refactor: script and readme
Browse files- README.md +70 -0
- portrait_and_26_photos.py +61 -26
README.md
CHANGED
@@ -7,6 +7,76 @@ language:
|
|
7 |
tags:
|
8 |
- finance
|
9 |
- code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# The Portrait and 26 Photos (272 people)
|
|
|
7 |
tags:
|
8 |
- finance
|
9 |
- code
|
10 |
+
dataset_info:
|
11 |
+
features:
|
12 |
+
- name: portrait_1
|
13 |
+
dtype: image
|
14 |
+
- name: photo_1
|
15 |
+
dtype: image
|
16 |
+
- name: photo_2
|
17 |
+
dtype: image
|
18 |
+
- name: photo_3
|
19 |
+
dtype: image
|
20 |
+
- name: photo_4
|
21 |
+
dtype: image
|
22 |
+
- name: photo_5
|
23 |
+
dtype: image
|
24 |
+
- name: photo_6
|
25 |
+
dtype: image
|
26 |
+
- name: photo_7
|
27 |
+
dtype: image
|
28 |
+
- name: photo_8
|
29 |
+
dtype: image
|
30 |
+
- name: photo_9
|
31 |
+
dtype: image
|
32 |
+
- name: photo_10
|
33 |
+
dtype: image
|
34 |
+
- name: photo_11
|
35 |
+
dtype: image
|
36 |
+
- name: photo_12
|
37 |
+
dtype: image
|
38 |
+
- name: photo_13
|
39 |
+
dtype: image
|
40 |
+
- name: photo_14
|
41 |
+
dtype: image
|
42 |
+
- name: photo_15
|
43 |
+
dtype: image
|
44 |
+
- name: photo_16
|
45 |
+
dtype: image
|
46 |
+
- name: photo_17
|
47 |
+
dtype: image
|
48 |
+
- name: photo_18
|
49 |
+
dtype: image
|
50 |
+
- name: photo_19
|
51 |
+
dtype: image
|
52 |
+
- name: photo_20
|
53 |
+
dtype: image
|
54 |
+
- name: photo_21
|
55 |
+
dtype: image
|
56 |
+
- name: photo_22
|
57 |
+
dtype: image
|
58 |
+
- name: photo_23
|
59 |
+
dtype: image
|
60 |
+
- name: photo_24
|
61 |
+
dtype: image
|
62 |
+
- name: photo_25
|
63 |
+
dtype: image
|
64 |
+
- name: photo_26
|
65 |
+
dtype: image
|
66 |
+
- name: worker_id
|
67 |
+
dtype: string
|
68 |
+
- name: age
|
69 |
+
dtype: int8
|
70 |
+
- name: country
|
71 |
+
dtype: string
|
72 |
+
- name: gender
|
73 |
+
dtype: string
|
74 |
+
splits:
|
75 |
+
- name: train
|
76 |
+
num_bytes: 927211725
|
77 |
+
num_examples: 14
|
78 |
+
download_size: 923699881
|
79 |
+
dataset_size: 927211725
|
80 |
---
|
81 |
|
82 |
# The Portrait and 26 Photos (272 people)
|
portrait_and_26_photos.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
6 |
-
title = {
|
7 |
author = {TrainingDataPro},
|
8 |
year = {2023}
|
9 |
}
|
@@ -14,7 +14,7 @@ An example of a dataset that we've collected for a photo edit App.
|
|
14 |
The dataset includes 20 selfies of people (man and women)
|
15 |
in segmentation masks and their visualisations.
|
16 |
"""
|
17 |
-
_NAME = '
|
18 |
|
19 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
20 |
|
@@ -30,11 +30,37 @@ class FaceSegmentation(datasets.GeneratorBasedBuilder):
|
|
30 |
return datasets.DatasetInfo(
|
31 |
description=_DESCRIPTION,
|
32 |
features=datasets.Features({
|
33 |
-
'
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'
|
37 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
}),
|
39 |
supervised_keys=None,
|
40 |
homepage=_HOMEPAGE,
|
@@ -43,34 +69,43 @@ class FaceSegmentation(datasets.GeneratorBasedBuilder):
|
|
43 |
|
44 |
def _split_generators(self, dl_manager):
|
45 |
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
46 |
-
masks = dl_manager.download(f"{_DATA}masks.tar.gz")
|
47 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
48 |
images = dl_manager.iter_archive(images)
|
49 |
-
masks = dl_manager.iter_archive(masks)
|
50 |
return [
|
51 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
52 |
gen_kwargs={
|
53 |
"images": images,
|
54 |
-
'masks': masks,
|
55 |
'annotations': annotations
|
56 |
}),
|
57 |
]
|
58 |
|
59 |
-
def _generate_examples(self, images,
|
60 |
-
annotations_df = pd.read_csv(annotations, sep='
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
},
|
73 |
-
'id': annotations_df['id'].iloc[idx],
|
74 |
-
'gender': annotations_df['gender'].iloc[idx],
|
75 |
-
'age': annotations_df['age'].iloc[idx]
|
76 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
6 |
+
title = {portrait_and_26_photos},
|
7 |
author = {TrainingDataPro},
|
8 |
year = {2023}
|
9 |
}
|
|
|
14 |
The dataset includes 20 selfies of people (man and women)
|
15 |
in segmentation masks and their visualisations.
