import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {makeup-detection-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of photos featuring the same individuals captured in two distinct scenarios - *with and without makeup*. The dataset contains a diverse range of individuals with various *ages, ethnicities and genders*. The images themselves would be of high quality, ensuring clarity and detail for each subject. In photos with makeup, it is applied **to only specific parts** of the face, such as *eyes, lips, or skin*. In photos without makeup, individuals have a bare face with no visible cosmetics or beauty enhancements. These images would provide a clear contrast to the makeup images, allowing for significant visual analysis. """ _NAME = 'makeup-detection-dataset' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class MakeupDetectionDataset(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ 'no_makeup': datasets.Image(), 'with_makeup': datasets.Image(), 'part': datasets.Value('string'), 'gender': datasets.Value('string'), 'age': datasets.Value('int8'), 'country': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): no_makeup = dl_manager.download(f"{_DATA}no_makeup.tar.gz") with_makeup = dl_manager.download(f"{_DATA}with_makeup.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") no_makeup = dl_manager.iter_archive(no_makeup) with_makeup = dl_manager.iter_archive(with_makeup) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "no_makeup": no_makeup, 'with_makeup': with_makeup, 'annotations': annotations }), ] def _generate_examples(self, no_makeup, with_makeup, annotations): annotations_df = pd.read_csv(annotations, sep=';') for idx, ((image_path, image), (mask_path, mask)) in enumerate(zip(no_makeup, with_makeup)): yield idx, { "no_makeup": { "path": image_path, "bytes": image.read() }, "with_makeup": { "path": mask_path, "bytes": mask.read() }, 'part': annotations_df.loc[annotations_df['no_makeup'].str.lower() == image_path.lower()]['part'].values[0], 'gender': annotations_df.loc[annotations_df['no_makeup'].str.lower() == image_path.lower()]['gender'].values[0], 'age': annotations_df.loc[annotations_df['no_makeup'].str.lower() == image_path.lower()]['age'].values[0], 'country': annotations_df.loc[annotations_df['no_makeup'].str.lower() == image_path.lower()]['country'].values[0] }