jamarks commited on
Commit
abe52f3
1 Parent(s): 925a7d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -100
README.md CHANGED
@@ -12,7 +12,8 @@ tags:
12
  - fiftyone
13
  - image
14
  - image-classification
15
- dataset_summary: '
 
16
 
17
 
18
 
@@ -20,13 +21,14 @@ dataset_summary: '
20
 
21
 
22
 
23
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15588 samples.
 
24
 
25
 
26
  ## Installation
27
 
28
 
29
- If you haven''t already, install FiftyOne:
30
 
31
 
32
  ```bash
@@ -48,9 +50,9 @@ dataset_summary: '
48
 
49
  # Load the dataset
50
 
51
- # Note: other available arguments include ''max_samples'', etc
52
 
53
- dataset = fouh.load_from_hub("jamarks/Office-Home")
54
 
55
 
56
  # Launch the App
@@ -58,8 +60,6 @@ dataset_summary: '
58
  session = fo.launch_app(dataset)
59
 
60
  ```
61
-
62
- '
63
  ---
64
 
65
  # Dataset Card for Office-Home
@@ -90,7 +90,7 @@ import fiftyone.utils.huggingface as fouh
90
 
91
  # Load the dataset
92
  # Note: other available arguments include 'max_samples', etc
93
- dataset = fouh.load_from_hub("jamarks/Office-Home")
94
 
95
  # Launch the App
96
  session = fo.launch_app(dataset)
@@ -101,54 +101,22 @@ session = fo.launch_app(dataset)
101
 
102
  ### Dataset Description
103
 
104
- <!-- Provide a longer summary of what this dataset is. -->
105
 
106
 
107
 
108
- - **Curated by:** [More Information Needed]
109
- - **Funded by [optional]:** [More Information Needed]
110
- - **Shared by [optional]:** [More Information Needed]
111
  - **Language(s) (NLP):** en
112
  - **License:** other
113
 
114
- ### Dataset Sources [optional]
115
-
116
- <!-- Provide the basic links for the dataset. -->
117
-
118
- - **Repository:** [More Information Needed]
119
- - **Paper [optional]:** [More Information Needed]
120
- - **Demo [optional]:** [More Information Needed]
121
-
122
- ## Uses
123
-
124
- <!-- Address questions around how the dataset is intended to be used. -->
125
-
126
- ### Direct Use
127
-
128
- <!-- This section describes suitable use cases for the dataset. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Out-of-Scope Use
133
-
134
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
135
 
136
- [More Information Needed]
 
137
 
138
- ## Dataset Structure
139
-
140
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
141
-
142
- [More Information Needed]
143
 
144
  ## Dataset Creation
145
 
146
- ### Curation Rationale
147
-
148
- <!-- Motivation for the creation of this dataset. -->
149
-
150
- [More Information Needed]
151
-
152
  ### Source Data
153
 
154
  <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
@@ -156,75 +124,56 @@ session = fo.launch_app(dataset)
156
  #### Data Collection and Processing
157
 
158
  <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
 
159
 
160
- [More Information Needed]
161
-
162
- #### Who are the source data producers?
163
-
164
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
165
-
166
- [More Information Needed]
167
-
168
- ### Annotations [optional]
169
 
170
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
 
 
 
 
 
171
 
172
- #### Annotation process
173
 
174
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
175
 
176
- [More Information Needed]
177
-
178
- #### Who are the annotators?
179
-
180
- <!-- This section describes the people or systems who created the annotations. -->
181
-
182
- [More Information Needed]
183
-
184
- #### Personal and Sensitive Information
185
-
186
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
187
-
188
- [More Information Needed]
189
-
190
- ## Bias, Risks, and Limitations
191
-
192
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
193
-
194
- [More Information Needed]
195
-
196
- ### Recommendations
197
-
198
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
199
 
200
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
201
 
202
- ## Citation [optional]
203
 
204
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
205
 
206
  **BibTeX:**
207
 
208
- [More Information Needed]
209
-
210
- **APA:**
211
-
212
- [More Information Needed]
213
-
214
- ## Glossary [optional]
215
-
216
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
217
-
218
- [More Information Needed]
219
-
220
- ## More Information [optional]
221
 
222
- [More Information Needed]
 
 
 
 
 
223
 
224
- ## Dataset Card Authors [optional]
225
 
226
- [More Information Needed]
227
 
228
- ## Dataset Card Contact
229
 
230
- [More Information Needed]
 
12
  - fiftyone
13
  - image
14
  - image-classification
15
+ - domain-adaptation
16
+ dataset_summary: >
17
 
18
 
19
 
 
21
 
22
 
23
 
24
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15588
25
+ samples.
26
 
27
 
28
  ## Installation
29
 
30
 
31
+ If you haven't already, install FiftyOne:
32
 
33
 
34
  ```bash
 
50
 
51
  # Load the dataset
52
 
53
+ # Note: other available arguments include 'max_samples', etc
54
 
55
+ dataset = fouh.load_from_hub("Voxel51/Office-Home")
56
 
57
 
58
  # Launch the App
 
60
  session = fo.launch_app(dataset)
61
 
62
  ```
 
