File size: 72,704 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
{
    "paper_id": "I05-1028",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:26:39.835521Z"
    },
    "title": "Assigning Polarity Scores to Reviews Using Machine Learning Techniques",
    "authors": [
        {
            "first": "Daisuke",
            "middle": [],
            "last": "Okanohara",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Tokyo",
                "location": {
                    "addrLine": "7-3-1, Bunkyo-ku",
                    "postCode": "113-0013",
                    "settlement": "Hongo, Tokyo"
                }
            },
            "email": ""
        },
        {
            "first": "Jun",
            "middle": [
                "'"
            ],
            "last": "Ichi Tsujii",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Tokyo",
                "location": {
                    "addrLine": "7-3-1, Bunkyo-ku",
                    "postCode": "113-0013",
                    "settlement": "Hongo, Tokyo"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We propose a novel type of document classification task that quantifies how much a given document (review) appreciates the target object using not binary polarity (good or bad) but a continuous measure called sentiment polarity score (sp-score). An sp-score gives a very concise summary of a review and provides more information than binary classification. The difficulty of this task lies in the quantification of polarity. In this paper we use support vector regression (SVR) to tackle the problem. Experiments on book reviews with five-point scales show that SVR outperforms a multi-class classification method using support vector machines and the results are close to human performance.",
    "pdf_parse": {
        "paper_id": "I05-1028",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We propose a novel type of document classification task that quantifies how much a given document (review) appreciates the target object using not binary polarity (good or bad) but a continuous measure called sentiment polarity score (sp-score). An sp-score gives a very concise summary of a review and provides more information than binary classification. The difficulty of this task lies in the quantification of polarity. In this paper we use support vector regression (SVR) to tackle the problem. Experiments on book reviews with five-point scales show that SVR outperforms a multi-class classification method using support vector machines and the results are close to human performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In recent years, discussion groups, online shops, and blog systems on the Internet have gained popularity and the number of documents, such as reviews, is growing dramatically. Sentiment classification refers to classifying reviews not by their topics but by the polarity of their sentiment (e.g, positive or negative). It is useful for recommendation systems, fine-grained information retrieval systems, and business applications that collect opinions about a commercial product.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, sentiment classification has been actively studied and experimental results have shown that machine learning approaches perform well [13, 11, 10, 20] . We argue, however, that we can estimate the polarity of a review more finely. For example, both reviews A and B in Table 1 would be classified simply as positive in binary classification. Obviously, this classification loses the information about the difference in the degree of polarity apparent in the review text.",
                "cite_spans": [
                    {
                        "start": 143,
                        "end": 147,
                        "text": "[13,",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 148,
                        "end": 151,
                        "text": "11,",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 152,
                        "end": 155,
                        "text": "10,",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 156,
                        "end": 159,
                        "text": "20]",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 277,
                        "end": 284,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose a novel type of document classification task where we evaluate reviews with scores like five stars. We call this score the sentiment polarity score (sp-score). If, for example, the range of the score is from one to five, we could give five to review A and four to review B. This task, namely, ordered multi-class classification, is considered as an extension of binary sentiment classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we describe a machine learning method for this task. Our system uses support vector regression (SVR) [21] to determine the sp-scores of (1,. ..,5) Review A I believe this is very good and a \"must read\" plus 5 I can't wait to read the next book in the series. Review B This book is not so bad. plus 4 You may find some interesting points in the book. reviews. This method enables us to annotate sp-scores for arbitrary reviews such as comments in bulletin board systems or blog systems. We explore several types of features beyond a bag-of-words to capture key phrases to determine sp-scores: n-grams and references (the words around the reviewed object).",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 120,
                        "text": "[21]",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 151,
                        "end": 155,
