Commit
•
949ede0
1
Parent(s):
4fdf0ce
Delete legacy JSON metadata (#4)
Browse files- Delete legacy JSON metadata (63312d95227c1b8ac8bf582f9431694943ac8c52)
- dataset_infos.json +0 -1
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"age_classification": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "description": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["0-1\u5c81", "1-2\u5c81", "2-3\u5c81"], "names_file": null, "id": null, "_type": "ClassLabel"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "age_classification", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33901977, "num_examples": 134852, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 9616194, "num_examples": 38318, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 4869685, "num_examples": 19323, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 48387856, "size_in_bytes": 48387856}, "topic_classification": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "description": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 18, "names": ["\u4ea7\u8925\u671f\u4fdd\u5065", "\u513f\u7ae5\u8fc7\u654f", "\u52a8\u4f5c\u53d1\u80b2", "\u5a74\u5e7c\u4fdd\u5065", "\u5a74\u5e7c\u5fc3\u7406", "\u5a74\u5e7c\u65e9\u6559", "\u5a74\u5e7c\u671f\u5582\u517b", "\u5a74\u5e7c\u8425\u517b", "\u5b55\u671f\u4fdd\u5065", "\u5bb6\u5ead\u6559\u80b2", "\u5e7c\u513f\u56ed", "\u672a\u51c6\u7236\u6bcd", "\u6d41\u4ea7\u548c\u4e0d\u5b55", "\u75ab\u82d7\u63a5\u79cd", "\u76ae\u80a4\u62a4\u7406", "\u5b9d\u5b9d\u4e0a\u706b", "\u8179\u6cfb", "\u5a74\u5e7c\u5e38\u89c1\u75c5"], "names_file": null, "id": null, "_type": "ClassLabel"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "topic_classification", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 153326538, "num_examples": 613036, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 43877443, "num_examples": 175363, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 21834951, "num_examples": 87519, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 219038932, "size_in_bytes": 219038932}, "summarization": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "summarization", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 181245403, "num_examples": 747888, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 51784189, "num_examples": 213681, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 25849900, "num_examples": 106842, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 258879492, "size_in_bytes": 258879492}, "qa": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "qa", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 188047511, "num_examples": 747888, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 53708532, "num_examples": 213681, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 26931809, "num_examples": 106842, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 268687852, "size_in_bytes": 268687852}}
|
|
|
|