File size: 5,724 Bytes
8174ad2 39f0221 8174ad2 269105c 39f0221 6395007 39f0221 6395007 39f0221 6395007 39f0221 6395007 39f0221 6395007 39f0221 6395007 39f0221 6395007 39f0221 9cf0833 6395007 39f0221 6395007 39f0221 6395007 39f0221 6b293d0 8174ad2 78a48de 269105c 78a48de 269105c 78a48de 269105c 78a48de 269105c 78a48de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
language:
- en
license: cc-by-nc-nd-4.0
task_categories:
- image-segmentation
tags:
- code
dataset_info:
- config_name: video_01
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: width
dtype: uint16
- name: height
dtype: uint16
- name: shapes
sequence:
- name: label
dtype:
class_label:
names:
'0': referee
'1': background
'2': wrestling
'3': human
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: z_order
dtype: int16
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 45562
num_examples: 10
download_size: 16130822
dataset_size: 45562
- config_name: video_02
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: width
dtype: uint16
- name: height
dtype: uint16
- name: shapes
sequence:
- name: label
dtype:
class_label:
names:
'0': referee
'1': background
'2': wrestling
'3': human
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: z_order
dtype: int16
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 61428
num_examples: 10
download_size: 14339242
dataset_size: 61428
- config_name: video_03
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: width
dtype: uint16
- name: height
dtype: uint16
- name: shapes
sequence:
- name: label
dtype:
class_label:
names:
'0': referee
'1': background
'2': wrestling
'3': human
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: z_order
dtype: int16
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 42854
num_examples: 9
download_size: 13763862
dataset_size: 42854
---
# UFC/MMA Fights Images Segmentation, Sport Dataset
The dataset consists of a collection of photos extracted from **videos of fights**. It includes **segmentation masks** for **fighters, referees, mats, and the background**.
# 💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on **[TrainingData](https://trainingdata.pro/datasets?utm_source=huggingface&utm_medium=cpc&utm_campaign=fights-segmentation)** to buy the dataset
The dataset offers a resource for *object detection, instance segmentation, action recognition, or pose estimation*.
It could be useful for **sport community** in identification and detection of the violations, dispute resolution and general optimisation of referee's work using computer vision.
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F528c5d5de741e46d8754a5a67ff476fc%2FFrame%2024.png?generation=1695968589650484&alt=media)
# 💴 Buy the Dataset: This is just an example of the data. Leave a request on **[https://trainingdata.pro/datasets](https://trainingdata.pro/datasets?utm_source=huggingface&utm_medium=cpc&utm_campaign=fights-segmentation)** to discuss your requirements, learn about the price and buy the dataset
# Dataset structure
- **images** - contains of original images extracted from the videos of fights
- **masks** - includes segmentation masks created for the original images
- **annotations.xml** - contains coordinates of the polygons and labels, created for the original photo
# Data Format
Each image from `images` folder is accompanied by an XML-annotation in the `annotations.xml` file indicating the coordinates of the polygons and labels. For each point, the x and y coordinates are provided.
### Сlasses:
- **human**: fighter or fighters,
- **referee**: referee,
- **wrestling**: mat's area,
- **background**: area above the mat
# Example of XML file structure
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F538310907b1e8b4c6f07f456331fe091%2Fcarbon.png?generation=1695969032771522&alt=media)
# Fights Segmentation might be made in accordance with your requirements.
## **[TrainingData](https://trainingdata.pro/datasets?utm_source=huggingface&utm_medium=cpc&utm_campaign=fights-segmentation)** provides high-quality data annotation tailored to your needs
More datasets in TrainingData's Kaggle account: **https://www.kaggle.com/trainingdatapro/datasets**
TrainingData's GitHub: **https://github.com/Trainingdata-datamarket/TrainingData_All_datasets**
*keywords: body segmentation dataset, human segmentation dataset, human body segmentation, people images dataset, biometric data dataset, biometric dataset, ufc athletes, sports dataset, ultimate fighting championship, semantic segmentation, computer vision, deep learning, machine learning, image dataset, image classification, human images* |