                        "text": "(1,.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We conducted experiments with book reviews from amazon.com each of which had a five-point scale rating along with text. We compared pairwise support vector machines (pSVMs) and SVR and found that SVR outperformed better than pSVMs by about 30% in terms of the squared error, which is close to human performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent studies on sentiment classification focused on machine learning approaches. Pang [13] represents a review as a feature vector and estimates the polarity with SVM, which is almost the same method as those for topic classification [1] . This paper basically follows this work, but we extend this task to a multi-order classification task.",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 92,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 236,
                        "end": 239,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "There have been many attempts to analyze reviews deeply to improve accuracy. Mullen [10] used features from various information sources such as references to the \"work\" or \"artist\", which were annotated by hand, and showed that these features have the potential to improve the accuracy. We use reference features, which are the words around the fixed review target word (book), while Mullen annotated the references by hand.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 88,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Turney [20] used semantic orientation, which measures the distance from phrases to \"excellent\" or \"poor\" by using search engine results and gives the word polarity. Kudo [8] developed decision stumps, which can capture substructures embedded in text (such as word-based dependency), and suggested that subtree features are important for opinion/modality classification.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 11,
                        "text": "[20]",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 170,
                        "end": 173,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Independently of and in parallel with our work, two other papers consider the degree of polarity for sentiment classification. Koppel [6] exploited a neutral class and applied a regression method as ours. Pang [12] applied a metric labeling method for the task. Our work is different from their works in several respects. We exploited square errors instead of precision for the evaluation and used five distinct scores in our experiments while Koppel used three and Pang used three/four distinct scores in their experiments.",
                "cite_spans": [
                    {
                        "start": 134,
                        "end": 137,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 210,
                        "end": 214,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this section we present a novel task setting where we predict the degree of sentiment polarity of a review. We first present the definition of sp-scores and the task of assigning them to review documents. We then explain an evaluation data set. Using this data set, we examined the human performance for this task to clarify the difficulty of quantifying polarity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analyzing Reviews with Polarity Scores",
                "sec_num": "3"
            },
            {
                "text": "We extend the sentiment classification task to the more challenging task of assigning rating scores to reviews. We call this score the sp-score. Examples of sp-scores include five-star and scores out of 100. Let sp-scores take discrete values 1 in a closed interval [min...max]. The task is to assign correct sp-scores to unseen reviews as accurately as possible. Let\u0177 be the predicted sp-score and y be the sp-score assigned by the reviewer. We measure the performance of an estimator with the mean square error:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Polarity Scores",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 n n i=1 (\u0177 i \u2212 y i ) 2 ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Sentiment Polarity Scores",
                "sec_num": "3.1"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Polarity Scores",
                "sec_num": "3.1"
            },
            {
                "text": "(x 1 , y 1 ), ..., (x n , y n )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Polarity Scores",
                "sec_num": "3.1"
            },
            {
                "text": "is the test set of reviews. This measure gives a large penalty for large mistakes, while ordered multi-class classification gives equal penalties to any types of mistakes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Polarity Scores",
                "sec_num": "3.1"
            },
            {
                "text": "We used book reviews on amazon.com for evaluation data 2 3 . Each review has stars assigned by the reviewer. The number of stars ranges from one to five:",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 58,
                        "text": "2 3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Data",
                "sec_num": "3.2"
            },
            {
