File size: 6,091 Bytes
6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d f834331 6fb443d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {face_masks},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
Dataset includes 250 000 images, 4 types of mask worn on 28 000 unique faces.
All images were collected using the Toloka.ai crowdsourcing service and
validated by TrainingData.pro
"""
_NAME = 'face_masks'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
def exif_transpose(img):
if not img:
return img
exif_orientation_tag = 274
# Check for EXIF data (only present on some files)
if hasattr(img, "_getexif") and isinstance(
img._getexif(), dict) and exif_orientation_tag in img._getexif():
exif_data = img._getexif()
orientation = exif_data[exif_orientation_tag]
# Handle EXIF Orientation
if orientation == 1:
# Normal image - nothing to do!
pass
elif orientation == 2:
# Mirrored left to right
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 3:
# Rotated 180 degrees
img = img.rotate(180)
elif orientation == 4:
# Mirrored top to bottom
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 5:
# Mirrored along top-left diagonal
img = img.rotate(-90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 6:
# Rotated 90 degrees
img = img.rotate(-90, expand=True)
elif orientation == 7:
# Mirrored along top-right diagonal
img = img.rotate(90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 8:
# Rotated 270 degrees
img = img.rotate(90, expand=True)
return img
def load_image_file(file, mode='RGB'):
# Load the image with PIL
img = PIL.Image.open(file)
if hasattr(PIL.ImageOps, 'exif_transpose'):
# Very recent versions of PIL can do exit transpose internally
img = PIL.ImageOps.exif_transpose(img)
else:
# Otherwise, do the exif transpose ourselves
img = exif_transpose(img)
img = img.convert(mode)
return np.array(img)
class FaceMasks(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'photo_1': datasets.Image(),
'photo_2': datasets.Image(),
'photo_3': datasets.Image(),
'photo_4': datasets.Image(),
'selfie_5': datasets.Image(),
'worker_id': datasets.Value('string'),
'age': datasets.Value('int8'),
'country': datasets.Value('string'),
'sex': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(f"{_DATA}images.zip")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
images = dl_manager.iter_files(images)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
'annotations': annotations
}),
]
def _generate_examples(self, images, annotations):
annotations_df = pd.read_csv(annotations, sep=',')
images_data = pd.DataFrame(columns=['Link', 'Image'])
for idx, image_path in enumerate(images):
image = load_image_file(image_path)
images_data.loc[idx] = {'Link': image_path, 'Image': image}
annotations_df = pd.merge(annotations_df,
images_data,
how='left',
on=['Link'])
for idx, worker_id in enumerate(pd.unique(annotations_df['WorkerId'])):
annotation: pd.DataFrame = annotations_df.loc[
annotations_df['WorkerId'] == worker_id]
annotation = annotation.sort_values(['Link'])
data = {
f'photo_{row[0]}': row[6] for row in annotation.itertuples()
}
age = annotation.loc[annotation['FName'] ==
'ID_1']['Age'].values[0]
country = annotation.loc[annotation['FName'] ==
'ID_1']['Country'].values[0]
gender = annotation.loc[annotation['FName'] ==
'ID_1']['Gender'].values[0]
set_id = annotation.loc[annotation['FName'] ==
'ID_1']['SetId'].values[0]
user_race = annotation.loc[annotation['FName'] ==
'ID_1']['UserRace'].values[0]
name = annotation.loc[annotation['FName'] ==
'ID_1']['Name'].values[0]
data['user_id'] = worker_id
data['age'] = age
data['country'] = country
data['gender'] = gender
data['set_id'] = set_id
data['user_race'] = user_race
data['name'] = name
yield idx, data
|