harpreetsahota commited on
Commit
6365972
1 Parent(s): 11f1cf0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -111
README.md CHANGED
@@ -60,10 +60,7 @@ dataset_summary: '
60
 
61
  # Dataset Card for ImageNet-A
62
 
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
-
67
 
68
 
69
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 7450 samples.
@@ -95,130 +92,53 @@ session = fo.launch_app(dataset)
95
 
96
  ### Dataset Description
97
 
98
- <!-- Provide a longer summary of what this dataset is. -->
99
-
100
-
101
-
102
- - **Curated by:** [More Information Needed]
103
- - **Funded by [optional]:** [More Information Needed]
104
- - **Shared by [optional]:** [More Information Needed]
105
- - **Language(s) (NLP):** en
106
- - **License:** [More Information Needed]
107
-
108
- ### Dataset Sources [optional]
109
-
110
- <!-- Provide the basic links for the dataset. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the dataset is intended to be used. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section describes suitable use cases for the dataset. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Out-of-Scope Use
127
-
128
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
129
-
130
- [More Information Needed]
131
-
132
- ## Dataset Structure
133
-
134
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Dataset Creation
139
-
140
- ### Curation Rationale
141
-
142
- <!-- Motivation for the creation of this dataset. -->
143
 
144
- [More Information Needed]
145
 
146
- ### Source Data
147
 
148
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
149
 
150
- #### Data Collection and Processing
151
 
152
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
153
 
154
- [More Information Needed]
155
 
156
- #### Who are the source data producers?
157
 
158
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
159
 
160
- [More Information Needed]
161
 
162
- ### Annotations [optional]
163
 
164
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
 
165
 
166
- #### Annotation process
167
 
168
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
169
 
170
- [More Information Needed]
171
-
172
- #### Who are the annotators?
173
-
174
- <!-- This section describes the people or systems who created the annotations. -->
175
-
176
- [More Information Needed]
177
-
178
- #### Personal and Sensitive Information
179
-
180
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
181
-
182
- [More Information Needed]
183
-
184
- ## Bias, Risks, and Limitations
185
-
186
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
187
-
188
- [More Information Needed]
189
-
190
- ### Recommendations
191
-
192
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
193
 
194
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
195
 
196
- ## Citation [optional]
 
197
 
198
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
199
 
200
  **BibTeX:**
201
 
202
- [More Information Needed]
203
-
204
- **APA:**
205
-
206
- [More Information Needed]
207
-
208
- ## Glossary [optional]
209
-
210
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
211
-
212
- [More Information Needed]
213
-
214
- ## More Information [optional]
215
-
216
- [More Information Needed]
217
-
218
- ## Dataset Card Authors [optional]
219
-
220
- [More Information Needed]
221
-
222
- ## Dataset Card Contact
223
-
224
- [More Information Needed]
 
60
 
61
  # Dataset Card for ImageNet-A
62
 
63
+ ![image](ImageNet-A.gif)
 
 
 
64
 
65
 
66
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 7450 samples.
 
92
 
93
  ### Dataset Description
94
 
95
+ ImageNet-A is a dataset of adversarially filtered images that reliably fool current ImageNet classifiers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ It contains natural, unmodified real-world examples that transfer to various unseen ImageNet models, demonstrating that these models share weaknesses with adversarially selected images. These images cause consistent classification mistakes across various models.
98
 
99
+ To create ImageNet-A, the authors first downloaded numerous images related to an ImageNet class. They then deleted the images that fixed ResNet-50 classifiers correctly predicted.
100
 
101
+ With the remaining incorrectly classified images, the authors manually selected visually clear images.
102
 
103
+ The resulting ImageNet-A dataset has ~7,500 adversarially filtered images.
104
 
105
+ The ImageNet-A dataset enables testing image classification performance when the input data distribution shifts[1]. ImageNet-A can be used to measure model robustness to distribution shift using challenging natural images.
106
 
107
+ - The images belong to 200 ImageNet classes selected to avoid overly fine-grained classes and classes with substantial overlap[1]. The classes span the most broad categories in ImageNet-1K.
108
 
109
+ - To create ImageNet-A, the authors downloaded images related to the 200 classes from sources like iNaturalist, Flickr, and DuckDuckGo[1].
110
 
111
+ - They then filtered out images that fixed ResNet-50 classifiers could correctly predict[1]. Images that fooled the classifiers were kept.
112
 
113
+ - The authors manually selected visually clear, single-class images from the remaining incorrectly classified images to include in the final dataset[1].
114
 
115
+ - The resulting dataset contains 7,500 natural, unmodified images that reliably transfer to and fool unseen models[1].
116
 
117
+ Citations:
118
+ [1] https://ar5iv.labs.arxiv.org/html/1907.07174
119
 
 
120
 
 
121
 
122
+ - **Curated by:** Jacob Steinhardt, Dawn Song
123
+ - **Funded by:** UC Berkeley
124
+ - **Shared by:** [Harpreet Sahota](https://twitter.com/DataScienceHarp), Hacker-in-Residence at Voxel51
125
+ - **Language(s) (NLP):** en
126
+ - **License:** MIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
+ ### Dataset Sources [optional]
129
 
130
+ - **Repository:** https://github.com/hendrycks/natural-adv-examples
131
+ - **Paper:** https://ar5iv.labs.arxiv.org/html/1907.07174
132
 
133
+ ## Citation
134
 
135
  **BibTeX:**
136
 
137
+ ```bibtex
138
+ @article{hendrycks2021nae,
139
+ title={Natural Adversarial Examples},
140
+ author={Dan Hendrycks and Kevin Zhao and Steven Basart and Jacob Steinhardt and Dawn Song},
141
+ journal={CVPR},
142
+ year={2021}
143
+ }
144
+ ```