|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import PIL.Image |
|
import PIL.ImageOps |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {facial-emotion-recognition-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of images capturing people displaying 7 distinct emotions |
|
(anger, contempt, disgust, fear, happiness, sadness and surprise). |
|
Each image in the dataset represents one of these specific emotions, |
|
enabling researchers and machine learning practitioners to study and develop |
|
models for emotion recognition and analysis. |
|
The images encompass a diverse range of individuals, including different |
|
genders, ethnicities, and age groups*. The dataset aims to provide |
|
a comprehensive representation of human emotions, allowing for a wide range of |
|
use cases. |
|
""" |
|
_NAME = 'facial-emotion-recognition-dataset' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class FacialEmotionRecognitionDataset(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'set_id': datasets.Value('int32'), |
|
'neutral': datasets.Image(), |
|
'anger': datasets.Image(), |
|
'contempt': datasets.Image(), |
|
'disgust': datasets.Image(), |
|
"fear": datasets.Image(), |
|
"happy": datasets.Image(), |
|
"sad": datasets.Image(), |
|
"surprised": datasets.Image(), |
|
"age": datasets.Value('int8'), |
|
"gender": datasets.Value('string'), |
|
"country": datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download_and_extract(f"{_DATA}images.zip") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_files(images) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, images, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=';') |
|
|
|
images = sorted(images) |
|
images = [images[i:i + 8] for i in range(0, len(images), 8)] |
|
|
|
for idx, images_set in enumerate(images): |
|
set_id = int(images_set[0].split('/')[2]) |
|
data = {'set_id': set_id} |
|
|
|
for file in images_set: |
|
if 'neutral' in file.lower(): |
|
data['neutral'] = file |
|
elif 'anger' in file.lower(): |
|
data['anger'] = file |
|
elif 'contempt' in file.lower(): |
|
data['contempt'] = file |
|
elif 'disgust' in file.lower(): |
|
data['disgust'] = file |
|
elif 'fear' in file.lower(): |
|
data['fear'] = file |
|
elif 'happy' in file.lower(): |
|
data['happy'] = file |
|
elif 'sad' in file.lower(): |
|
data['sad'] = file |
|
elif 'surprised' in file.lower(): |
|
data['surprised'] = file |
|
|
|
data['age'] = annotations_df.loc[annotations_df['set_id'] == |
|
set_id]['age'].values[0] |
|
data['gender'] = annotations_df.loc[annotations_df['set_id'] == |
|
set_id]['gender'].values[0] |
|
data['country'] = annotations_df.loc[annotations_df['set_id'] == |
|
set_id]['country'].values[0] |
|
|
|
yield idx, data |
|
|