Datasets:

Modalities:
Tabular
Text
Formats:
json
Libraries:
Datasets
pandas
License:
File size: 8,570 Bytes
70b0865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271cf56
 
70b0865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271cf56
70b0865
 
1ff505e
70b0865
1ff505e
70b0865
1ff505e
70b0865
 
271cf56
70b0865
 
1ff505e
70b0865
1ff505e
70b0865
1ff505e
271cf56
 
 
 
 
1ff505e
271cf56
1ff505e
271cf56
1ff505e
271cf56
 
 
 
 
1ff505e
271cf56
1ff505e
271cf56
1ff505e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271cf56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b0865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c009e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7131256
 
c009e13
 
 
 
 
 
 
 
70b0865
 
 
 
 
 
 
 
 
 
 
 
 
7a733b2
70b0865
 
 
 
 
f20b415
70b0865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
license: cc-by-sa-4.0

dataset_info:
  features:
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: targets
    sequence: string
  - name: target_choices
    sequence: string
  - name: target_scores
    sequence: int32
  - name: reasoning
    dtype: string
  - name: source_data
    dtype: string
  - name: context_id
    dtype: int32
  - name: question_id
    dtype: int32
  - name: symbolic_context
    dtype: string
  - name: symbolic_entity_map
    dtype: string
  - name: symbolic_question
    sequence: string 
  - name: symbolic_reasoning
    dtype: string
  - name: num_context_entities
    dtype: int32
  - name: num_question_entities
    dtype: int32
  - name: question_type
    dtype: string
  - name: reasoning_types
    sequence: string
  - name: spatial_types
    sequence: string
  - name: commonsense_question
    dtype: string
  - name: canary
    dtype: string
  - name: comments
    sequence: string

configs:
  - config_name: "SpaRP-PS1 (SpaRTUN)"
    version: 1.1.0
    data_files:
      - split: train
        path: "sparp/SpaRP-PS1 (SpaRTUN)/train.json"
      - split: validation
        path: "sparp/SpaRP-PS1 (SpaRTUN)/val.json"
      - split: test
        path: "sparp/SpaRP-PS1 (SpaRTUN)/test.json"

  - config_name: "SpaRP-PS2 (StepGame)"
    version: 1.1.0
    data_files:
      - split: train
        path: "sparp/SpaRP (StepGame)/PS2/train.json"
      - split: validation
        path: "sparp/SpaRP (StepGame)/PS2/val.json"
      - split: test
        path: "sparp/SpaRP (StepGame)/PS2/test.json"

  - config_name: "SpaRP-PS3 (StepGame-Ext-01)"
    version: 1.1.0
    data_files:
      - split: train
        path: "sparp/SpaRP (StepGame)/PS3/train.json"
      - split: validation
        path: "sparp/SpaRP (StepGame)/PS3/val.json"
      - split: test
        path: "sparp/SpaRP (StepGame)/PS3/test.json"
  
  - config_name: "SpaRP-PS4 (StepGame-Ext-02)"
    version: 1.1.0
    data_files:
      - split: train
        path: "sparp/SpaRP (StepGame)/PS4/train.json"
      - split: validation
        path: "sparp/SpaRP (StepGame)/PS4/val.json"
      - split: test
        path: "sparp/SpaRP (StepGame)/PS4/test.json"

  - config_name: "small-SpaRP-PS1 (SpaRTUN)"
    version: 1.1.0
    data_files:
      - split: train
        path: "small-sparp/SpaRP-PS1 (SpaRTUN)/train.json"
      - split: validation
        path: "small-sparp/SpaRP-PS1 (SpaRTUN)/val.json"
      - split: test
        path: "small-sparp/SpaRP-PS1 (SpaRTUN)/test.json"

  - config_name: "small-SpaRP-PS2 (StepGame)"
    version: 1.1.0
    data_files:
      - split: train
        path: "small-sparp/SpaRP (StepGame)/PS2/train.json"
      - split: validation
        path: "small-sparp/SpaRP (StepGame)/PS2/val.json"
      - split: test
        path: "small-sparp/SpaRP (StepGame)/PS2/test.json"

  - config_name: "small-SpaRP-PS3 (StepGame-Ext-01)"
    version: 1.1.0
    data_files:
      - split: train
        path: "small-sparp/SpaRP (StepGame)/PS3/train.json"
      - split: validation
        path: "small-sparp/SpaRP (StepGame)/PS3/val.json"
      - split: test
        path: "small-sparp/SpaRP (StepGame)/PS3/test.json"
  