                "text": "one indicates the worst and five indicates the best. We converted the number of stars into sp-scores {1, 2, 3, 4, 5} 4 . Although each review may include several paragraphs, we did not exploit paragraph information. From these data, we made two data sets. The first was a set of reviews for books in the Harry Potter series (Corpus A). The second was a set of reviews for books of arbitrary kinds (Corpus B). It was easier to predict sp-scores for Corpus A than Corpus B because Corpus A books have a smaller vocabulary and each review was about twice as large. To create a data set with a uniform score distribution (the effect of skewed class distributions is out of the scope of this paper), we selected 330 reviews per sp-score for Corpus A and 280 reviews per sp-score for Corpus B 5 . Table 2 shows the number of words and sentences in the corpora. There is no significant difference in the average number of words/sentences among different sp-scores. ",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 118,
                        "text": "4",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 791,
                        "end": 798,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Data",
                "sec_num": "3.2"
            },
            {
                "text": "We treat the sp-scores assigned by the reviewers as correct answers. However, the content of a review and its sp-score may not be related. Moreover, sp-scores may vary depending on the reviewers. We examined the universality of the sp-score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Experiments: Human Performance for Assigning Sp-scores",
                "sec_num": "3.3"
            },
            {
                "text": "We asked two researchers of computational linguistics independently to assign an sp-score to each review from Corpus A. We first had them learn the relationship between reviews and sp-scores using 20 reviews. We then gave them 100 reviews with uniform sp-score distribution as test data. Table 3 shows the results in terms of the square error. The Random row shows the performance achieved by random assignment, and the All3 row shows the performance achieved by assigning 3 to all the reviews. These results suggest that sp-scores would be estimated with 0.78 square error from only the contents of reviews. Table 4 shows the distribution of the estimated sp-scores and correct spscores. In the table we can observe the difficulty of this task: the precise quantification of sp-scores. For example, human B tended to overestimate the sp-score as 1 or 5. We should note that if we consider this task as binary classification by treating the reviews whose sp-scores are 4 and 5 as positive examples and those with 1 and 2 as negative examples (ignoring the reviews whose spscores are 3), the classification precisions by humans A and B are 95% and 96% respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 288,
                        "end": 295,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 609,
                        "end": 616,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Preliminary Experiments: Human Performance for Assigning Sp-scores",
                "sec_num": "3.3"
            },
            {
                "text": "This section describes a machine learning approach to predict the sp-scores of review documents. Our method consists of the following two steps: extraction of feature vectors from reviews and estimation of sp-scores by the feature vectors. The first step basically uses existing techniques for document classification. On the other hand, the prediction of sp-scores is different from previous studies because we consider ordered multi-class classification, that is, each sp-score has its own class and the classes are ordered. Unlike usual multi-class classification, large mistakes in terms of the order should have large penalties. In this paper, we discuss two methods of estimating sp-scores: pSVMs and SVR.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Assigning Sp-scores to Reviews",
                "sec_num": "4"
            },
            {
                "text": "We represent a review as a feature vector. Although this representation ignores the syntactic structure, word positions, and the order of words, it is known to work reasonably well for many tasks such as information retrieval and document classification. We use binary, tf, and tf-idf as feature weighting methods [15] . The feature vectors are normalized to have L 2 norm 1.",
                "cite_spans": [
                    {
                        "start": 314,
                        "end": 318,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Review Representation",
                "sec_num": "4.1"
            },
            {
                "text": "Support vector regression (SVR) is a method of regression that shares the underlying idea with SVM [3, 16] . SVR predicts the sp-score of a review by the following regression:",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 102,
                        "text": "[3,",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 103,
                        "end": 106,
                        "text": "16]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f : R n \u2192 R, y = f (x) = w \u2022 x + b.",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "SVR uses an -insensitive loss function. This loss function means that all errors inside the cube are ignored. This allows SVR to use few support vectors and gives generalization ability. Given a training set, (x 1 , y 1 ), ...., (x n , y n ), parameters w and b are determined by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "minimize 1 2 w \u2022 w + C n i=1 (\u03be i + \u03be * i ) subject to ( w \u2022 x i + b) \u2212 y i \u2264 + \u03be i y i \u2212 ( w \u2022 x i + b) \u2264 + \u03be * i \u03be ( * ) i \u2265 0 i = 1, ..., n.",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "The factor C > 0 is a parameter that controls the trade-off between training error minimization and margin maximization. The loss in training data increases as C becomes