vkashko commited on
Commit
0b24370
1 Parent(s): 35d572c

feat: upload script

Browse files
Files changed (1) hide show
  1. monitors-replay-attacks-dataset.py +80 -0
monitors-replay-attacks-dataset.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+
4
+ _CITATION = """\
5
+ @InProceedings{huggingface:dataset,
6
+ title = {monitors-replay-attacks-dataset},
7
+ author = {TrainingDataPro},
8
+ year = {2023}
9
+ }
10
+ """
11
+
12
+ _DESCRIPTION = """\
13
+ The dataset consists of videos of replay attacks played on different models of
14
+ computers. The dataset solves tasks in the field of anti-spoofing and it is
15
+ useful for buisness and safety systems.
16
+ The dataset includes: **replay attacks** - videos of real people played
17
+ on a computer and filmed on the phone.
18
+ """
19
+ _NAME = 'monitors-replay-attacks-dataset'
20
+
21
+ _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
22
+
23
+ _LICENSE = "cc-by-nc-nd-4.0"
24
+
25
+ _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
26
+
27
+
28
+ class MonitorsReplayAttacksDataset(datasets.GeneratorBasedBuilder):
29
+
30
+ def _info(self):
31
+ return datasets.DatasetInfo(description=_DESCRIPTION,
32
+ features=datasets.Features({
33
+ 'file': datasets.Value('string'),
34
+ 'phone': datasets.Value('string'),
35
+ 'computer': datasets.Value('string'),
36
+ 'gender': datasets.Value('string'),
37
+ 'age': datasets.Value('int16'),
38
+ 'country': datasets.Value('string'),
39
+ }),
40
+ supervised_keys=None,
41
+ homepage=_HOMEPAGE,
42
+ citation=_CITATION,
43
+ license=_LICENSE)
44
+
45
+ def _split_generators(self, dl_manager):
46
+ attacks = dl_manager.download(f"{_DATA}attacks.tar.gz")
47
+ annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
48
+ attacks = dl_manager.iter_archive(attacks)
49
+ return [
50
+ datasets.SplitGenerator(name=datasets.Split.TRAIN,
51
+ gen_kwargs={
52
+ "attacks": attacks,
53
+ 'annotations': annotations
54
+ }),
55
+ ]
56
+
57
+ def _generate_examples(self, attacks, annotations):
58
+ annotations_df = pd.read_csv(annotations, sep=';')
59
+
60
+ for idx, (video_path, video) in enumerate(attacks):
61
+ yield idx, {
62
+ 'file':
63
+ video_path,
64
+ 'phone':
65
+ annotations_df.loc[annotations_df['file'].str.lower() ==
66
+ video_path.lower()]['phone'].values[0],
67
+ 'computer':
68
+ annotations_df.loc[annotations_df['file'].str.lower() ==
69
+ video_path.lower()]
70
+ ['computer'].values[0],
71
+ 'gender':
72
+ annotations_df.loc[annotations_df['file'].str.lower() ==
73
+ video_path.lower()]['gender'].values[0],
74
+ 'age':
75
+ annotations_df.loc[annotations_df['file'].str.lower() ==
76
+ video_path.lower()]['age'].values[0],
77
+ 'country':
78
+ annotations_df.loc[annotations_df['file'].str.lower() ==
79
+ video_path.lower()]['country'].values[0]
80
+ }