  - config_name: "small-SpaRP-PS4 (StepGame-Ext-02)"
    version: 1.1.0
    data_files:
      - split: train
        path: "small-sparp/SpaRP (StepGame)/PS4/train.json"
      - split: validation
        path: "small-sparp/SpaRP (StepGame)/PS4/val.json"
      - split: test
        path: "small-sparp/SpaRP (StepGame)/PS4/test.json"

  # - config_name: SpartQA_Human
  #   version: 1.1.0
  #   data_files:
  #     - split: train
  #       path: "SpartQA_Human/train.json"
  #     - split: validation
  #       path: "SpartQA_Human/val.json"
  #     - split: test
  #       path: "SpartQA_Human/test.json"
  # - config_name: ReSQ
  #   version: 1.1.0
  #   data_files:
  #     - split: train
  #       path: "ReSQ/train.json"
  #     - split: validation
  #       path: "ReSQ/val.json"
  #     - split: test
  #       path: "ReSQ/test.json"
---

# Dataset Card for Spatial Reasoning Path (SpaRP)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Languages](#languages)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)


## Dataset Description

- **Repository: https://github.com/UKPLab/acl2024-sparc-and-sparp**
- **Paper: https://arxiv.org/abs/**
- **Point of Contact: Md Imbesat Hassan Rizvi (http://www.ukp.tu-darmstadt.de/)**

### Dataset Summary

This dataset is a consolidation of SpaRTUN and StepGame datasets with an extension of additional spatial characterization and reasoning path generation. The methodology is explained in our ACL 2024 paper - [SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models](). The dataset format and fields are normalized across the two upstream benchmark datasets -- SpaRTUN and StepGame. The datasets are primarily a Spatial Question Answering datasets, which are enriched with verbalized reasoning paths. The prominent fields of interests are:

- *context*: Textual description of the spatial context.
- *question*: A question about finding spatial relations between two entities in the context.
- *targets*: Answer i.e. list of spatial relations between the entities in the question.
- *target_choices*: List of all the spatial relations to choose from.
- *target_scores*: Binarized Multi-label representation of targets over target_choices.
- *reasoning*: Verbalized reasoning path as deductively-verified CoT for training or few-shot examples.

Additionally, the fields with the metadata are:

- *context_id*: An identifier from the source data corresponding to the context. `context_id` is unique. A single context can have multiple questions (e.g. SpaRTUN). Hence, (context_id, question_id) is a unique identifier for a dataset instance. 
- *question_id*: An identifier from the source data corresponding to the question.
- *num_hop*: Ground truth number of hop required for the question.
- *symbolic_context*: A json string describing the symbolic context.
- *symbolic_entity_map*: A json string that maps symbolic entities to their complete descriptive names used.
- *symbolic_question*: A list containing head and tail entities of the question.
- *symbolic_reasoning*: A json string containing symbolic reasoning steps.
- *num_context_entities*: Number of entities in the context.
- *num_question_entities*: Number of entities in the question.
- *question_type*: Type of the question. Only `FR` i.e. Find Relation type questions are currently present.
- *canary*: A canary string present only in the `test`.
- *reasoning_types*: The type of reasoning copied from the source data required for answering the question.
- *spatial_types*: The type of spatial relations copied from the source data required for answering the question.
- *source_data*: The upstream source of the data (either SpaRTUN or StepGame) for a given instance.
- *comments*: Additional comments specific to the upstream data.

### Languages

English

## Additional Information

You can download the data via:

```
from datasets import load_dataset

dataset = load_dataset("UKPLab/sparp") # default config is "SpaRP-PS1 (SpaRTUN)"
dataset = load_dataset("UKPLab/sparp", "SpaRP-PS2 (StepGame)") # use the "SpaRP-PS2 (StepGame)" tag for the StepGame dataset
``` 
Please find more information about the code and how the data was collected on [GitHub](https://github.com/UKPLab/acl2024-sparc-and-sparp).

### Dataset Curators

Curation is managed by our [data manager](https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4235) at UKP.

### Licensing Information

[CC-by-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)

### Citation Information

Please cite this data using: 

```
@inproceedings{rizvi-2024-sparc,
  title={SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models},
  author={Rizvi, Md Imbesat Hassan Rizvi and Zhu, Xiaodan and Gurevych, Iryna},
  editor = "",
  booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics",
  month = aug,
  year = "2024",
  address = "Bangkok, Thailand",
  publisher = "Association for Computational Linguistics",
  url = "",
  doi = "",
  pages = "",
}
```