|
--- |
|
language: |
|
- vi |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
- name: domain |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 65506190827 |
|
num_examples: 12169131 |
|
download_size: 34648619492 |
|
dataset_size: 65506190827 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
### Dataset Description |
|
|
|
Vietnamese Curated Text Dataset. This dataset is collected from multiple open Vietnamese datasets, and curated with [NeMo Curator](https://github.com/NVIDIA/NeMo-Curator) |
|
|
|
- **Developed by:** Viettel Solution |
|
- **Language:** Vietnamese |
|
|
|
|
|
|
|
### Details |
|
|
|
#### Data Collection |
|
We utilize a combination of datasets that contain samples in Vietnamese language, ensuring a robust and representative text corpus. These datasets include: |
|
- The Vietnamese subset of the [C4 dataset](https://huggingface.co/datasets/allenai/c4/viewer/vi) . |
|
- The Vietnamese subset of the [OSCAR dataset, version 23.01](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301/tree/main/vi_meta). |
|
- [Wikipedia's Vietnamese articles](https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.vi). |
|
- [Binhvq's Vietnamese news corpus](https://huggingface.co/datasets/jetaudio/binhvq_news). |
|
|
|
|
|
#### Preprocessing |
|
We use [NeMo Curator](https://github.com/NVIDIA/NeMo-Curator) to curate the collected data. The data curation pipeline includes these key steps: |
|
1. Unicode Reformatting: Texts are standardized into a consistent Unicode format to avoid encoding issues. |
|
2. Exact Deduplication: Removes exact duplicates to reduce redundancy. |
|
3. Quality Filtering: |
|
4. Heuristic Filtering: Applies rules-based filters to remove low-quality content. |
|
5. Classifier-Based Filtering: Uses machine learning to classify and filter documents based on quality. |
|
|
|
#### Dataset Statistics |
|
|
|
**Content diversity** |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/661766c00c68b375f3f0ccc3/mW6Pct3uyP_XDdGmE8EP3.png" alt="Domain proportion in curated dataset" width="500"/> |
|
|
|
**Character based metrics** |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/661766c00c68b375f3f0ccc3/W9TQjM2vcC7uXozyERHSQ.png" alt="Box plots of percentage of symbols, numbers, and whitespace characters compared to the total characters, word counts and average word lengths" width="900"/> |
|
|
|
**Token count distribution** |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/661766c00c68b375f3f0ccc3/PDelYpBI0DefSmQgFONgE.png" alt="Distribution of document sizes (in terms of token count)" width="500"/> |
|
|
|
**Embedding visualization** |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/661766c00c68b375f3f0ccc3/sfeoZWuQ7DcSpbmUOJ12r.png" alt="UMAP visualization of 5% of the dataset" width="650"/> |
|
*UMAP visualization of 5% of the dataset* |