File size: 6,091 Bytes
6fb443d
f834331
6fb443d
f834331
 
6fb443d
 
 
f834331
6fb443d
 
 
 
 
 
f834331
 
 
6fb443d
f834331
6fb443d
 
 
 
 
 
 
 
f834331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb443d
 
f834331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb443d
 
f834331
6fb443d
f834331
6fb443d
 
 
 
 
 
 
 
 
f834331
 
 
 
 
6fb443d
 
 
 
f834331
 
 
 
 
6fb443d
f834331
6fb443d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {face_masks},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
Dataset includes 250 000 images, 4 types of mask worn on 28 000 unique faces.
All images were collected using the Toloka.ai crowdsourcing service and
validated by TrainingData.pro
"""
_NAME = 'face_masks'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = "cc-by-nc-nd-4.0"

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


def exif_transpose(img):
    if not img:
        return img

    exif_orientation_tag = 274

    # Check for EXIF data (only present on some files)
    if hasattr(img, "_getexif") and isinstance(
            img._getexif(), dict) and exif_orientation_tag in img._getexif():
        exif_data = img._getexif()
        orientation = exif_data[exif_orientation_tag]

        # Handle EXIF Orientation
        if orientation == 1:
            # Normal image - nothing to do!
            pass
        elif orientation == 2:
            # Mirrored left to right
            img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 3:
            # Rotated 180 degrees
            img = img.rotate(180)
        elif orientation == 4:
            # Mirrored top to bottom
            img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 5:
            # Mirrored along top-left diagonal
            img = img.rotate(-90,
                             expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 6:
            # Rotated 90 degrees
            img = img.rotate(-90, expand=True)
        elif orientation == 7:
            # Mirrored along top-right diagonal
            img = img.rotate(90,
                             expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
        elif orientation == 8:
            # Rotated 270 degrees
            img = img.rotate(90, expand=True)

    return img


def load_image_file(file, mode='RGB'):
    # Load the image with PIL
    img = PIL.Image.open(file)

    if hasattr(PIL.ImageOps, 'exif_transpose'):
        # Very recent versions of PIL can do exit transpose internally
        img = PIL.ImageOps.exif_transpose(img)
    else:
        # Otherwise, do the exif transpose ourselves
        img = exif_transpose(img)

    img = img.convert(mode)

    return np.array(img)


class FaceMasks(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(description=_DESCRIPTION,
                                    features=datasets.Features({
                                        'photo_1': datasets.Image(),
                                        'photo_2': datasets.Image(),
                                        'photo_3': datasets.Image(),
                                        'photo_4': datasets.Image(),
                                        'selfie_5': datasets.Image(),
                                        'worker_id': datasets.Value('string'),
                                        'age': datasets.Value('int8'),
                                        'country': datasets.Value('string'),
                                        'sex': datasets.Value('string')
                                    }),
                                    supervised_keys=None,
                                    homepage=_HOMEPAGE,
                                    citation=_CITATION,
                                    license=_LICENSE)

    def _split_generators(self, dl_manager):
        images = dl_manager.download_and_extract(f"{_DATA}images.zip")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        images = dl_manager.iter_files(images)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "images": images,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, images, annotations):
        annotations_df = pd.read_csv(annotations, sep=',')
        images_data = pd.DataFrame(columns=['Link', 'Image'])
        for idx, image_path in enumerate(images):
            image = load_image_file(image_path)
            images_data.loc[idx] = {'Link': image_path, 'Image': image}

        annotations_df = pd.merge(annotations_df,
                                  images_data,
                                  how='left',
                                  on=['Link'])
        for idx, worker_id in enumerate(pd.unique(annotations_df['WorkerId'])):
            annotation: pd.DataFrame = annotations_df.loc[
                annotations_df['WorkerId'] == worker_id]
            annotation = annotation.sort_values(['Link'])
            data = {
                f'photo_{row[0]}': row[6] for row in annotation.itertuples()
            }

            age = annotation.loc[annotation['FName'] ==
                                 'ID_1']['Age'].values[0]
            country = annotation.loc[annotation['FName'] ==
                                     'ID_1']['Country'].values[0]
            gender = annotation.loc[annotation['FName'] ==
                                    'ID_1']['Gender'].values[0]
            set_id = annotation.loc[annotation['FName'] ==
                                    'ID_1']['SetId'].values[0]
            user_race = annotation.loc[annotation['FName'] ==
                                       'ID_1']['UserRace'].values[0]
            name = annotation.loc[annotation['FName'] ==
                                  'ID_1']['Name'].values[0]

            data['user_id'] = worker_id
            data['age'] = age
            data['country'] = country
            data['gender'] = gender
            data['set_id'] = set_id
            data['user_race'] = user_race
            data['name'] = name

            yield idx, data