File size: 8,570 Bytes
70b0865 271cf56 70b0865 271cf56 70b0865 1ff505e 70b0865 1ff505e 70b0865 1ff505e 70b0865 271cf56 70b0865 1ff505e 70b0865 1ff505e 70b0865 1ff505e 271cf56 1ff505e 271cf56 1ff505e 271cf56 1ff505e 271cf56 1ff505e 271cf56 1ff505e 271cf56 1ff505e 271cf56 70b0865 c009e13 7131256 c009e13 70b0865 7a733b2 70b0865 f20b415 70b0865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: cc-by-sa-4.0
dataset_info:
features:
- name: context
dtype: string
- name: question
dtype: string
- name: targets
sequence: string
- name: target_choices
sequence: string
- name: target_scores
sequence: int32
- name: reasoning
dtype: string
- name: source_data
dtype: string
- name: context_id
dtype: int32
- name: question_id
dtype: int32
- name: symbolic_context
dtype: string
- name: symbolic_entity_map
dtype: string
- name: symbolic_question
sequence: string
- name: symbolic_reasoning
dtype: string
- name: num_context_entities
dtype: int32
- name: num_question_entities
dtype: int32
- name: question_type
dtype: string
- name: reasoning_types
sequence: string
- name: spatial_types
sequence: string
- name: commonsense_question
dtype: string
- name: canary
dtype: string
- name: comments
sequence: string
configs:
- config_name: "SpaRP-PS1 (SpaRTUN)"
version: 1.1.0
data_files:
- split: train
path: "sparp/SpaRP-PS1 (SpaRTUN)/train.json"
- split: validation
path: "sparp/SpaRP-PS1 (SpaRTUN)/val.json"
- split: test
path: "sparp/SpaRP-PS1 (SpaRTUN)/test.json"
- config_name: "SpaRP-PS2 (StepGame)"
version: 1.1.0
data_files:
- split: train
path: "sparp/SpaRP (StepGame)/PS2/train.json"
- split: validation
path: "sparp/SpaRP (StepGame)/PS2/val.json"
- split: test
path: "sparp/SpaRP (StepGame)/PS2/test.json"
- config_name: "SpaRP-PS3 (StepGame-Ext-01)"
version: 1.1.0
data_files:
- split: train
path: "sparp/SpaRP (StepGame)/PS3/train.json"
- split: validation
path: "sparp/SpaRP (StepGame)/PS3/val.json"
- split: test
path: "sparp/SpaRP (StepGame)/PS3/test.json"
- config_name: "SpaRP-PS4 (StepGame-Ext-02)"
version: 1.1.0
data_files:
- split: train
path: "sparp/SpaRP (StepGame)/PS4/train.json"
- split: validation
path: "sparp/SpaRP (StepGame)/PS4/val.json"
- split: test
path: "sparp/SpaRP (StepGame)/PS4/test.json"
- config_name: "small-SpaRP-PS1 (SpaRTUN)"
version: 1.1.0
data_files:
- split: train
path: "small-sparp/SpaRP-PS1 (SpaRTUN)/train.json"
- split: validation
path: "small-sparp/SpaRP-PS1 (SpaRTUN)/val.json"
- split: test
path: "small-sparp/SpaRP-PS1 (SpaRTUN)/test.json"
- config_name: "small-SpaRP-PS2 (StepGame)"
version: 1.1.0
data_files:
- split: train
path: "small-sparp/SpaRP (StepGame)/PS2/train.json"
- split: validation
path: "small-sparp/SpaRP (StepGame)/PS2/val.json"
- split: test
path: "small-sparp/SpaRP (StepGame)/PS2/test.json"
- config_name: "small-SpaRP-PS3 (StepGame-Ext-01)"
version: 1.1.0
data_files:
- split: train
path: "small-sparp/SpaRP (StepGame)/PS3/train.json"
- split: validation
path: "small-sparp/SpaRP (StepGame)/PS3/val.json"
- split: test
path: "small-sparp/SpaRP (StepGame)/PS3/test.json"
- config_name: "small-SpaRP-PS4 (StepGame-Ext-02)"
version: 1.1.0
data_files:
- split: train
path: "small-sparp/SpaRP (StepGame)/PS4/train.json"
- split: validation
path: "small-sparp/SpaRP (StepGame)/PS4/val.json"
- split: test
path: "small-sparp/SpaRP (StepGame)/PS4/test.json"
# - config_name: SpartQA_Human
# version: 1.1.0
# data_files:
# - split: train
# path: "SpartQA_Human/train.json"
# - split: validation
# path: "SpartQA_Human/val.json"
# - split: test
# path: "SpartQA_Human/test.json"
# - config_name: ReSQ
# version: 1.1.0
# data_files:
# - split: train
# path: "ReSQ/train.json"
# - split: validation
# path: "ReSQ/val.json"
# - split: test
# path: "ReSQ/test.json"
---
