import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {pigs-detection-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset is a collection of images along with corresponding bounding box annotations that are specifically curated for **detecting pigs' heads** in images. The dataset covers different *pig breeds, sizes, and orientations*, providing a comprehensive representation of pig appearances. The pig detection dataset provides a valuable resource for researchers working on pig detection tasks. It offers a diverse collection of annotated images, allowing for comprehensive algorithm development, evaluation, and benchmarking, ultimately aiding in the development of accurate and robust models. """ _NAME = "pigs-detection-dataset" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class PigsDetectionDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "image": datasets.Image(), "mask": datasets.Image(), "bboxes": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") masks = dl_manager.download(f"{_DATA}boxes.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_archive(images) masks = dl_manager.iter_archive(masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, "annotations": annotations, }, ), ] def _generate_examples(self, images, masks, annotations): annotations_df = pd.read_csv(annotations) for idx, ((image_path, image), (mask_path, mask)) in enumerate( zip(images, masks) ): yield idx, { "id": annotations_df["image_id"].iloc[idx], "image": {"path": image_path, "bytes": image.read()}, "mask": {"path": mask_path, "bytes": mask.read()}, "bboxes": annotations_df["annotations"].iloc[idx], }