import os from xml.etree import ElementTree as ET import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {fights-segmentation}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of a collection of photos extracted from **videos of fights**. It includes **segmentation masks** for **fighters, referees, mats, and the background**. The dataset offers a resource for *object detection, instance segmentation, action recognition, or pose estimation*. It could be useful for **sport community** in identification and detection of the violations, dispute resolution and general optimisation of referee's work using computer vision. """ _NAME = "fights-segmentation" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" _LABELS = ["referee", "background", "wrestling", "human"] class FightsSegmentation(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"), datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"), datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"), ] DEFAULT_CONFIG_NAME = "video_01" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "name": datasets.Value("string"), "image": datasets.Image(), "mask": datasets.Image(), "width": datasets.Value("uint16"), "height": datasets.Value("uint16"), "shapes": datasets.Sequence( { "label": datasets.ClassLabel( num_classes=len(_LABELS), names=_LABELS, ), "type": datasets.Value("string"), "points": datasets.Sequence( datasets.Sequence( datasets.Value("float"), ), ), "rotation": datasets.Value("float"), "occluded": datasets.Value("uint8"), "z_order": datasets.Value("int16"), "attributes": datasets.Sequence( { "name": datasets.Value("string"), "text": datasets.Value("string"), } ), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): data = dl_manager.download_and_extract(self.config.data_dir) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, }, ), ] @staticmethod def parse_shape(shape: ET.Element) -> dict: label = shape.get("label") shape_type = shape.tag rotation = shape.get("rotation", 0.0) occluded = shape.get("occluded", 0) z_order = shape.get("z_order", 0) points = None if shape_type == "points": points = tuple(map(float, shape.get("points").split(","))) elif shape_type == "box": points = [ (float(shape.get("xtl")), float(shape.get("ytl"))), (float(shape.get("xbr")), float(shape.get("ybr"))), ] elif shape_type == "polygon": points = [ tuple(map(float, point.split(","))) for point in shape.get("points").split(";") ] attributes = [] for attr in shape: attr_name = attr.get("name") attr_text = attr.text attributes.append({"name": attr_name, "text": attr_text}) shape_data = { "label": label, "type": shape_type, "points": points, "rotation": rotation, "occluded": occluded, "z_order": z_order, "attributes": attributes, } return shape_data def _generate_examples(self, data): tree = ET.parse(os.path.join(data, "annotations.xml")) root = tree.getroot() for idx, file in enumerate(sorted(os.listdir(os.path.join(data, "images")))): image_name = file.split("/")[-1] img = root.find(f"./image[@name='images/{image_name}']") image_id = img.get("id") name = img.get("name") width = img.get("width") height = img.get("height") shapes = [self.parse_shape(shape) for shape in img] yield idx, { "id": image_id, "name": name, "image": os.path.join(data, "images", file), "mask": os.path.join(data, "masks", file), "width": width, "height": height, "shapes": shapes, }