smaller, and the generalization is lost as C becomes larger. Moreover, we can apply a kernel-trick to SVR as in the case with SVMs by using a kernel function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "This approach captures the order of classes and does not suffer from data sparseness. We could use conventional linear regression instead of SVR [4] . But we use SVR because it can exploit the kernel-trick and avoid over-training. Another good characteristic of SVR is that we can identify the features contributing to determining the sp-scores by examining the coefficients (w in (2)), while pSVMs does not give such information because multiple classifiers are involved in determining final results. A problem in this approach is that SVR cannot learn non-linear regression. For example, when given training data are (x = 1, y = 1), (x = 2, y = 2), (x = 3, y = 8), SVR cannot perform regression correctly without adjusting the feature values.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 148,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Support Vector Regression",
                "sec_num": "4.2"
            },
            {
                "text": "We apply a multi-class classification approach to estimating sp-scores. pSVMs [7] considers each sp-score as a unique class and ignores the order among the classes. Given reviews with sp-scores {1, 2, .., m}, we construct m \u2022 (m \u2212 1)/2 SVM classifiers for all the pairs of the possible values of sp-scores. The classifier for a sp-score pair (avsb) assigns the sp-score to a review with a or b. The class label of a document is determined by majority voting of the classifiers. Ties in the voting are broken by choosing the class that is closest to the neutral sp-score (i.e, (1 + m)/2).",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 81,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pairwise Support Vector Machines",
                "sec_num": "4.3"
            },
            {
                "text": "This approach ignores the fact that sp-scores are ordered, which causes the following two problems. First, it allows large mistakes. Second, when the number of possible values of the sp-score is large (e.g, n > 100), this approach suffers from the data sparseness problem. Because pSVMs cannot employ examples that have close sp-scores (e.g, sp-score = 50) for the classification of other sp-scores (e.g, the classifier for a sp-score pair (51vs100)).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pairwise Support Vector Machines",
                "sec_num": "4.3"
            },
            {
                "text": "Previous studies [9, 2] suggested that complex features do not work as expected because data become sparse when such features are used and a bag-of-words words in a sentence including \"book\" (I) (can't) ... (series) aroundbook words near \"book\" within two words. (the) (next) (in) (the) approach is enough to capture the information in most reviews. Nevertheless, we observed that reviews include many chunks of words such as \"very good\" or \"must buy\" that are useful for estimating the degree of polarity. We confirmed this observation by using n-grams. Since the words around the review target might be expected to influence the whole sp-score more than other words, we use these words as features. We call these features reference. We assume the review target is only the word \"book\", and we use \"inbook\" and \"aroundbook\" features. The \"inbook\" features are the words appear in the sentences which include the word \"book\". The \"around book\" are the words around the word \"book\" within two words. Table 5 summarizes the feature list for the experiments.",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 20,
                        "text": "[9,",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 21,
                        "end": 23,
                        "text": "2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 999,
                        "end": 1006,
                        "text": "Table 5",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Features Beyond Bag-of-Words",
                "sec_num": "4.4"
            },
            {
                "text": "We performed two series of experiments. First, we compared pSVMs and SVR. Second, we examined the performance of various features and weighting methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We used Corpus A/B introduced in Sec. 3.2 for experiment data. We removed all HTML tags and punctuation marks beforehand. We also applied the Porter stemming method [14] to the reviews.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 169,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We divided these data into ten disjoint subsets, maintaining the uniform class distribution. All the results reported below are the average of ten-fold crossvalidation. In SVMs and SVR, we used SVMlight 6 with the quadratic polynomial kernel K(x, z) = ( x \u2022 z + 1) 2 and set the control parameter C to 100 in all the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We compared pSVMs and SVR to see differences in the properties of the regression approach compared with those of the classification approach. Both pSVMs and SVR used unigram/tf-idf to represent reviews. Table 6 shows the square error results for SVM, SVR and a simple regression (least square error) method for Corpus A/B. These results indicate that SVR outperformed SVM in terms of the square error and suggests that regression methods avoid large mistakes by taking account of the fact that sp-scores are ordered, while pSVMs does not. We also note that the result of a simple regression method is close to the result of SVR with a linear kernel. Figure 1 shows the distribution of estimation results for humans (top left: human 1, top right: human 2), pSVMs (below left), and SVR (below right). The horizontal axis shows the estimated sp-scores and the vertical axis shows the correct sp-scores. Color density indicates the number of reviews. These figures suggest that pSVMs and SVR could capture the gradualness of sp-scores better than humans could. They also show that pSVMs cannot predict neutral sp-scores well, while SVR can do so well.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 203,
