Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 5,549 Bytes
9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 9887c1b ff60b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
annotations_creators: []
language: en
license: mit
size_categories:
- 1K<n<10K
task_categories:
- object-detection
task_ids: []
pretty_name: SoccerNet-V3
tags:
- fiftyone
- group
- object-detection
- sports
- tracking
- action-spotting
- game-state-recognition
dataset_summary: >

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1799
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/SoccerNet-V3")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for SoccerNet-V3
SoccerNet is a large-scale dataset for soccer video understanding. It has evolved over the years to include various tasks such as action spotting,
camera calibration, player re-identification and tracking. It is composed of 550 complete broadcast soccer games and 12 single camera games
taken from the major European leagues. SoccerNet is not only dataset, but also yearly challenges where the best teams compete at the international level.

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1799 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/SoccerNet-V3")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Language(s) (NLP):** en
- **License:** mit
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/SoccerNet
- **Paper** [SoccerNet 2023 Challenges Results](https://arxiv.org/abs/2309.06006)
- **Demo:** https://try.fiftyone.ai/datasets/soccernet-v3/samples
- **Homepage** https://www.soccer-net.org/
## Dataset Creation
Dataset Authors:
Copyright (c) 2021 holders:
- University of Liège (ULiège), Belgium.
- King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
- Marc Van Droogenbroeck (M.VanDroogenbroeck@uliege.be), Professor at the University of Liège (ULiège).
Code Contributing Authors:
- Anthony Cioppa (anthony.cioppa@uliege.be), University of Liège (ULiège), Montefiore Institute, TELIM.
- Adrien Deliège (adrien.deliege@uliege.be), University of Liège (ULiège), Montefiore Institute, TELIM.
- Silvio Giancola (silvio.giancola@kaust.edu.sa), King Abdullah University of Science and Technology (KAUST), Image and Video Understanding Laboratory (IVUL), part of the Visual Computing Center (VCC).
Supervision from:
- Bernard Ghanem, King Abdullah University of Science and Technology (KAUST).
- Marc Van Droogenbroeck, University of Liège (ULiège).
### Funding
Anthony Cioppa is funded by the FRIA, Belgium.
This work is supported by the DeepSport and TRAIL projects of the Walloon Region, at the University of Liège (ULiège), Belgium.
This work was supported by the Service Public de Wallonie (SPW) Recherche under the DeepSport project and Grant No.326 2010235 (ARIAC by https://DigitalWallonia4.ai)
This work is also supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (award327 OSR-CRG2017-3405).
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@inproceedings{Giancola_2018,
title={SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos},
url={http://dx.doi.org/10.1109/CVPRW.2018.00223},
DOI={10.1109/cvprw.2018.00223},
booktitle={2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
publisher={IEEE},
author={Giancola, Silvio and Amine, Mohieddine and Dghaily, Tarek and Ghanem, Bernard},
year={2018},
month=jun }
@misc{deliège2021soccernetv2,
title={SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos},
author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
year={2021},
eprint={2011.13367},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{cioppa2022soccernettracking,
title={SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos},
author={Anthony Cioppa and Silvio Giancola and Adrien Deliege and Le Kang and Xin Zhou and Zhiyu Cheng and Bernard Ghanem and Marc Van Droogenbroeck},
year={2022},
eprint={2204.06918},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{Cioppa2022,
title={Scaling up SoccerNet with multi-view spatial localization and re-identification},
author={Cioppa, Anthony and Deli{\`e}ge, Adrien and Giancola, Silvio and Ghanem, Bernard and Van Droogenbroeck, Marc},
journal={Scientific Data},
year={2022},
volume={9},
number={1},
pages={355},
}
```
## Dataset Card Authors
[Jacob Marks](https://huggingface.co/jamarks) |