Datasets:
File size: 9,612 Bytes
d380173 eb5894a d380173 eb5894a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
---
license: apache-2.0
language:
- en
- es
- ru
- de
- pl
- th
- vi
- sv
- bn
- da
- he
- it
- fa
- sk
- id
- nb
- el
- nl
- hu
- eu
- zh
- eo
- ja
- ca
- cs
- bg
- fi
- pt
- tr
- ro
- ar
- uk
- gl
- fr
- ko
tags:
- human-feedback
- llama-2
size_categories:
- 1K<n<10k
pretty_name: Filtered OpenAssistant Conversations
---
# Chat Fine-tuning Dataset - Guanaco Style
This dataset allows for fine-tuning chat models using "### Human:" AND "### Assistant" as the beginning and end of sequence tokens.
Preparation:
1. The dataset is cloned from [TimDettmers](https://huggingface.co/datasets/timdettmers/openassistant-guanaco), which itself is a subset of the Open Assistant dataset, which you can find [here](https://huggingface.co/datasets/OpenAssistant/oasst1/tree/main). This subset of the data only contains the highest-rated paths in the conversation tree, with a total of 9,846 samples.
1. The dataset was then slightly adjusted to:
- if a row of data ends with an assistant response, then "### Human" was additionally added to the end of that row of data.
Details of the root dataset follow, copied from that repo:
# OpenAssistant Conversations Dataset (OASST1)
## Dataset Description
- **Homepage:** https://www.open-assistant.io/
- **Repository:** https://github.com/LAION-AI/Open-Assistant
- **Paper:** https://arxiv.org/abs/2304.07327
### Dataset Summary
In an effort to democratize research on large-scale alignment, we release OpenAssistant
Conversations (OASST1), a human-generated, human-annotated assistant-style conversation
corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292
quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus
is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers.
Please refer to our [paper](https://arxiv.org/abs/2304.07327) for further details.
### Dataset Structure
This dataset contains message trees. Each message tree has an initial prompt message as the root node,
which can have multiple child messages as replies, and these child messages can have multiple replies.
All messages have a role property: this can either be "assistant" or "prompter". The roles in
conversation threads from prompt to leaf node strictly alternate between "prompter" and "assistant".
This version of the dataset contains data collected on the [open-assistant.io](https://open-assistant.io/) website until April 12 2023.
### JSON Example: Message
For readability, the following JSON examples are shown formatted with indentation on multiple lines.
Objects are stored without indentation (on single lines) in the actual jsonl files.
```json
{
"message_id": "218440fd-5317-4355-91dc-d001416df62b",
"parent_id": "13592dfb-a6f9-4748-a92c-32b34e239bb4",
"user_id": "8e95461f-5e94-4d8b-a2fb-d4717ce973e4",
"text": "It was the winter of 2035, and artificial intelligence (..)",
"role": "assistant",
"lang": "en",
"review_count": 3,
"review_result": true,
"deleted": false,
"rank": 0,
"synthetic": true,
"model_name": "oasst-sft-0_3000,max_new_tokens=400 (..)",
"labels": {
"spam": { "value": 0.0, "count": 3 },
"lang_mismatch": { "value": 0.0, "count": 3 },
"pii": { "value": 0.0, "count": 3 },
"not_appropriate": { "value": 0.0, "count": 3 },
"hate_speech": { "value": 0.0, "count": 3 },
"sexual_content": { "value": 0.0, "count": 3 },
"quality": { "value": 0.416, "count": 3 },
"toxicity": { "value": 0.16, "count": 3 },
"humor": { "value": 0.0, "count": 3 },
"creativity": { "value": 0.33, "count": 3 },
"violence": { "value": 0.16, "count": 3 }
}
}
```
### JSON Example: Conversation Tree
For readability, only a subset of the message properties is shown here.
```json
{
"message_tree_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
"tree_state": "ready_for_export",
"prompt": {
"message_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
"text": "Why can't we divide by 0? (..)",
"role": "prompter",
"lang": "en",
"replies": [
{
"message_id": "894d30b6-56b4-4605-a504-89dd15d4d1c8",
"text": "The reason we cannot divide by zero is because (..)",
"role": "assistant",
"lang": "en",
"replies": [
// ...
]
},
{
"message_id": "84d0913b-0fd9-4508-8ef5-205626a7039d",
"text": "The reason that the result of a division by zero is (..)",
"role": "assistant",
"lang": "en",
"replies": [
{
"message_id": "3352725e-f424-4e3b-a627-b6db831bdbaa",
"text": "Math is confusing. Like those weird Irrational (..)",
"role": "prompter",
"lang": "en",
"replies": [
{
"message_id": "f46207ca-3149-46e9-a466-9163d4ce499c",
"text": "Irrational numbers are simply numbers (..)",
"role": "assistant",
"lang": "en",
"replies": []
},
// ...
