File size: 53,153 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
{
    "paper_id": "I05-1020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:25:27.657488Z"
    },
    "title": "Period Disambiguation with Maxent Model",
    "authors": [
        {
            "first": "Chunyu",
            "middle": [],
            "last": "Kit",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "City University of Hong Kong",
                "location": {
                    "addrLine": "83 Tat Chee Ave",
                    "settlement": "Kowloon, Hong Kong"
                }
            },
            "email": "ctckit@cityu.edu.hk"
        },
        {
            "first": "Xiaoyue",
            "middle": [],
            "last": "Liu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "City University of Hong Kong",
                "location": {
                    "addrLine": "83 Tat Chee Ave",
                    "settlement": "Kowloon, Hong Kong"
                }
            },
            "email": "xyliu0@cityu.edu.hk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper presents our recent work on period disambiguation, the kernel problem in sentence boundary identification, with the maximum entropy (Maxent) model. A number of experiments are conducted on PTB-II WSJ corpus for the investigation of how context window, feature space and lexical information such as abbreviated and sentence-initial words affect the learning performance. Such lexical information can be automatically acquired from a training corpus by a learner. Our experimental results show that extending the feature space to integrate these two kinds of lexical information can eliminate 93.52% of the remaining errors from the baseline Maxent model, achieving an F-score of 99.8227%.",
    "pdf_parse": {
        "paper_id": "I05-1020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper presents our recent work on period disambiguation, the kernel problem in sentence boundary identification, with the maximum entropy (Maxent) model. A number of experiments are conducted on PTB-II WSJ corpus for the investigation of how context window, feature space and lexical information such as abbreviated and sentence-initial words affect the learning performance. Such lexical information can be automatically acquired from a training corpus by a learner. Our experimental results show that extending the feature space to integrate these two kinds of lexical information can eliminate 93.52% of the remaining errors from the baseline Maxent model, achieving an F-score of 99.8227%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Sentence identification is an important issue in practical natural language processing. It looks simple at first glance since there are a very small number of punctuations, namely, period (\".\"), question mark (\"?\"), and exclamation (\"!\"), to mark sentence ends in written texts. However, not all of them are consistently used as sentence ends. In particular, the use of the dot \".\" is highly ambiguous in English texts. It can be a full stop, a decimal point, or a dot in an abbreviated word, a numbering item, an email address or a ULR. It may be used for other purposes too. Below are a number of examples from PTB-II WSJ Corpus to illustrate its ambiguities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(1) Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(2) The spinoff also will compete with International Business Machines Corp. and Japan's Big Three --Hitachi Ltd., NEC Corp. and Fujitsu Ltd. Frequently, an abbreviation dot coincides with a full stop, as exemplified by \"Ltd.\" in (2) above. A number followed by a dot can be a numbering item, or simply a normal number at sentence end.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In contrast to \".\", \"!\" and \"?\" are rarely ambiguous. They are seldom used for other purposes than exclamation and question marks. Thus, the focus of sentence identification is on period disambiguation to resolve the ambiguity of \".\": Whenever a dot shows up in a text token, we need to determine whether or not it is a true period. It is a yes-no classification problem that is suitable for various kinds of machine learning technology to tackle.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Several approaches were developed for sentence splitting. These approaches can be categorized into three classes: (1) rule-based models consisting of manually constructed rules (e.g., in the form of regular expression), supplemented with abbreviation lists, proper names and other relevant lexical resources, as illustrated in [1] ; (2) machine learning algorithms, e.g., decision tree classifiers [11] , maximum entropy (Maxent) modelling [10] and neural networks [8] , among many others; and (3) syntactic methods that utilize syntactic information, e.g., [6] is based on a POS tagger. The machine learning approaches are popular, for period disambiguation is a typical classification problem for machine learning, and the training data is easily available.",
                "cite_spans": [
                    {
                        "start": 327,
                        "end": 330,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 398,
                        "end": 402,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 440,
                        "end": 444,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 465,
                        "end": 468,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 558,