                        "end": 210,
                        "text": "Table 6",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 650,
                        "end": 658,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison of pSVMs and SVR",
                "sec_num": "5.1"
            },
            {
                "text": "We compared the different features presented in Section 4.4 and feature weighting methods. First we compared different weighting methods. We used only unigram features for this comparison. We then compared different features. We used only tf-idf weighting methods for this comparison. Table 7 summarizes the comparison results of different feature weighting methods. The results show that tf-idf performed well on both test corpora. We should note that simple representation methods, such as binary or tf, give comparable results to tf-idf, which indicates that we can add more complex features without considering the scale of feature values. For example, when we add word-based dependency features, we have some difficulty in adjusting these feature values to those of unigrams. But we could use these features together in binary weighting methods. Table 8 summarizes the comparison results for different features. For Corpus A, unigram + bigram and unigram + trigram achieved high performance. The performance of unigram + inbook was not good, which is contrary to our intuition that the words that appear around the target object are more important than others. For Corpus B, the results was different, that is, n-gram features could not predict the sp-scores well. This is because the variety of words/phrases was much larger than in Corpus A and n-gram features may have suffered from the data sparseness problem. We should note that these feature settings are too simple, and we cannot accept the result of reference or target object (inbook /aroundbook ) directly.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 285,
                        "end": 292,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 851,
                        "end": 858,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Comparison of Different Features",
                "sec_num": "5.2"
            },
            {
                "text": "Note that the data used in the preliminary experiments described in Section 3.3 are a part of Corpus A. Therefore we can compare the results for humans with those for Corpus A in this experiment. The best result by the machine learning approach (0.89) was close to the human results (0.78).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison of Different Features",
                "sec_num": "5.2"
            },
            {
                "text": "To analyze the influence of n-gram features, we used the linear kernel k(x, z):= x \u2022 z in SVR training. We used tf-idf as feature weighting. We then examined each coefficient of regression. Since we used the linear kernel, the coefficient value of SVR showed the polarity of a single feature, that is, this value expressed how much the occurrence of a feature affected the sp-score. Tables 9 shows the coefficients resulting from the training of SVR. These results show that neutral polarity words themselves, such as \"all\" and \"age\", will affect the overall sp-scores of reviews with other neutral polarity words, such as, \"all ag (age)\", \"can't wait\", \"on (one) star\", and \"not interest\".",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 383,
                        "end": 391,
                        "text": "Tables 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Comparison of Different Features",
                "sec_num": "5.2"
            },
            {
                "text": "We generated learning curves to examine the effect of the size of training data on the performance. Figure 2 shows the results of a classification task using unigram /tf-idf to represent reviews. The results suggest that the performance can still be improved by increasing the training data. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 100,
                        "end": 108,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Learning Curve",
                "sec_num": "5.3"
            },
            {
                "text": "In this paper, we described a novel task setting in which we predicted sp-scores -degree of polarity -of reviews. We proposed a machine learning method using SVR to predict sp-scores. We compared two methods for estimating sp-scores: pSVMs and SVR. Experimental results with book reviews showed that SVR performed better in terms of the square error than pSVMs by about 30%. This result agrees with our intuition that pSVMs does not consider the order of sp-scores, while SVR captures the order of sp-scores and avoids high penalty mistakes. With SVR, spscores can be estimated with a square error of 0.89, which is very close to the square error achieved by human (0.78).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We examined the effectiveness of features beyond a bag-of-words and reference features (the words around the reviewed objects.) The results suggest that n-gram features and reference features contribute to improve the accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "As the next step in our research, we plan to exploit parsing results such as predicate argument structures for detecting precise reference information. We will also capture other types of polarity than attitude, such as modality and writing position [8] , and we will consider estimating these types of polarity.",
