--- language: - en license: cc-by-sa-4.0 dataset_info: features: - name: context dtype: string - name: question dtype: string - name: targets sequence: string - name: target_choices sequence: string - name: target_scores sequence: int32 - name: reasoning dtype: string - name: source_data dtype: string - name: context_id dtype: int32 - name: question_id dtype: int32 - name: symbolic_context dtype: string - name: symbolic_entity_map dtype: string - name: symbolic_question sequence: string - name: num_context_entities dtype: int32 - name: num_question_entities dtype: int32 - name: question_type dtype: string - name: reasoning_types sequence: string - name: spatial_types sequence: string - name: commonsense_question dtype: string - name: canary dtype: string - name: comments sequence: string configs: - config_name: SpaRP-PS1 (SpaRTUN) version: 0.1.0 default: true data_files: - split: train path: SpaRP-PS1 (SpaRTUN)/train.json - split: validation path: SpaRP-PS1 (SpaRTUN)/val.json - split: test path: SpaRP-PS1 (SpaRTUN)/test.json - config_name: SpaRP-PS2 (StepGame) version: 0.1.0 data_files: - split: train path: SpaRP (StepGame)/PS2/train.json - split: validation path: SpaRP (StepGame)/PS2/val.json - split: test path: SpaRP (StepGame)/PS2/test.json --- # Dataset Card for Spatial Reasoning Path (SpaRP) ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Repository: https://github.com/UKPLab/acl2024-sparc-and-sparp** - **Paper: https://arxiv.org/abs/** - **Point of Contact: Md Imbesat Hassan Rizvi (http://www.ukp.tu-darmstadt.de/)** ### Dataset Summary This dataset is a consolidation of SpaRTUN and StepGame datasets with an extension of additional spatial characterization and reasoning path generation. The methodology is explained in our ACL 2024 paper - [SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models](). ### Languages English ## Additional Information You can download the data via: ``` from datasets import load_dataset dataset = load_dataset("UKPLab/sparp") # default config is "SpaRP-PS1 (SpaRTUN)" dataset = load_dataset("UKPLab/sparp", "SpaRP-PS2 (StepGame)") # use the "SpaRP-PS2 (StepGame)" tag for the StepGame dataset ``` Please find more information about the code and how the data was collected on [GitHub](https://github.com/UKPLab/acl2024-sparc-and-sparp). ### Dataset Curators Curation is managed by our [data manager](https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4235) at UKP. ### Licensing Information [CC-by-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) ### Citation Information Please cite this data using: ``` @inproceedings{rizvi-2024-sparc, title={SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models}, author={Rizvi, Md Imbesat Hassan Rizvi and Zhu, Xiaodan and Gurevych, Iryna}, editor = "", booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "", doi = "", pages = "", } ```