Datasets:
Tasks:
Image-to-Image
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
File size: 2,515 Bytes
8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba 8b8eb76 10a33ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
annotations_creators: []
language: en
license: other
size_categories:
- 1K<n<10K
task_categories:
- image-to-image
task_ids: []
pretty_name: Urban100
tags:
- fiftyone
- image
- super-resolution
dataset_summary: >

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2200
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/Urban100")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for Urban100
<!-- Provide a quick summary of the dataset. -->

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2200 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/Urban100")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
The Urban100 dataset contains 100 images of urban scenes. It commonly used as a test set to evaluate the performance of super-resolution models.
- **Curated by:** Jia-Bin Huang, Abhishek Singh, Narendra Ahuja
- **Language(s) (NLP):** en
- **License:** other
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/jbhuang0604/SelfExSR
- **Paper:** https://openaccess.thecvf.com/content_cvpr_2015/papers/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.pdf
- **Demo:** https://try.fiftyone.ai/datasets/urban100/samples
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@InProceedings{Huang_2015_CVPR,
author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra},
title = {Single Image Super-Resolution From Transformed Self-Exemplars},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}
```
## Dataset Card Authors
[Jacob Marks](https://huggingface.co/jamarks)
|