                "cite_spans": [
                    {
                        "start": 250,
                        "end": 253,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We plan to develop a classifier specialized for ordered multi-class classification using recent studies on machine learning for structured output space [19, 18] or ordinal regression [5] because our experiments suggest that both pSVMs and SVR have advantages and disadvantages. We will develop a more efficient classifier that outperforms pSVMs and SVR by combining these ideas.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 156,
                        "text": "[19,",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 157,
                        "end": 160,
                        "text": "18]",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 183,
                        "end": 186,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 314-325, 2005. c Springer-Verlag Berlin Heidelberg 2005",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We could allow sp-scores to have continuous values. However, in this paper we assume sp-scores take only discrete values since the evaluation data set was annotated by only discrete values. 2 http://www.amazon.com3 These data were gathered from google cache using google API.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "One must be aware that different scales may reflect the different reactions than just scales as Keller indicated[17].5 We actually corrected 25000 reviews. However, we used only 2900 reviews since the number of reviews with 1 star is very small. We examined the effect of the number of training data is discussed in 5.3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://svmlight.joachims.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Learning to Classify Text Using Support Vector Machines",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T . Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer, 2002.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Automated learning of decision rules for text categorization",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Apte",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Damerau",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Information Systems",
                "volume": "12",
                "issue": "3",
                "pages": "233--251",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Apte, F. Damerau, and S. Weiss. Automated learning of decision rules for text categorization. Information Systems, 12(3):233-251, 1994.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "An Introduction to Support Vector Machines and other Kernel-based Learning Methods",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Cristianini",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Taylor",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Cristianini and J. S. Taylor. An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, 2000.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The Elements of Statistical Learning",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hastie",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Tibshirani",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Large margin rank boundaries for ordinal regression",
                "authors": [
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Herbrich",
                        "suffix": ""
                    },
                    {
                        "first": "Thore",
                        "middle": [],
                        "last": "Graepel",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Obermayer",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Advances in Large Margin Classifiers",
                "volume": "",
                "issue": "",
                "pages": "115--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank bound- aries for ordinal regression. In Advances in Large Margin Classifiers, pages 115-132. MIT press, 2000.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The importance of neutral examples for learning sentiment",
                "authors": [
                    {
                        "first": "Moshe",
                        "middle": [],
                        "last": "Koppel",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Schler",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations (FINEXIN)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Moshe Koppel and Jonathan Schler. The importance of neutral examples for learn- ing sentiment. In In Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations (FINEXIN), 2005.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Pairwise Classification and Support Vector Machines Methods",
                "authors": [