|
16 |
"""
|
17 |
+
_NAME = 'portrait_and_26_photos'
|
18 |
|
19 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
20 |
|
|
|
30 |
return datasets.DatasetInfo(
|
31 |
description=_DESCRIPTION,
|
32 |
features=datasets.Features({
|
33 |
+
'portrait_1': datasets.Image(),
|
34 |
+
'photo_1': datasets.Image(),
|
35 |
+
'photo_2': datasets.Image(),
|
36 |
+
'photo_3': datasets.Image(),
|
37 |
+
'photo_4': datasets.Image(),
|
38 |
+
'photo_5': datasets.Image(),
|
39 |
+
'photo_6': datasets.Image(),
|
40 |
+
'photo_7': datasets.Image(),
|
41 |
+
'photo_8': datasets.Image(),
|
42 |
+
'photo_9': datasets.Image(),
|
43 |
+
'photo_10': datasets.Image(),
|
44 |
+
'photo_11': datasets.Image(),
|
45 |
+
'photo_12': datasets.Image(),
|
46 |
+
'photo_13': datasets.Image(),
|
47 |
+
'photo_14': datasets.Image(),
|
48 |
+
'photo_15': datasets.Image(),
|
49 |
+
'photo_16': datasets.Image(),
|
50 |
+
'photo_17': datasets.Image(),
|
51 |
+
'photo_18': datasets.Image(),
|
52 |
+
'photo_19': datasets.Image(),
|
53 |
+
'photo_20': datasets.Image(),
|
54 |
+
'photo_21': datasets.Image(),
|
55 |
+
'photo_22': datasets.Image(),
|
56 |
+
'photo_23': datasets.Image(),
|
57 |
+
'photo_24': datasets.Image(),
|
58 |
+
'photo_25': datasets.Image(),
|
59 |
+
'photo_26': datasets.Image(),
|
60 |
+
'worker_id': datasets.Value('string'),
|
61 |
+
'age': datasets.Value('int8'),
|
62 |
+
'country': datasets.Value('string'),
|
63 |
+
'gender': datasets.Value('string')
|
64 |
}),
|
65 |
supervised_keys=None,
|
66 |
homepage=_HOMEPAGE,
|
|
|
69 |
|
70 |
def _split_generators(self, dl_manager):
|
71 |
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
|
|
72 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
73 |
images = dl_manager.iter_archive(images)
|
|
|
74 |
return [
|
75 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
76 |
gen_kwargs={
|
77 |
"images": images,
|
|
|
78 |
'annotations': annotations
|
79 |
}),
|
80 |
]
|
81 |
|
82 |
+
def _generate_examples(self, images, annotations):
|
83 |
+
annotations_df = pd.read_csv(annotations, sep=',')
|
84 |
+
images_data = pd.DataFrame(columns=['Link', 'Bytes'])
|
85 |
+
for idx, (image_path, image) in enumerate(images):
|
86 |
+
images_data.loc[idx] = {'Link': image_path, 'Bytes': image.read()}
|
87 |
|
88 |
+
annotations_df = pd.merge(annotations_df, images_data)
|
89 |
+
for idx, worker_id in enumerate(pd.unique(annotations_df['WorkerId'])):
|
90 |
+
annotation = annotations_df.loc[annotations_df['WorkerId'] ==
|
91 |
+
worker_id]
|
92 |
+
annotation = annotation.sort_values(['Type'])
|
93 |
+
data = {
|
94 |
+
row[5]: {
|
95 |
+
'path': row[6],
|
96 |
+
'bytes': row[7]
|
97 |
+
} for row in annotation.itertuples()
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
+
|
100 |
+
age = annotation.loc[annotation['Type'] ==
|
101 |
+
'portrait_1']['Age'].values[0]
|
102 |
+
country = annotation.loc[annotation['Type'] ==
|
103 |
+
'portrait_1']['Country'].values[0]
|
104 |
+
gender = annotation.loc[annotation['Type'] ==
|
105 |
+
'portrait_1']['Gender'].values[0]
|
106 |
+
|
107 |
+
data['worker_id'] = worker_id
|
108 |
+
data['age'] = age
|
109 |
+
data['country'] = country
|
110 |
+
data['gender'] = gender
|
111 |
+
yield idx, data
|