harpreetsahota commited on
Commit
ee34aa6
1 Parent(s): 38e3957

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -122
README.md CHANGED
@@ -13,9 +13,6 @@ tags:
13
  - object-detection
14
  dataset_summary: '
15
 
16
-
17
-
18
-
19
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
20
 
21
 
@@ -46,7 +43,7 @@ dataset_summary: '
46
 
47
  # Note: other available arguments include ''max_samples'', etc
48
 
49
- dataset = fouh.load_from_hub("harpreetsahota/GQA-Scene-Graph")
50
 
51
 
52
  # Launch the App
@@ -60,14 +57,14 @@ dataset_summary: '
60
 
61
  # Dataset Card for GQA-35k
62
 
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
-
67
 
 
68
 
69
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
70
 
 
 
71
  ## Installation
72
 
73
  If you haven't already, install FiftyOne:
@@ -84,141 +81,76 @@ import fiftyone.utils.huggingface as fouh
84
 
85
  # Load the dataset
86
  # Note: other available arguments include 'max_samples', etc
87
- dataset = fouh.load_from_hub("harpreetsahota/GQA-Scene-Graph")
88
 
89
  # Launch the App
90
  session = fo.launch_app(dataset)
91
  ```
92
 
93
-
94
  ## Dataset Details
95
 
96
  ### Dataset Description
97
 
98
- <!-- Provide a longer summary of what this dataset is. -->
99
 
 
100
 
 
 
 
 
 
 
 
 
101
 
102
- - **Curated by:** [More Information Needed]
103
- - **Funded by [optional]:** [More Information Needed]
104
- - **Shared by [optional]:** [More Information Needed]
105
  - **Language(s) (NLP):** en
106
- - **License:** [More Information Needed]
107
-
108
- ### Dataset Sources [optional]
109
-
110
- <!-- Provide the basic links for the dataset. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the dataset is intended to be used. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section describes suitable use cases for the dataset. -->
123
 
124
- [More Information Needed]
125
 
126
- ### Out-of-Scope Use
 
 
127
 
128
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
129
-
130
- [More Information Needed]
131
 
132
  ## Dataset Structure
133
 
134
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Dataset Creation
139
-
140
- ### Curation Rationale
141
-
142
- <!-- Motivation for the creation of this dataset. -->
143
-
144
- [More Information Needed]
145
-
146
- ### Source Data
147
-
148
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
149
-
150
- #### Data Collection and Processing
151
-
152
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
153
-
154
- [More Information Needed]
155
-
156
- #### Who are the source data producers?
157
-
158
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
159
-
160
- [More Information Needed]
161
 
162
- ### Annotations [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
165
 
166
- #### Annotation process
167
-
168
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
169
-
170
- [More Information Needed]
171
-
172
- #### Who are the annotators?
173
-
174
- <!-- This section describes the people or systems who created the annotations. -->
175
-
176
- [More Information Needed]
177
-
178
- #### Personal and Sensitive Information
179
-
180
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
181
-
182
- [More Information Needed]
183
-
184
- ## Bias, Risks, and Limitations
185
-
186
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
187
-
188
- [More Information Needed]
189
-
190
- ### Recommendations
191
-
192
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
193
-
194
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
195
-
196
- ## Citation [optional]
197
-
198
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
199
 
200
  **BibTeX:**
201
-
202
- [More Information Needed]
203
-
204
- **APA:**
205
-
206
- [More Information Needed]
207
-
208
- ## Glossary [optional]
209
-
210
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
211
-
212
- [More Information Needed]
213
-
214
- ## More Information [optional]
215
-
216
- [More Information Needed]
217
-
218
- ## Dataset Card Authors [optional]
219
-
220
- [More Information Needed]
221
-
222
- ## Dataset Card Contact
223
-
224
- [More Information Needed]
 
13
  - object-detection
14
  dataset_summary: '
15
 
 
 
 
16
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
17
 
18
 
 
43
 
44
  # Note: other available arguments include ''max_samples'', etc
45
 
46
+ dataset = fouh.load_from_hub("Voxel51/GQA-Scene-Graph")
47
 
48
 
49
  # Launch the App
 
57
 
58
  # Dataset Card for GQA-35k
59
 
60
+ ![image](gqa.png)
 
 
 
61
 
62
+ The GQA (Visual Reasoning in the Real World) dataset is a large-scale visual question answering dataset that includes scene graph annotations for each image.
63
 
64
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
65
 
66
+ Note: This dataset does not contain questions, only the scene graph annotations as detection-level attributes.
67
+
68
  ## Installation
69
 
70
  If you haven't already, install FiftyOne:
 
81
 
82
  # Load the dataset
83
  # Note: other available arguments include 'max_samples', etc
84
+ dataset = fouh.load_from_hub("Voxel51/GQA-Scene-Graph")
85
 
86
  # Launch the App
87
  session = fo.launch_app(dataset)
88
  ```
89
 
