|
from xml.etree import ElementTree as ET |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {ripe-strawberries-detection}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of photos of strawberries for the identification and recognition of |
|
ripe berries. |
|
The images are annotated with **bounding boxes** that accurately demarcate the location |
|
of the ripe strawberries within the image. |
|
Each image in the dataset showcases a strawberry plantation, and includes a diverse |
|
range of backgrounds, lighting conditions, and orientations. The photos are captured |
|
from various angles and distances, providing a realistic representation of strawberries. |
|
The dataset can be utilised for enabling advancements in strawberry production, quality |
|
control, and greater precision in agricultural practices. |
|
|
|
""" |
|
_NAME = "ripe-strawberries-detection" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
_LABELS = ["strawberry"] |
|
|
|
|
|
class BotoxInjectionsBeforeAndAfter(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"name": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"mask": datasets.Image(), |
|
"width": datasets.Value("uint16"), |
|
"height": datasets.Value("uint16"), |
|
"shapes": datasets.Sequence( |
|
{ |
|
"label": datasets.ClassLabel( |
|
num_classes=len(_LABELS), |
|
names=_LABELS, |
|
), |
|
"type": datasets.Value("string"), |
|
"points": datasets.Sequence( |
|
datasets.Sequence( |
|
datasets.Value("float"), |
|
), |
|
), |
|
"rotation": datasets.Value("float"), |
|
"attributes": datasets.Sequence( |
|
{ |
|
"name": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download(f"{_DATA}images.tar.gz") |
|
masks = dl_manager.download(f"{_DATA}boxes.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}annotations.xml") |
|
images = dl_manager.iter_archive(images) |
|
masks = dl_manager.iter_archive(masks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
"masks": masks, |
|
"annotations": annotations, |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def parse_shape(shape: ET.Element) -> dict: |
|
label = shape.get("label") |
|
shape_type = shape.tag |
|
rotation = shape.get("rotation", 0.0) |
|
|
|
points = None |
|
|
|
if shape_type == "points": |
|
points = tuple(map(float, shape.get("points").split(","))) |
|
|
|
elif shape_type == "box": |
|
points = [ |
|
(float(shape.get("xtl")), float(shape.get("ytl"))), |
|
(float(shape.get("xbr")), float(shape.get("ybr"))), |
|
] |
|
|
|
elif shape_type == "polygon": |
|
points = [ |
|
tuple(map(float, point.split(","))) |
|
for point in shape.get("points").split(";") |
|
] |
|
|
|
attributes = [] |
|
|
|
for attr in shape: |
|
attr_name = attr.get("name") |
|
attr_text = attr.text |
|
attributes.append({"name": attr_name, "text": attr_text}) |
|
|
|
shape_data = { |
|
"label": label, |
|
"type": shape_type, |
|
"points": points, |
|
"rotation": rotation, |
|
"attributes": attributes, |
|
} |
|
|
|
return shape_data |
|
|
|
def _generate_examples(self, images, masks, annotations): |
|
tree = ET.parse(annotations) |
|
root = tree.getroot() |
|
|
|
for idx, ( |
|
(image_path, image), |
|
(mask_path, mask), |
|
) in enumerate(zip(images, masks)): |
|
image_name = image_path.split("/")[-1] |
|
img = root.find(f"./image[@name='{image_name}']") |
|
|
|
image_id = img.get("id") |
|
name = img.get("name") |
|
width = img.get("width") |
|
height = img.get("height") |
|
shapes = [self.parse_shape(shape) for shape in img] |
|
|
|
yield idx, { |
|
"id": image_id, |
|
"name": name, |
|
"image": {"path": image_path, "bytes": image.read()}, |
|
"mask": {"path": mask_path, "bytes": mask.read()}, |
|
"width": width, |
|
"height": height, |
|
"shapes": shapes, |
|
} |
|
|