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Kresel",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "U. Kresel. Pairwise Classification and Support Vector Machines Methods. MIT Press, 1999.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A boosting algorithm for classification of semistructured text",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kudo",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "301--308",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Kudo and Y. Matsumoto. A boosting algorithm for classification of semi- structured text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 301-308, 2004.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An evaluation of phrasal and clustered representations on a text categorization task",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings of SIGIR-92, 15th ACM International Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "37--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Lewis. An evaluation of phrasal and clustered representations on a text cate- gorization task. In Proceedings of SIGIR-92, 15th ACM International Conference on Research and Development in Information Retrieval, pages 37-50, 1992.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentiment analysis using Support Vector Machines with diverse information sources",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mullen",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Collier",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Mullen and N. Collier. Sentiment analysis using Support Vector Machines with diverse information sources. In Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL), 2004.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "271--278",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL), pages 271-278, 2004.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43nd Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43nd Meeting of the Association for Computational Linguistics (ACL), 2005.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Thumbs up? sentiment classification using machine learning techniques",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vaithyanathan",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "79--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79-86, 2002.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An algorithm for suffix stripping",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "F"
                        ],
                        "last": "Porter",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "program. Program",
                "volume": "14",
                "issue": "3",
                "pages": "130--137",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.F. Porter. An algorithm for suffix stripping, program. Program, 14(3):130-137, 1980.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Machine learning in automated text categorization",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "ACM Computing Surveys",
                "volume": "34",
                "issue": "1",
                "pages": "1--47",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A tutorial on Support Vector Regression",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Smola",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Sch",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Smola and B. Sch. A tutorial on Support Vector Regression. Technical report, NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Gradience in linguistic data",
                "authors": [
                    {
                        "first": "Antonella",
                        "middle": [],
                        "last": "Sorace",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Keller",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Lingua",
                "volume": "115",
                "issue": "11",
                "pages": "1497--1524",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antonella Sorace and Frank Keller. Gradience in linguistic data. Lingua, 115(11):1497-1524, 2005.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Learning Structured Prediction Models: A Large Margin Approach",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Taskar",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Taskar. Learning Structured Prediction Models: A Large Margin Approach. PhD thesis, Stanford University, 2004.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Support vector machine learning for interdependent and structured output spaces",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Tsochantaridis",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Altun",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Machine Learning, Proceedings of the Twenty-first International Conference (ICML)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In Machine Learning, Proceedings of the Twenty-first International Conference (ICML), 2004.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "D"
                        ],
                        "last": "Turney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "417--424",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. D. Turney. Thumbs up or thumbs down? semantic orientation applied to un- supervised classification of reviews. In Proceedings of the 40th Meeting of the Association for Computational Linguistics (ACL), pages 417-424, 2002.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "The Nature of Statistical Learning Theory",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": "Results of sp-score estimation: Human 1 (left) and Human 2",
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "text": "Distribution of estimation results. Color density indicates the number of reviews. Top left: Human A, top right: Human B, below left: pSVMs, below right: SVR.",
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "uris": null,
                "text": "Learning curve for our task setting for Corpus A and Corpus B. We used SVR as the classifier and unigram/tf-idf to represent of reviews.",