                        "end": 561,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our research reported in this paper explores how context length and feature space affects the performance of the Maxent model for period disambiguation. The technical details involved in this research are introduced in Section 2, with a focus on feature selection and training algorithm. Section 3 presents experiments to show the effectiveness of context length and feature selection on learning performance. Section 4 concludes the paper with our findings: putting frequent abbreviated words or sentence-initial words into the feature space significantly enhances the learning performance, and using a three-word window context gives better performance than others in terms of the F-score. The best combination of the two kinds of lexical information achieves an F-score of 99.8227%, eliminating 93.5% remaining errors from the baseline Maxent model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The problem of period disambiguation can be formulated as a statistical classification problem. Our research is aimed at exploring the effectiveness of Maxent model [2, 12] tackling this problem when trained with various context length and feature sets.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 168,
                        "text": "[2,",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 169,
                        "end": 172,
                        "text": "12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Selection",
                "sec_num": "2"
            },
            {
                "text": "Maxent model is intended to achieve the most unbiased probabilistic distribution on the data set for training. It is also a nice framework for integrating heterogeneous information into a model for classification purpose. It has been popular in NLP community for various language processing tasks since Berger et al. [2] and Della Pietra et al. [3] presenting its theoretical basis and basic training techniques. Ratnaparkhi [9] applied it to tackle several NL ambiguity problems, including sentence boundary detection. Wallach [14] and Malouf [4] compared the effectiveness of several training algorithms for Maxent model.",
                "cite_spans": [
                    {
                        "start": 317,
                        "end": 320,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 345,
                        "end": 348,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 425,
                        "end": 428,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 528,
                        "end": 532,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 544,
                        "end": 547,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Selection",
                "sec_num": "2"
            },
            {
                "text": "There are a number of full-fledged implementations of Maxent models available from the Web. Using the OpenNLP MAXENT package from http:// maxent.sourceforge.net/, acknowledged here with gratitude, we are released from the technical details of its implementation and can concentrate on examining the effectiveness of context length and feature space on period disam-biguation. Basically, our exploration is carried out along the following working procedure: (1) prepare a set of training data in terms of the feature space we choose; (2) train the Maxent model, and test its performance with a set of testing data; (3) examine the errors in the test outcomes and adjust the feature space for the next round of training and testing towards possible improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Selection",
                "sec_num": "2"
            },
            {
                "text": "To identify sentence boundaries, a machine learner needs to learn from the training data the knowledge whether or not a dot is a period in a given context . Classification decision is based on the available contextual information. A context is the few tokens next to the target. By \"target\" we refer to the \".\" to be determined whether or not it is a period, and by \"target word\" (or \"dotted word\") we refer to the token that carries the dot in question. The dot divides the target word into prefix and suffix, both of which can be empty. Each dot has a true or false answer for whether it is a true period in a particular context, as illustrated by the following general format.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "[ preceding-words prefix . suffix following-words ] \u2192 Answer: true/false . 1Contextual information comes from all context words surrounding the target dot, including its prefix and suffix. However, instead of feeding the above contextual items to a machine learner as a number of strings for training and testing, extracting special and specific features from them for the training is expected to achieve more effective results. To achieve a learning model as unbiased as possible, we try to extract as many features as possible from the context words, and let the training algorithm to determine their significance. The main cost of using a large feature set is the increase of training time. However, this may be paid off by giving the learner a better chance to achieve a better model. The feature set for a normal context word that we have developed through several rounds of experiments along the above working procedure are presented in Table 1 . Basically, we extract from a word all features that we can observe from its text form. For feature extraction, this set is applied equally, in a principled way, to all context words. The feature set for both parts of a target word is highly similar to that for a context word, except for a few specific to prefix and/or suffix, as given in Table 2 , of 13 features in total. The data entry for a given dot, for either training or testing, consists of all such features from its target word and each of its context words. Given a context window of three tokens, among which one is target word, there are 2\u00d78+13=29 features, plus an answer, in each data entry for training. After feature extraction, each data entry originally in the form of (1) is turned into a more general form for machine learning, as shown in (2) below, consisting of a feature value vector and an answer.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 943,
                        "end": 950,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1293,