 
90
  ## Dataset Details
91
 
92
  ### Dataset Description
93
 
 
94
 
95
+ ## Scene Graph Annotations
96
 
97
+ - Each of the 113K images in GQA is associated with a detailed scene graph describing the objects, attributes and relations present.
98
+ -
99
+ - The scene graphs are based on a cleaner version of the Visual Genome scene graphs.
100
+ -
101
+ - For each image, the scene graph is provided as a dictionary (sceneGraph) containing:
102
+ - Image metadata like width, height, location, weather
103
+ - A dictionary (objects) mapping each object ID to its name, bounding box coordinates, attributes, and relations[6]
104
+ - Relations are represented as triples specifying the predicate (e.g. "holding", "on", "left of") and the target object ID[6]
105
 
106
+ - **Curated by:** Drew Hudson & Christopher Manning
107
+ - **Shared by:** [Harpreet Sahota](https://x.com/datascienceharp), Hacker-in-Residence at Voxel51
 
108
  - **Language(s) (NLP):** en
109
+ - **License:**
110
+ - GQA annotations (scene graphs, questions, programs) licensed under CC BY 4.0
111
+ - Images sourced from Visual Genome may have different licensing terms
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ ### Dataset Sources
114
 
115
+ - **Repository:** https://cs.stanford.edu/people/dorarad/gqa/
116
+ - **Paper :** https://arxiv.org/pdf/1902.09506
117
+ - **Demo:** https://cs.stanford.edu/people/dorarad/gqa/vis.html
118
 
 
 
 
119
 
120
  ## Dataset Structure
121
 
122
+ Here's the information presented as a markdown table:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
+ | Field | Type | Description |
125
+ |-------|------|-------------|
126
+ | location | str | Optional. The location of the image, e.g. kitchen, beach. |
127
+ | weather | str | Optional. The weather in the image, e.g. sunny, cloudy. |
128
+ | objects | dict | A dictionary from objectId to its object. |
129
+ | &nbsp;&nbsp;&nbsp;&nbsp;object | dict | A visual element in the image (node). |
130
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;name | str | The name of the object, e.g. person, apple or sky. |
131
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x | int | Horizontal position of the object bounding box (top left). |
132
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y | int | Vertical position of the object bounding box (top left). |
133
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;w | int | The object bounding box width in pixels. |
134
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;h | int | The object bounding box height in pixels. |
135
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;attributes | [str] | A list of all the attributes of the object, e.g. blue, small, running. |
136
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;relations | [dict] | A list of all outgoing relations (edges) from the object (source). |
137
+ | &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;relation | dict | A triple representing the relation between source and target objects. |
138
 
139
+ Note: I've used non-breaking spaces (`&nbsp;`) to indent the nested fields in the 'Field' column to represent the hierarchy. This helps to visually distinguish the nested structure within the table.
140
 
141
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  **BibTeX:**
144
+ ```bibtex
145
+ @article{Hudson_2019,
146
+ title={GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering},
147
+ ISBN={9781728132938},
148
+ url={http://dx.doi.org/10.1109/CVPR.2019.00686},
149
+ DOI={10.1109/cvpr.2019.00686},
150
+ journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
151
+ publisher={IEEE},
152
+ author={Hudson, Drew A. and Manning, Christopher D.},
153
+ year={2019},
154
+ month={Jun}
155
+ }
156
+ ```