# Dataset Card for Spatial Reasoning Path (SpaRP)
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Repository: https://github.com/UKPLab/acl2024-sparc-and-sparp**
- **Paper: https://arxiv.org/abs/**
- **Point of Contact: Md Imbesat Hassan Rizvi (http://www.ukp.tu-darmstadt.de/)**
### Dataset Summary
This dataset is a consolidation of SpaRTUN and StepGame datasets with an extension of additional spatial characterization and reasoning path generation. The methodology is explained in our ACL 2024 paper - [SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models](). The dataset format and fields are normalized across the two upstream benchmark datasets -- SpaRTUN and StepGame. The datasets are primarily a Spatial Question Answering datasets, which are enriched with verbalized reasoning paths. The prominent fields of interests are:
- *context*: Textual description of the spatial context.
- *question*: A question about finding spatial relations between two entities in the context.
- *targets*: Answer i.e. list of spatial relations between the entities in the question.
- *target_choices*: List of all the spatial relations to choose from.
- *target_scores*: Binarized Multi-label representation of targets over target_choices.
- *reasoning*: Verbalized reasoning path as deductively-verified CoT for training or few-shot examples.
Additionally, the fields with the metadata are:
- *context_id*: An identifier from the source data corresponding to the context. `context_id` is unique. A single context can have multiple questions (e.g. SpaRTUN). Hence, (context_id, question_id) is a unique identifier for a dataset instance.
- *question_id*: An identifier from the source data corresponding to the question.
- *num_hop*: Ground truth number of hop required for the question.
- *symbolic_context*: A json string describing the symbolic context.
- *symbolic_entity_map*: A json string that maps symbolic entities to their complete descriptive names used.
- *symbolic_question*: A list containing head and tail entities of the question.
- *symbolic_reasoning*: A json string containing symbolic reasoning steps.
- *num_context_entities*: Number of entities in the context.
- *num_question_entities*: Number of entities in the question.
- *question_type*: Type of the question. Only `FR` i.e. Find Relation type questions are currently present.
- *canary*: A canary string present only in the `test`.
- *reasoning_types*: The type of reasoning copied from the source data required for answering the question.
- *spatial_types*: The type of spatial relations copied from the source data required for answering the question.
- *source_data*: The upstream source of the data (either SpaRTUN or StepGame) for a given instance.
- *comments*: Additional comments specific to the upstream data.
### Languages
English
## Additional Information
You can download the data via:
```
from datasets import load_dataset
dataset = load_dataset("UKPLab/sparp") # default config is "SpaRP-PS1 (SpaRTUN)"
dataset = load_dataset("UKPLab/sparp", "SpaRP-PS2 (StepGame)") # use the "SpaRP-PS2 (StepGame)" tag for the StepGame dataset
```
Please find more information about the code and how the data was collected on [GitHub](https://github.com/UKPLab/acl2024-sparc-and-sparp).
### Dataset Curators
Curation is managed by our [data manager](https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4235) at UKP.
### Licensing Information
[CC-by-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)
### Citation Information
Please cite this data using:
```
@inproceedings{rizvi-2024-sparc,
title={SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models},
author={Rizvi, Md Imbesat Hassan Rizvi and Zhu, Xiaodan and Gurevych, Iryna},
editor = "",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "",
doi = "",
pages = "",
}
``` |