                "num": null
            },
            "TABREF0": {
                "num": null,
                "type_str": "table",
                "text": "Examples of book reviewsExample of Review binary sp-score",
                "html": null,
                "content": "<table/>"
            },
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "text": "Corpus A: reviews for Harry Potter series book. Corpus B: reviews for all kinds of books. The column of word shows the average number of words in a review, and the column of sentences shows the average number of sentences in a review.",
                "html": null,
                "content": "<table><tr><td>sp-score</td><td>Corpus A</td><td/><td>Corpus B</td><td/></tr><tr><td/><td colspan=\"4\">review words sentences review words sentences</td></tr><tr><td>1</td><td>330 160.0</td><td>9.1</td><td>250 91.9</td><td>5.1</td></tr><tr><td>2</td><td>330 196.0</td><td>11.0</td><td>250 105.2</td><td>5.2</td></tr><tr><td>3</td><td>330 169.1</td><td>9.2</td><td>250 118.6</td><td>6.0</td></tr><tr><td>4</td><td>330 150.2</td><td>8.6</td><td>250 123.2</td><td>6.1</td></tr><tr><td>5</td><td>330 153.8</td><td>8.9</td><td>250 124.8</td><td>6.1</td></tr></table>"
            },
            "TABREF2": {
                "num": null,
                "type_str": "table",
                "text": "Human performance of sp-score estimation. Test data: 100 reviews of Corpus A with 1,2,3,4,5 sp-score.",
                "html": null,
                "content": "<table><tr><td/><td>Square error</td></tr><tr><td>Human 1</td><td>0.77</td></tr><tr><td>Human 2</td><td>0.79</td></tr><tr><td>Human average</td><td>0.78</td></tr><tr><td>cf. Random</td><td>3.20</td></tr><tr><td>All3</td><td>2.00</td></tr></table>"
            },
            "TABREF3": {
                "num": null,
                "type_str": "table",
                "text": "Feature list for experiments",
                "html": null,
                "content": "<table><tr><td>Features</td><td>Description</td><td>Example in Fig.1 review 1</td></tr><tr><td>unigram</td><td>single word</td><td>(I) (believe) .. (series)</td></tr><tr><td>bigram</td><td>pair of two adjacent words</td><td>(I believe) ... (the series)</td></tr><tr><td>trigram</td><td>adjacent three words</td><td>(I believe this) ... (in the series)</td></tr><tr><td>inbook</td><td/><td/></tr></table>"
            },
            "TABREF4": {
                "num": null,
                "type_str": "table",
                "text": "Comparison of multi-class SVM and SVR. Both use unigram/tf-idf.",
                "html": null,
                "content": "<table><tr><td/><td colspan=\"2\">Square error</td></tr><tr><td>Methods</td><td colspan=\"2\">Corpus A Corpus B</td></tr><tr><td>pSVMs</td><td>1.32</td><td>2.13</td></tr><tr><td>simple regression</td><td>1.05</td><td>1.49</td></tr><tr><td>SVR (linear kernel)</td><td>1.01</td><td>1.46</td></tr><tr><td>SVR (polynomial kernel ( x \u2022 z + 1) 2 )</td><td>0.94</td><td>1.38</td></tr></table>"
            },
            "TABREF5": {
                "num": null,
                "type_str": "table",
                "text": "Comparison results of different feature weighting methods. We used unigrams as features of reviews. Comparison results of different features. For comparison of different features we tf-idf as weighting methods. List of bigram features that have ten best/worst polarity values estimated by SVR in Corpus A/B. The column of pol expresses the estimated sp-score of a feature, i.e., only this feature is fired in a feature vector. (word stemming was applied)",
                "html": null,
                "content": "<table><tr><td/><td/><td colspan=\"2\">Square error</td></tr><tr><td colspan=\"4\">Weighting methods (unigram) Corpus A Corpus B</td></tr><tr><td>tf</td><td/><td>1.03</td><td>1.49</td></tr><tr><td colspan=\"2\">tf-idf</td><td>0.94</td><td>1.38</td></tr><tr><td colspan=\"2\">binary</td><td>1.04</td><td>1.47</td></tr><tr><td/><td/><td colspan=\"2\">Square error</td></tr><tr><td/><td>Feature (tf-idf)</td><td colspan=\"2\">Corpus A Corpus B</td></tr><tr><td/><td>unigram (baseline)</td><td>0.94</td><td>1.38</td></tr><tr><td/><td>unigram + bigram</td><td>0.89</td><td>1.41</td></tr><tr><td/><td>unigram + trigram</td><td>0.90</td><td>1.42</td></tr><tr><td/><td>unigram + inbook</td><td>0.97</td><td>1.36</td></tr><tr><td/><td>unigram + aroundbook</td><td>0.93</td><td>1.37</td></tr><tr><td>Corpus A (best)</td><td>Corpus B (best)</td><td colspan=\"2\">Corpus A (worst) Corpus B (worst)</td></tr><tr><td>pol bigram</td><td>pol bigram</td><td>pol bigram</td><td>pol bigram</td></tr><tr><td>1.73 best book</td><td>1.64 the best</td><td>-1.61 at all</td><td>-1.19 veri disappoint</td></tr><tr><td>1.69 is a</td><td>1.60 read it</td><td>-1.50 wast of</td><td>-1.13 wast of</td></tr><tr><td>1.49 read it</td><td>1.37 a great</td><td colspan=\"2\">-1.38 potter book -0.98 the worst</td></tr><tr><td>1.44 all ag</td><td>1.34 on of</td><td>-1.36 out of</td><td>-0.97 is veri</td></tr><tr><td>1.30 can't wait</td><td>1.31 fast food</td><td colspan=\"2\">-1.28 not interest -0.96 ! !</td></tr><tr><td>1.20 it is</td><td>1.22 harri potter</td><td>-1.18 on star</td><td>-0.85 i am</td></tr><tr><td colspan=\"2\">1.14 the sorcer's 1.19 highli recommend</td><td>-1.14 the worst</td><td>-0.81 the exampl</td></tr><tr><td>1.14 great !</td><td>1.14 an excel</td><td>-1.13 first four</td><td>-0.79 bui it</td></tr><tr><td colspan=\"2\">1.13 sorcer's stone 1.12 to read</td><td>-1.11 a wast</td><td>-0.76 veri littl</td></tr><tr><td>1.11 come out</td><td>1.01 in the</td><td>-1.08 no on</td><td>-0.74 onli to</td></tr></table>"
            }
        }
    }
}