                        "end": 1300,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f :[f 1 = v 1 , f 2 = v 2 , f 3 = v 3 , \u2022 \u2022 \u2022 , f n = v n ] \u2192 a: true/false .",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "Accordingly, the Maxent model used in our experiments has the following distribution in the exponential form:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(a|f ) = 1 Z(f ) exp( i \u03bb i \u03b4(f i , a)) ,",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "where \u03bb i is a parameter to be estimated for each i through training, the feature function \u03b4 i (f i , a) = v i for the feature f i in a data entry f \u2192 a, and the normalization factor",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Z(f ) = a exp( i \u03bb i \u03b4(f i , a)) .",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Context and Features",
                "sec_num": "2.1"
            },
            {
                "text": "In addition to the above features, other types of contextual information can be helpful too. For example, abbreviated words like \"Dr.\", \"Mr.\" and \"Prof.\" may give a strong indication that the dot they carry is very unlikely to be a period. They may play the role of counter-examples. Another kind of useful lexical resource is sentence-initial words, e.g., \"The\", \"That\" and \"But\", which give a strong indication that a preceding dot is very likely to be a true period. In order to integrate these two kinds of lexical resource into the Maxent model, we introduce two multi-valued features, namely, isAbbr and isSentInit, for the target word and its following word, respectively. They are both multivalued feature function. A list of abbreviated words and a list of sentence-initial words can be easily compiled from a training corpus. Theoretically, the larger the lists are, the better the learning performance could be. Our experiments, to be reported in the next section, show, however, that this is not true, although using the most frequent words in the two lists up to a certain number does lead to a significant improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abbreviation List and Sentence-Initial Words",
                "sec_num": "2.2"
            },
            {
                "text": "The corpus used for our experiments is the PTB-II WSJ corpus, a refined version of PTB [5] . It is particularly suitable for our research purpose. In contrast to BNC and Brown corpus, the WSJ corpus indeed contains many more dots used in different ways for various purposes. Sentence ends are clearly marked in its POS tagged version, although a few mistakes need manual correction. Among 53K sentences from the corpus, 49K end with \".\". This set of data is divided into two for training and testing by the ratio of 2:1. The baseline performance by brute-force guess of any dot as a period is 65.02% over the entire set of data.",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 90,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": "3.1"
            },
            {
                "text": "Our first experiment is to train a Maxent model on the training set with a three-word context window in terms of the features in Tables 1 and 2 Table 3 . It is the baseline performance of the Maxent model. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 129,
                        "end": 143,
                        "text": "Tables 1 and 2",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 144,
                        "end": 151,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Baseline Learning Performance",
                "sec_num": "3.2"
            },
            {
                "text": "To examine how context words affect the learning performance, we carry out a number of experiments with context windows of various size. The experimental results are presented in Fig. 1, where x stands for the position of target word and 1 for a context word in use. For example, 01x10 represents a context window consisting of a target word, its preceding and following words. Each such window is itself a context type. We can observe from the results that (1) the features extracted from the target word itself already lead the Maxent model to an F-score beyond 92%, (2) the context words preceding the target word are less effective, in general, than those following the target, and (3) combining context words on both sides outperforms those on only one side. The best three context types and the correspondent performance are presented in Table 4 . Since they are more effective than others, the experiments to test the effectiveness of abbreviated words and sentence-initial words are based on them. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 179,
                        "end": 192,
                        "text": "Fig. 1, where",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 844,
                        "end": 851,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Effectiveness of Context Window",
                "sec_num": "3.3"
            },
            {
                "text": "Information about whether a target word is an abbreviation plays a critical role in determining whether a dot is truly a period. To examine the significance of such information, an abbreviation list is acquired from the training data by dotted word collection, and sorted in terms of the difference of each item's occurrences in the middle and at the end of a sentence. It is assumed that the greater this difference is, the more significant a dotted word would be as a counter-example. In total, 469 such words are acquired, among which many are not really abbreviated words. A series of experiments are then conducted by adding the next 50 most frequent dotted words to the abbreviation list for model training each time. To utilize such lexical resource, a multi-valued feature isAbbr is introduced to the feature set to indicate whether a target word is in the abbreviation list and what it is. That is, all words in the list actually play a role equivalent to individual bi-valued features, under the umbrella of this new feature. The outcomes from the experiments are presented in Fig. 2 , showing that performance enhancement reaches rapidly to the top around 150. The performance of the three best context types at this point is given in Table 5 , indicating that an abbreviation list of 150 words leads to an enhancement of 1.99-2.43 percentage points, in comparison to Table 4 . This enhancement is very significant at this performance level. Beyond this point, the performance goes down slightly.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1087,
