File size: 5,634 Bytes
e6a5769 fe345b4 e4a93d7 e6a5769 fe345b4 e6a5769 e4a93d7 e6a5769 e4a93d7 e6a5769 e4a93d7 e6a5769 e4a93d7 e6a5769 e4a93d7 04c3a0b e4a93d7 04c3a0b e4a93d7 04c3a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
from xml.etree import ElementTree as ET
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {dogs-video-object-tracking-dataset},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset contains frames extracted from videos with dogs on the streets.
Each frame is accompanied by **bounding box** that specifically **tracks the dog**
in the image.
The dataset provides a valuable resource for advancing computer vision tasks,
enabling the development of more accurate and effective solutions for monitoring and
understanding dog behavior in urban settings.
"""
_NAME = "dogs-video-object-tracking-dataset"
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
_LABELS = ["dog"]
class DogsVideoObjectTrackingDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"),
datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"),
datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"),
]
DEFAULT_CONFIG_NAME = "video_02"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"name": datasets.Value("string"),
"image": datasets.Image(),
"mask": datasets.Image(),
"shapes": datasets.Sequence(
{
"track_id": datasets.Value("uint32"),
"label": datasets.ClassLabel(
num_classes=len(_LABELS),
names=_LABELS,
),
"type": datasets.Value("string"),
"points": datasets.Sequence(
datasets.Sequence(
datasets.Value("float"),
),
),
"rotation": datasets.Value("float"),
"occluded": datasets.Value("uint8"),
"attributes": datasets.Sequence(
{
"name": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
},
),
]
@staticmethod
def extract_shapes_from_tracks(
root: ET.Element, file: str, index: int
) -> ET.Element:
img = ET.Element("image")
img.set("name", file)
img.set("id", str(index))
for track in root.iter("track"):
shape = track.find(f".//*[@frame='{index}']")
if not (shape is None):
shape.set("label", track.get("label"))
shape.set("track_id", track.get("id"))
img.append(shape)
return img
@staticmethod
def parse_shape(shape: ET.Element) -> dict:
label = shape.get("label")
track_id = shape.get("track_id")
shape_type = shape.tag
rotation = shape.get("rotation", 0.0)
occluded = shape.get("occluded", 0)
points = None
if shape_type == "points":
points = tuple(map(float, shape.get("points").split(",")))
elif shape_type == "box":
points = [
(float(shape.get("xtl")), float(shape.get("ytl"))),
(float(shape.get("xbr")), float(shape.get("ybr"))),
]
elif shape_type == "polygon":
points = [
tuple(map(float, point.split(",")))
for point in shape.get("points").split(";")
]
attributes = []
for attr in shape:
attr_name = attr.get("name")
attr_text = attr.text
attributes.append({"name": attr_name, "text": attr_text})
shape_data = {
"label": label,
"track_id": track_id,
"type": shape_type,
"points": points,
"rotation": rotation,
"occluded": occluded,
"attributes": attributes,
}
return shape_data
def _generate_examples(self, data):
tree = ET.parse(f"{data}/annotations.xml")
root = tree.getroot()
for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))):
img = self.extract_shapes_from_tracks(root, file, idx)
image_id = img.get("id")
name = img.get("name")
shapes = [self.parse_shape(shape) for shape in img]
print(shapes)
yield idx, {
"id": image_id,
"name": name,
"image": f"{data}/images/{file}",
"mask": f"{data}/masks/{file}",
"shapes": shapes,
}
|