import os import numpy as np import pickle import time from agents.orderenforcingwrapper import OrderEnforcingAgent from citylearn.citylearn import CityLearnEnv """ This file is used to generate offline data for a decision transformer. Data is saved as pickle file. Data structure: list( dict( "observations": nparray(nparray(np.float32)), "next_observations": nparray(nparray(np.float32)), "actions": nparray(nparray(np.float32)), "rewards": nparray(np.oat32), "terminals": nparray(np.bool_) ) ) """ class Constants: file_to_save = "non.pkl" sequence_length = 720 episodes = 1 state_dim = 28 # size of state space action_dim = 1 # size of action space schema_path = './data/citylearn_challenge_2022_phase_1/schema.json' def action_space_to_dict(aspace): """ Only for box space """ return {"high": aspace.high, "low": aspace.low, "shape": aspace.shape, "dtype": str(aspace.dtype) } def env_reset(env): observations = env.reset() action_space = env.action_space observation_space = env.observation_space building_info = env.get_building_information() building_info = list(building_info.values()) action_space_dicts = [action_space_to_dict(asp) for asp in action_space] observation_space_dicts = [action_space_to_dict(osp) for osp in observation_space] obs_dict = {"action_space": action_space_dicts, "observation_space": observation_space_dicts, "building_info": building_info, "observation": observations} return obs_dict def generate_data(): print("========================= Start Data Collection ========================") env = CityLearnEnv(schema=Constants.schema_path) agent = OrderEnforcingAgent() dataset = [] observation_data = [] next_observation_data = [] action_data = [] reward_data = [] done_data = [] obs_dict = env_reset(env) observations = obs_dict["observation"] agent_time_elapsed = 0 step_start = time.perf_counter() actions = agent.register_reset(obs_dict) agent_time_elapsed += time.perf_counter() - step_start episodes_completed = 0 sequences_completed = 0 current_step_total = 0 current_step_in_sequence = 0 interrupted = False episode_metrics = [] try: while True: current_step_in_sequence += 1 current_step_total += 1 next_observations, reward, done, info = env.step(actions) # ACTION [-1,1] attempts to decrease or increase the electricity stored in the battery by an amount # equivalent to action times its maximum capacity # Save environment interactions: observation_data.append(observations) next_observation_data.append(next_observations) action_data.append(actions) reward_data.append(reward) done_data.append(False) # always False observations = next_observations # observations of next time step if current_step_in_sequence >= Constants.sequence_length: # Sequence completed current_step_in_sequence = 0 sequences_completed += 1 for bi in range(len(env.buildings)): obs_building_i = np.zeros((Constants.sequence_length, Constants.state_dim), dtype=np.float32) n_obs_building_i = np.zeros((Constants.sequence_length, Constants.state_dim), dtype=np.float32) acts_building_i = np.zeros((Constants.sequence_length, Constants.action_dim), dtype=np.float32) rwds_building_i = np.zeros(Constants.sequence_length, dtype=np.float32) dones_building_i = np.zeros(Constants.sequence_length, dtype=np.bool_) for ti in range(Constants.sequence_length): obs_building_i[ti] = np.array(observation_data[ti][bi]) n_obs_building_i[ti] = np.array(next_observation_data[ti][bi]) acts_building_i[ti] = np.array(action_data[ti][bi]) rwds_building_i[ti] = reward_data[ti][bi] dones_building_i[ti] = done_data[ti] dict_building_i = { "observations": obs_building_i, "next_observations": n_obs_building_i, "actions": acts_building_i, "rewards": rwds_building_i, "terminals": dones_building_i } dataset.append(dict_building_i) observation_data = [] next_observation_data = [] action_data = [] reward_data = [] done_data = [] print("Sequence completed:", sequences_completed) if done: episodes_completed += 1 metrics_t = env.evaluate() metrics = {"price_cost": metrics_t[0], "emmision_cost": metrics_t[1], "grid_cost": metrics_t[2]} if np.any(np.isnan(metrics_t)): raise ValueError("Episode metrics are nan, please contant organizers") episode_metrics.append(metrics) print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics}", ) obs_dict = env_reset(env) observations = obs_dict["observation"] step_start = time.perf_counter() actions = agent.register_reset(obs_dict) agent_time_elapsed += time.perf_counter() - step_start else: step_start = time.perf_counter() actions = agent.compute_action(next_observations) agent_time_elapsed += time.perf_counter() - step_start if current_step_total % 1000 == 0: print(f"Num Steps: {current_step_total}, Num episodes: {episodes_completed}") if episodes_completed >= Constants.episodes: break except KeyboardInterrupt: print("========================= Stopping Generation ==========================") interrupted = True if not interrupted: print("========================= Generation Completed =========================") if len(episode_metrics) > 0: print("Agent Performance:") print("Average Price Cost:", np.mean([e['price_cost'] for e in episode_metrics])) print("Average Emission Cost:", np.mean([e['emmision_cost'] for e in episode_metrics])) print("Average Grid Cost:", np.mean([e['grid_cost'] for e in episode_metrics])) print(f"Total time taken by agent: {agent_time_elapsed}s") print("========================= Writing Data File ============================") length = 0 for data in dataset: if len(data["observations"]) > length: length = len(data["observations"]) print("Amount Of Sequences: ", len(dataset)) print("Longest Sequence: ", length) total_values = (2 * Constants.state_dim + Constants.action_dim + 2) * length * len(dataset) print("Total values to store: ", total_values) # create or overwrite pickle file with open(Constants.file_to_save, "wb") as f: pickle.dump(dataset, f) print("========================= Writing Completed ============================") file_size = os.stat(Constants.file_to_save).st_size if file_size > 1e+6: string_byte = "(" + str(round(file_size / 1e+6)) + " MB)" else: string_byte = "(" + str(round(file_size / 1e+3)) + " kB)" print("==> Data saved in", Constants.file_to_save, string_byte) if __name__ == '__main__': generate_data()