                        "end": 1093,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1246,
                        "end": 1253,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1379,
                        "end": 1386,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Effectiveness of Abbreviated Words",
                "sec_num": "3.4"
            },
            {
                "text": "In a similar way, we carry out a series of experiments to test the effectiveness of sentence-initial words. In total, 4190 such words (word types) are collected from the beginning of all sentences in the training corpus. Every time the next 200 most frequent words are added to the sentence-initial word list for training, with the aid of another multi-valued feature isSentInit for the context word immediately following the target word.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Effectiveness of Sentence-Initial Words",
                "sec_num": "3.5"
            },
            {
                "text": "Experimental outcomes are presented in Fig. 3 , showing that the performance maintains roughly at the same level when the list grows. Until the very end, when those most infrequent (or untypical) sentence-initial words are added, the performance drops rapidly. The numbers of sentence-initial words leading to the best performance with various context types are presented in Table 6 . This list of words lead to a significant performance enhancement of 0.79-1.18 percentage points, in comparison to Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 45,
                        "text": "Fig. 3",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 375,
                        "end": 382,
                        "text": "Table 6",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 499,
                        "end": 506,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Effectiveness of Sentence-Initial Words",
                "sec_num": "3.5"
            },
            {
                "text": "Through the experiments reported above we find the optimal size of abbreviation list and sentence-initial words, both in the order of their frequency ranks, in each context type of our interests. The straightforward combination of these two lists in terms of these optimal sizes leads to almost no difference from using abbreviation list only, as presented in Table 7 . To explore the optimal combination of the two lists, a series of experiments are carried out near each list's optimal size. The results are presented in Table 8 , showing that the best combination is around 200 words from each list and any deviation from this point would lead to observable performance declination. The best performance at this optimal point is 99.8227% F-score, achieved with the 01x10 context type, which is significantly better than the best performance using any single list of the two.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 360,
                        "end": 367,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 523,
                        "end": 530,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Combination of Two Lists",
                "sec_num": "3.6"
            },
            {
                "text": "Comparing to the baseline performance of the Maxent model in Table 4 , we can see that this improvement increases only 99.8227 -97.2623 = 2.5604 percentage points. Notice, however, that it is achieved near the ceiling level. Its particular significance lies in the fact that 99.8227\u221297.2623 100\u221297.2623 = 93.52% remaining errors from the baseline model are further eliminated by this combination of the two lists, both of which are of a relatively small size.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 61,
                        "end": 68,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Combination of Two Lists",
                "sec_num": "3.6"
            },
            {
                "text": "We have presented in the above sections our recent investigation into how context window, feature space and simple lexical resources like abbreviation list and sentence-initial words affect the performance of the Maxent model on period disambiguation, the kernel problem in sentence identification. Our experiments on PTB-II WSJ corpus suggest the following findings: (1) the target word itself provides most useful information for identifying whether or not the dot it carries is a true period, achieving an F-score beyond 92%; (2) unsurprisingly, the most useful context words are the two words next to the target word, and the context words to its right is more informative in general than those to its left; and (3) extending the feature space to utilize lexical information from the most frequent 200 abbreviated words and sentence-initial words, all of which can be straightforwardly collected from the training corpus, can eliminate 93.52% remaining errors from the baseline model in the open test, achieving an F-score of 99.8227%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "4"
            },
            {
