Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Hausa
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Introduction to the Yoruba GV NER dataset: A Yoruba Global Voices (News) Named Entity Recognition Dataset""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{hedderich-etal-2020-transfer, | |
title = "Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on {A}frican Languages", | |
author = "Hedderich, Michael A. and | |
Adelani, David and | |
Zhu, Dawei and | |
Alabi, Jesujoba and | |
Markus, Udia and | |
Klakow, Dietrich", | |
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", | |
month = nov, | |
year = "2020", | |
address = "Online", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/2020.emnlp-main.204", | |
doi = "10.18653/v1/2020.emnlp-main.204", | |
pages = "2580--2591", | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
The Hausa VOA NER dataset is a labeled dataset for named entity recognition in Hausa. The texts were obtained from | |
Hausa Voice of America News articles https://www.voahausa.com/ . We concentrate on | |
four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE]. | |
The Hausa VOA NER data files contain 2 columns separated by a tab ('\t'). Each word has been put on a separate line and | |
there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second | |
is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase | |
of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words | |
have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme. | |
For more details, see https://www.aclweb.org/anthology/2020.emnlp-main.204/ | |
""" | |
_URL = "https://github.com/uds-lsv/transfer-distant-transformer-african/raw/master/data/hausa_ner/" | |
_TRAINING_FILE = "train_clean.tsv" | |
_DEV_FILE = "dev.tsv" | |
_TEST_FILE = "test.tsv" | |
class HausaVoaNerConfig(datasets.BuilderConfig): | |
"""BuilderConfig for HausaVoaNer""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for HausaVoaNer. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(HausaVoaNerConfig, self).__init__(**kwargs) | |
class HausaVoaNer(datasets.GeneratorBasedBuilder): | |
"""Hausa VOA NER dataset.""" | |
BUILDER_CONFIGS = [ | |
HausaVoaNerConfig( | |
name="hausa_voa_ner", version=datasets.Version("1.0.0"), description="Hausa VOA NER dataset" | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PER", | |
"I-PER", | |
"B-ORG", | |
"I-ORG", | |
"B-LOC", | |
"I-LOC", | |
"B-DATE", | |
"I-DATE", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://www.aclweb.org/anthology/2020.emnlp-main.204/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
line = line.strip() | |
if line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# yoruba_gv_ner tokens are tab separated | |
splits = line.strip().split("\t") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |