]) |
|
|
|
|
|
step_start = time.perf_counter() |
|
action_bi = agent.get_action( |
|
state_list_of_tensors[bi], |
|
action_list_of_tensors[bi], |
|
reward_list_of_tensors[bi], |
|
target_return_list_of_tensors[bi], |
|
timesteps, |
|
) |
|
agent_time_elapsed += time.perf_counter() - step_start |
|
|
|
action_list_of_tensors[bi][-1] = action_bi |
|
action_bi = action_bi.detach().cpu().numpy() |
|
next_actions.append(action_bi) |
|
|
|
|
|
state_list_of_lists, reward_list_of_lists, done, _ = env.step(next_actions) |
|
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings) |
|
|
|
if done: |
|
episodes_completed += 1 |
|
metrics_t = env.evaluate() |
|
metrics = {"price_cost": metrics_t[0], "emmision_cost": metrics_t[1], "grid_cost": metrics_t[2]} |
|
if np.any(np.isnan(metrics_t)): |
|
raise ValueError("Episode metrics are nan, please contant organizers") |
|
episode_metrics.append(metrics) |
|
print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics}", ) |
|
print("Episode Return:", episode_return) |
|
|
|
|
|
t = 0 |
|
episode_return = np.zeros(amount_buildings) |
|
state_list_of_lists = env.reset() |
|
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings) |
|
|
|
state_list_of_tensors = [] |
|
target_return_list_of_tensors = [] |
|
action_list_of_tensors = [] |
|
reward_list_of_tensors = [] |
|
|
|
for bi in range(amount_buildings): |
|
state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to( |
|
device=Constants.device, dtype=torch.float32) |
|
target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1, |
|
1) |
|
action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32) |
|
reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32) |
|
|
|
state_list_of_tensors.append(state_bi) |
|
target_return_list_of_tensors.append(target_return_bi) |
|
action_list_of_tensors.append(action_bi) |
|
reward_list_of_tensors.append(reward_bi) |
|
|
|
timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1) |
|
|
|
else: |
|
|
|
for bi in range(amount_buildings): |
|
cur_state = torch.from_numpy(np.array(state_list_of_lists[bi])).to(device=Constants.device).reshape(1, |
|
Constants.state_dim) |
|
state_list_of_tensors[bi] = torch.cat([state_list_of_tensors[bi], cur_state], dim=0) |
|
reward_list_of_tensors[bi][-1] = reward_list_of_lists[bi] |
|
|
|
pred_return = target_return_list_of_tensors[bi][0, -1] - (reward_list_of_lists[bi] / scale) |
|
target_return_list_of_tensors[bi] = torch.cat( |
|
[target_return_list_of_tensors[bi], pred_return.reshape(1, 1)], dim=1) |
|
|
|
episode_return[bi] += reward_list_of_lists[bi] |
|
|
|
timesteps = torch.cat([timesteps, torch.ones((1, 1), device=Constants.device, dtype=torch.long) * (t + 1)], |
|
dim=1) |
|
|
|
if timesteps.size(dim=1) > context_length: |
|
|
|
timesteps = timesteps[:, -context_length:] |
|
for bi in range(amount_buildings): |
|
state_list_of_tensors[bi] = state_list_of_tensors[bi][-context_length:] |
|
action_list_of_tensors[bi] = action_list_of_tensors[bi][-context_length:] |
|
reward_list_of_tensors[bi] = reward_list_of_tensors[bi][-context_length:] |
|
target_return_list_of_tensors[bi] = target_return_list_of_tensors[bi][:, -context_length:] |
|
|
|
num_steps += 1 |
|
t += 1 |
|
if num_steps % 100 == 0: |
|
print(f"Num Steps: {num_steps}, Num episodes: {episodes_completed}") |
|
|
|
if episodes_completed >= Constants.episodes: |
|
break |
|
|
|
print("========================= Evaluation Done ========================") |
|
print("Total number of steps:", num_steps) |
|
if len(episode_metrics) > 0: |
|
price_cost = np.mean([e['price_cost'] for e in episode_metrics]) |
|
emission_cost = np.mean([e['emmision_cost'] for e in episode_metrics]) |
|
grid_cost = np.mean([e['grid_cost'] for e in episode_metrics]) |
|
print("Average Price Cost:", price_cost) |
|
print("Average Emission Cost:", emission_cost) |
|
print("Average Grid Cost:", grid_cost) |
|
print("==>", (price_cost+emission_cost+grid_cost)/3) |
|
print(f"Total time taken by agent: {agent_time_elapsed}s") |
|
|
|
|
|
if __name__ == '__main__': |
|
evaluate() |
|
|