File size: 5,924 Bytes
25f8be9
f01fb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f8be9
 
5efb24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ed2f3
 
 
5efb24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ed2f3
 
5efb24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---

configs:
  - config_name: en
    default: true
    data_files:
      - split: train
        path: "data/en/*.parquet"
  - config_name: de
    data_files:
      - split: train
        path: "data/de/*.parquet"
  - config_name: fr
    data_files:
      - split: train
        path: "data/fr/*.parquet"
  - config_name: ru
    data_files:
      - split: train
        path: "data/ru/*.parquet"
  - config_name: es
    data_files:
      - split: train
        path: "data/es/*.parquet"
  - config_name: it
    data_files:
      - split: train
        path: "data/it/*.parquet"
  - config_name: ja
    data_files:
      - split: train
        path: "data/ja/*.parquet"
  - config_name: pt
    data_files:
      - split: train
        path: "data/pt/*.parquet"
  - config_name: zh
    data_files:
      - split: train
        path: "data/zh/*.parquet"
  - config_name: fa
    data_files:
      - split: train
        path: "data/fa/*.parquet"
  - config_name: tr
    data_files:
      - split: train
        path: "data/tr/*.parquet"
license: apache-2.0
---

# Wikipedia Embeddings with BGE-M3

This dataset contains embeddings from the
[June 2024 Wikipedia dump](https://dumps.wikimedia.org/wikidatawiki/20240601/)
for the 11 most popular languages.

The embeddings are generated with the multilingual
[BGE-M3](https://huggingface.co/BAAI/bge-m3) model.

The dataset consists of Wikipedia articles split into paragraphs,
and embedded with the aforementioned model.

To enhance search quality, the paragraphs are prefixed with their
respective article titles before embedding.

Additionally, paragraphs containing fewer than 100 characters,
which tend to have low information density, are excluded from the dataset.

The dataset contains approximately 144 million vector embeddings in total.

| Language   | Config Name | Embeddings  |
|------------|-------------|-------------|
| English    | en          | 47_018_430  |
| German     | de          | 20_213_669  |
| French     | fr          | 18_324_060  |
| Russian    | ru          | 13_618_886  |
| Spanish    | es          | 13_194_999  |
| Italian    | it          | 10_092_524  |
| Japanese   | ja          | 7_769_997   |
| Portuguese | pt          | 5_948_941   |
| Farsi      | fa          | 2_598_251   |
| Chinese    | zh          | 3_306_397   |
| Turkish    | tr          | 2_051_157   |
| **Total**  |             | 144_137_311 | 

## Loading Dataset

You can load the entire dataset for a language as follows.
Please note that for some languages, the download size may be quite large.

```python

from datasets import load_dataset



dataset = load_dataset("Upstash/wikipedia-2024-06-bge-m3", "en", split="train")

```

Alternatively, you can stream portions of the dataset as needed.

```python

from datasets import load_dataset



dataset = load_dataset(

    "Upstash/wikipedia-2024-06-bge-m3", "en", split="train", streaming=True

)



for data in dataset:

    data_id = data["id"]

    url = data["url"]

    title = data["title"]

    text = data["text"]

    embedding = data["embedding"]

    # Do some work

    break

```

## Using Dataset

One potential use case for the dataset is enabling similarity search
by integrating it with a vector database.

In fact, we have developed a vector database that allows you to search
through the Wikipedia articles. Additionally, it includes a
[RAG (Retrieval-Augmented Generation)](https://github.com/upstash/rag-chat) chatbot,
which enables you to interact with a chatbot enhanced by the dataset.

For more details, see this [blog post](https://upstash.com/blog/indexing-wikipedia),
and be sure to check out the
[search engine and chatbot](https://wikipedia-semantic-search.vercel.app) yourself.

For reference, here is a rough estimation of how to implement semantic search
functionality using this dataset and Upstash Vector.

```python

from datasets import load_dataset

from sentence_transformers import SentenceTransformer

from upstash_vector import Index



# You can create Upstash Vector with dimension set to 1024,

# and similarity search function to dot product.

index = Index(

    url="<UPSTASH_VECTOR_REST_URL>",

    token="<UPSTASH_VECTOR_REST_TOKEN>",

)



vectors = []

batch_size = 200



dataset = load_dataset(

    "Upstash/wikipedia-2024-06-bge-m3", "en", split="train", streaming=True

)



for data in dataset:

    data_id = data["id"]

    url = data["url"]

    title = data["title"]

    text = data["text"]

    embedding = data["embedding"]



    metadata = {

        "url": url,

        "title": title,

    }



    vector = (

        data_id,  # Unique vector id

        embedding,  # Vector embedding

        metadata,  # Optional, JSON-like metadata

        text,  # Optional, unstructured text data

    )

    vectors.append(vector)



    if len(vectors) == batch_size:

        break



# Upload embeddings into Upstash Vector in batches

index.upsert(

    vectors=vectors,

    namespace="en",

)



# Create the query vector

transformer = SentenceTransformer(

    "BAAI/bge-m3",

    device="cuda",

    revision="babcf60cae0a1f438d7ade582983d4ba462303c2",

)



query = "Which state has the nickname Yellowhammer State?"

query_vector = transformer.encode(

    sentences=query,

    show_progress_bar=False,

    normalize_embeddings=True,

)



results = index.query(

    vector=query_vector,

    top_k=2,

    include_metadata=True,

    include_data=True,

    namespace="en",

)



# Query results are sorted in descending order of similarity

for result in results:

    print(result.id)  # Unique vector id

    print(result.score)  # Similarity score to the query vector

    print(result.metadata)  # Metadata associated with vector

    print(result.data)  # Unstructured data associated with vector

    print("---")

```