                "text": "R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 223-232, 2005. c Springer-Verlag Berlin Heidelberg 2005",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The work described in this paper was supported by the Research Grants Council of HKSAR, China, through the CERG grant 9040861 (CityU 1318/03H). We wish to thank Alex Fang for his help.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Mitre: Description of the alembic system used for muc-6",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Aberdeen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Burger",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Day",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hirschman",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Robinson",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Vilain",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Proceedings of the Sixth Message Understanding Conference (MUC-6)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P., and Vilain, M.: Mitre: Description of the alembic system used for muc-6. In Proceedings of the Sixth Message Understanding Conference (MUC-6), Columbia, Maryland. Morgan Kaufmann (1995)",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Pietra",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "D"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--71",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berger, A., Pietra, S.D., and Pietra, V.D.: A maximum entropy approach to natural language processing. Computational linguistics. (1996) 22(1):39-71",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Inducing features of random fields",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Transactions Pattern Analysis and Machine Intelligence",
                "volume": "19",
                "issue": "4",
                "pages": "380--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Della Pietra, S., Della Pietra, V., and Lafferty, J.: Inducing features of ran- dom fields. Transactions Pattern Analysis and Machine Intelligence. (1997) 19(4): 380-393",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A comparison of algorithms for maximum entropy parameter estimation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Malouf",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of CoNLL-2002",
                "volume": "",
                "issue": "",
                "pages": "49--55",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malouf, R.: A comparison of algorithms for maximum entropy parameter estima- tion. In Proceedings of CoNLL-2002, Taipei, Taiwan (2002) 49-55",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Building a large annotated corpus of english: The penn treebank",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "313--329",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marcus, M.P., Santorini, B., and Marcinkiewicz, M.A.: Building a large annotated corpus of english: The penn treebank. Computational Linguistics. (1993) 19(2): 313-329",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Tagging sentence boundaries",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mikheev",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the First Meeting of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mikheev, A.: Tagging sentence boundaries. In Proceedings of the First Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL'2000). (2000)",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Machine Learning",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Adaptive Multilingual Sentence Boundary Disambiguation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Hearst",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics",
                "volume": "23",
                "issue": "2",
                "pages": "241--267",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Palmer, D.D. and Hearst, M.A.: Adaptive Multilingual Sentence Boundary Disam- biguation. Computational Linguistics. (1997) 23(2):241-267",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Maximum entropy models for natural language ambiguity resolution",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ratnaparkhi",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ratnaparkhi, A.: Maximum entropy models for natural language ambiguity resolu- tion. Ph.D. dissertation, University of Pennsylvania (1998)",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A maximum entropy approach to identifying sentence boundaries",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Reynar",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ratnaparkhi",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the Fifth Conference on Applied Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Reynar, J.C. and Ratnaparkhi, A.: A maximum entropy approach to identifying sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural Language Processing, Washington, D.C. (1997)",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Some applications of tree-based modelling to speech and language indexing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "D"
                        ],
                        "last": "Riley",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Proceedings of the DARPA Speech and Natural Language Workshop",
                "volume": "",
                "issue": "",
                "pages": "339--352",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Riley, M.D.: Some applications of tree-based modelling to speech and language indexing. In Proceedings of the DARPA Speech and Natural Language Workshop. Morgan Kaufmann (1989) 339-352",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Adaptive statistical language modeling: A Maximum Entropy Approach",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rosenfeld",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rosenfeld, R.: Adaptive statistical language modeling: A Maximum Entropy Ap- proach. PhD thesis CMU-CS-94. (1994)",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Efficient training of conditional random fields. Master's thesis",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "M"
                        ],
                        "last": "Wallach",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wallach, H.M.: Efficient training of conditional random fields. Master's thesis, Uni- versity of Edinburgh (2002)",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "The government's construction spending figures contrast with a report issued earlier in the week by McGraw-Hill Inc.'s F.W. Dodge Group."