]
}
]
}
]
}
}
```
Please refer to [oasst-data](https://github.com/LAION-AI/Open-Assistant/tree/main/oasst-data) for
details about the data structure and Python code to read and write jsonl files containing oasst data objects.
If you would like to explore the dataset yourself you can find a
[`getting-started`](https://github.com/LAION-AI/Open-Assistant/blob/main/notebooks/openassistant-oasst1/getting-started.ipynb)
notebook in the `notebooks/openassistant-oasst1` folder of the [LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant)
github repository.
## Main Dataset Files
Conversation data is provided either as nested messages in trees (extension `.trees.jsonl.gz`)
or as a flat list (table) of messages (extension `.messages.jsonl.gz`).
### Ready For Export Trees
```
2023-04-12_oasst_ready.trees.jsonl.gz 10,364 trees with 88,838 total messages
2023-04-12_oasst_ready.messages.jsonl.gz 88,838 messages
```
Trees in `ready_for_export` state without spam and deleted messages including message labels.
The oasst_ready-trees file usually is sufficient for supervised fine-tuning (SFT) & reward model (RM) training.
### All Trees
```
2023-04-12_oasst_all.trees.jsonl.gz 66,497 trees with 161,443 total messages
2023-04-12_oasst_all.messages.jsonl.gz 161,443 messages
```
All trees, including those in states `prompt_lottery_waiting` (trees that consist of only one message, namely the initial prompt),
`aborted_low_grade` (trees that stopped growing because the messages had low quality), and `halted_by_moderator`.
### Supplemental Exports: Spam & Prompts
```
2023-04-12_oasst_spam.messages.jsonl.gz
```
These are messages which were deleted or have a negative review result (`"review_result": false`).
Besides low quality, a frequent reason for message deletion is a wrong language tag.
```
2023-04-12_oasst_prompts.messages.jsonl.gz
```
These are all the kept initial prompt messages with positive review result (no spam) of trees in `ready_for_export` or `prompt_lottery_waiting` state.
### Using the Huggingface Datasets
While HF datasets is ideal for tabular datasets, it is not a natural fit for nested data structures like the OpenAssistant conversation trees.
Nevertheless, we make all messages which can also be found in the file `2023-04-12_oasst_ready.trees.jsonl.gz` available in parquet as train/validation splits.
These are directly loadable by [Huggingface Datasets](https://pypi.org/project/datasets/).
To load the oasst1 train & validation splits use:
```python
from datasets import load_dataset
ds = load_dataset("OpenAssistant/oasst1")
train = ds['train'] # len(train)=84437 (95%)
val = ds['validation'] # len(val)=4401 (5%)
```
The messages appear in depth-first order of the message trees.
Full conversation trees can be reconstructed from the flat messages table by using the `parent_id`
and `message_id` properties to identify the parent-child relationship of messages. The `message_tree_id`
and `tree_state` properties (only present in flat messages files) can be used to find all messages of a message tree or to select trees by their state.
### Languages
OpenAssistant Conversations incorporates 35 different languages with a distribution of messages as follows:
**Languages with over 1000 messages**
- English: 71956
- Spanish: 43061
- Russian: 9089
- German: 5279
- Chinese: 4962
- French: 4251
- Thai: 3042
- Portuguese (Brazil): 2969
- Catalan: 2260
- Korean: 1553
- Ukrainian: 1352
- Italian: 1320
- Japanese: 1018
<details>
<summary><b>Languages with under 1000 messages</b></summary>
<ul>
<li>Vietnamese: 952</li>
<li>Basque: 947</li>
<li>Polish: 886</li>
<li>Hungarian: 811</li>
<li>Arabic: 666</li>
<li>Dutch: 628</li>
<li>Swedish: 512</li>
<li>Turkish: 454</li>
<li>Finnish: 386</li>
<li>Czech: 372</li>
<li>Danish: 358</li>
<li>Galician: 339</li>
<li>Hebrew: 255</li>
<li>Romanian: 200</li>
<li>Norwegian Bokmål: 133</li>
<li>Indonesian: 115</li>
<li>Bulgarian: 95</li>
<li>Bengali: 82</li>
<li>Persian: 72</li>
<li>Greek: 66</li>
<li>Esperanto: 59</li>
<li>Slovak: 19</li>
</ul>
</details>
## Contact
- Discord [Open Assistant Discord Server](https://ykilcher.com/open-assistant-discord)
- GitHub: [LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant)
- E-Mail: [open-assistant@laion.ai](mailto:open-assistant@laion.ai) |