 
63
  ---
64
 
65
  # Dataset Card for Office-Home
 
90
 
91
  # Load the dataset
92
  # Note: other available arguments include 'max_samples', etc
93
+ dataset = fouh.load_from_hub("Voxel51/Office-Home")
94
 
95
  # Launch the App
96
  session = fo.launch_app(dataset)
 
101
 
102
  ### Dataset Description
103
 
104
+ The Office-Home dataset has been created to evaluate domain adaptation algorithms for object recognition using deep learning. It consists of images from 4 different domains: Artistic images, Clip Art, Product images and Real-World images. For each domain, the dataset contains images of 65 object categories found typically in Office and Home settings.
105
 
106
 
107
 
108
+ - **Curated by:** [Jose Eusebio](https://www.linkedin.com/in/jmeusebio)
 
 
109
  - **Language(s) (NLP):** en
110
  - **License:** other
111
 
112
+ ### Dataset Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
+ - **Homepage:** https://www.hemanthdv.org/officeHomeDataset.html
115
+ - **Paper:** [Deep Hashing Network for Unsupervised Domain Adaptation](https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper.pdf)
116
 
 
 
 
 
 
117
 
118
  ## Dataset Creation
119
 
 
 
 
 
 
 
120
  ### Source Data
121
 
122
  <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
 
124
  #### Data Collection and Processing
125
 
126
  <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
127
+ The images in the dataset were collected using a python web-crawler that crawled through several search engines and online image directories. This initial run searched for around 120 different objects and produced over 100,000 images across the different categories and domains. These images were then filtered to ensure that the desired object was in the picture. Categories were also filtered to make sure that each category had at least a certain number of images. The latest version of the dataset contains around 15,500 images from 65 different categories.
128
 
 
 
 
 
 
 
 
 
 
129
 
130
+ | Domain | Min: # | Min: # | Min: # | Acc. |
131
+ |---------|--------|-------------------------|----------------------------|------------------------|
132
+ | Art | 15 | 117 \(\times\) 85 pix. | 4384 \(\times\) 2686 pix. | 44.99 \(\pm\) 1.85 |
133
+ | Clipart | 39 | 18 \(\times\) 18 pix. | 2400 \(\times\) 2400 pix. | 53.95 \(\pm\) 1.45 |
134
+ | Product | 38 | 75 \(\times\) 63 pix. | 2560 \(\times\) 2560 pix. | 66.41 \(\pm\) 1.18 |
135
+ | Product | 23 | 88 \(\times\) 80 pix. | 6500 \(\times\) 4900 pix. | 59.70 \(\pm\) 1.04 |
136
 
137
+ Caption: Statistics for the Office-Home dataset. Min: # is the minimum number of images of each object for the specified domain. Min: Size and Max: Size are the minimum and maximum image sizes in the domain. Acc: is the classification accuracy using a linear SVM (LIBLINEAR) classifier with 5-fold cross-validation using deep features extracted from the VGG-F deep network.
138
 
139
+ The 65 object categories in the dataset are:
140
 
141
+ ```plaintext
142
+ Alarm Clock, Backpack, Batteries, Bed, Bike, Bottle, Bucket, Calculator, Calendar, Candles,
143
+ Chair, Clipboards, Computer, Couch, Curtains, Desk Lamp, Drill, Eraser, Exit Sign, Fan,
144
+ File Cabinet, Flipflops, Flowers, Folder, Fork, Glasses, Hammer, Helmet, Kettle, Keyboard,
145
+ Knives, Lamp Shade, Laptop, Marker, Monitor, Mop, Mouse, Mug, Notebook, Oven, Pan,
146
+ Paper Clip, Pen, Pencil, Postit Notes, Printer, Push Pin, Radio, Refrigerator, ruler,
147
+ Scissors, Screwdriver, Shelf, Sink, Sneakers, Soda, Speaker, Spoon, Table, Telephone,
148
+ Toothbrush, Toys, Trash Can, TV, Webcam
149
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
 
 
151
 
152
+ ## Citation
153
 
154
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
155
 
156
  **BibTeX:**
157
 
158
+ ```bibtex
159
+ @inproceedings{venkateswara2017deep,
160
+ title={Deep hashing network for unsupervised domain adaptation},
161
+ author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
162
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
163
+ pages={5018--5027},
164
+ year={2017}
165
+ }
166
+ ```
 
 
 
 
167
 
168
+ ## Fair Use Notice
169
+ This dataset contains some copyrighted material whose use has not been specifically authorized by the copyright owners.
170
+ In an effort to advance scientific research, we make this material available for academic research. We believe this constitutes a fair use of any such copyrighted material as provided for in section 107 of the US Copyright Law.
171
+ In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit for non-commercial research and educational purposes.
172
+ For more information on fair use please click here. If you wish to use copyrighted material on this site or in our dataset for purposes of your own that
173
+ go beyond non-commercial research and academic purposes, you must obtain permission directly from the copyright owner. (adapted from [Christopher Thomas](http://people.cs.pitt.edu/~chris/photographer/))
174
 
 
175
 
 
176
 
177
+ ## Dataset Card Author
178
 
179
+ [Jacob Marks](https://huggingface.co/jamarks)