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Effectiveness of context window"
            },
            "FIGREF2": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Effectiveness of abbreviation list"
            },
            "FIGREF3": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Effectiveness of sentence-initial words"
            },
            "TABREF0": {
                "content": "<table><tr><td colspan=\"2\">Feature Description</td><td>Example</td></tr><tr><td>IsCap</td><td>Starting with a capital letter</td><td>On</td></tr><tr><td colspan=\"2\">IsRpunct Ending with a punctuation</td><td>Calgary,</td></tr><tr><td colspan=\"2\">IsLpunct Starting with a punctuation</td><td>''We</td></tr><tr><td colspan=\"2\">IsRdot Ending with a dot</td><td>billions.</td></tr><tr><td colspan=\"2\">IsRcomma Ending with a comma</td><td>Moreover,</td></tr><tr><td colspan=\"2\">IsEword An English word</td><td>street</td></tr><tr><td colspan=\"2\">IsDigit An numeric item</td><td>25%, 36</td></tr><tr><td colspan=\"3\">IsAllCap Consisting of only capital letters (&amp; dots) WASHINGTON</td></tr></table>",
                "html": null,
                "text": "Features for a context word",
                "type_str": "table",
                "num": null
            },
            "TABREF1": {
                "content": "<table><tr><td>Feature</td><td>Description</td><td>Example</td></tr><tr><td colspan=\"2\">IsHiphenated Containing a dash</td><td>non-U.S.</td></tr><tr><td>IsAllCap</td><td colspan=\"2\">Consisting of only capital letters (&amp; dots) D.C.</td></tr><tr><td>IsMultiDot</td><td>Containing more than one dot</td><td>N.Y.,</td></tr><tr><td colspan=\"2\">prefixIsNull A null prefix</td><td>.270</td></tr><tr><td colspan=\"2\">prefixIsRdigit Ending with a digit</td><td>45.6</td></tr><tr><td colspan=\"2\">prefixIsRpunct Ending with a punctuation</td><td>0.2%.</td></tr><tr><td colspan=\"2\">prefixIsEword An English word</td><td>slightly.</td></tr><tr><td>prefixIsCap</td><td>Starting with a capital letter</td><td>Co.</td></tr><tr><td colspan=\"2\">suffixIsNull A null suffix</td><td>Mr.</td></tr><tr><td colspan=\"2\">suffixIsLdigit Starting with a digit</td><td>78.99</td></tr><tr><td colspan=\"2\">suffixIsLpunct Starting with a punctuation</td><td>Co.'s</td></tr><tr><td colspan=\"2\">suffixIsRword Ending with a word</td><td>Calif.-based</td></tr><tr><td>suffixIsCap</td><td>Starting with a capital letter</td><td>B.A.T</td></tr></table>",
                "html": null,
                "text": "Features for a target word",
                "type_str": "table",
                "num": null
            },
            "TABREF2": {
                "content": "<table><tr><td colspan=\"3\">Precision (%) Recall (%) F-score (%)</td></tr><tr><td>97.55</td><td>96.97</td><td>97.26</td></tr></table>",
                "html": null,
                "text": "Baseline learning performance of Maxent model",
                "type_str": "table",
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Context Type</td><td>01x10</td><td>11x10</td><td>11x11</td></tr><tr><td>F-score (%)</td><td colspan=\"3\">97.2623 97.6949 97.6909</td></tr></table>",
                "html": null,
                "text": "Outperforming context types and their performance",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "content": "<table><tr><td colspan=\"2\">Context Type 01x10</td><td>11x10</td><td>11x11</td></tr><tr><td>F-score (%)</td><td colspan=\"3\">99.6908 99.6908 99.6815</td></tr><tr><td>Increase</td><td colspan=\"3\">+2.4285 +1.9959 +1.9906</td></tr></table>",
                "html": null,
                "text": "Effectiveness of abbreviation list",
                "type_str": "table",
                "num": null
            },
            "TABREF5": {
                "content": "<table><tr><td colspan=\"2\">Context Type 01x10</td><td>11x10</td><td>11x11</td></tr><tr><td>List size</td><td>1200</td><td>1000</td><td>1200</td></tr><tr><td>F-score (%)</td><td colspan=\"3\">98.4307 98.4868 98.5463</td></tr><tr><td>Increase</td><td colspan=\"3\">+1.1784 +0.7919 +0.8554</td></tr></table>",
                "html": null,
                "text": "Performance enhancement by sentence-initial words",
                "type_str": "table",
                "num": null
            },
            "TABREF6": {
                "content": "<table><tr><td>Context Type</td><td>01x10</td><td>11x10</td><td>11x11</td></tr><tr><td colspan=\"2\">Sentence-initial words 1200</td><td>1000</td><td>1200</td></tr><tr><td>Abbreviation list</td><td>150</td><td>150</td><td>150</td></tr><tr><td>F-score (%)</td><td colspan=\"3\">99.7064 99.7156 99.6912</td></tr></table>",
                "html": null,
                "text": "Performance from simple combination of the two lists Performance from various size combination of the two lists",
                "type_str": "table",
                "num": null
            }
        }
    }
}