File size: 81,642 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
{
    "paper_id": "I05-1034",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:26:17.661832Z"
    },
    "title": "Discovering Relations Between Named Entities from a Large Raw Corpus Using Tree Similarity-Based Clustering",
    "authors": [
        {
            "first": "Min",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {},
            "email": "mzhang@i2r.a-star.edu.sg"
        },
        {
            "first": "Jian",
            "middle": [],
            "last": "Su",
            "suffix": "",
            "affiliation": {},
            "email": "sujian@i2r.a-star.edu.sg"
        },
        {
            "first": "Danmei",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Guodong",
            "middle": [],
            "last": "Zhou",
            "suffix": "",
            "affiliation": {},
            "email": "zhougd@i2r.a-star.edu.sg"
        },
        {
            "first": "Chew",
            "middle": [],
            "last": "Lim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Singapore",
                "location": {
                    "postCode": "117543",
                    "settlement": "Singapore"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We propose a tree-similarity-based unsupervised learning method to extract relations between Named Entities from a large raw corpus. Our method regards relation extraction as a clustering problem on shallow parse trees. First, we modify previous tree kernels on relation extraction to estimate the similarity between parse trees more efficiently. Then, the similarity between parse trees is used in a hierarchical clustering algorithm to group entity pairs into different clusters. Finally, each cluster is labeled by an indicative word and unreliable clusters are pruned out. Evaluation on the New York Times (1995) corpus shows that our method outperforms the only previous work by 5 in F-measure. It also shows that our method performs well on both high-frequent and lessfrequent entity pairs. To the best of our knowledge, this is the first work to use a tree similarity metric in relation clustering.",
    "pdf_parse": {
        "paper_id": "I05-1034",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We propose a tree-similarity-based unsupervised learning method to extract relations between Named Entities from a large raw corpus. Our method regards relation extraction as a clustering problem on shallow parse trees. First, we modify previous tree kernels on relation extraction to estimate the similarity between parse trees more efficiently. Then, the similarity between parse trees is used in a hierarchical clustering algorithm to group entity pairs into different clusters. Finally, each cluster is labeled by an indicative word and unreliable clusters are pruned out. Evaluation on the New York Times (1995) corpus shows that our method outperforms the only previous work by 5 in F-measure. It also shows that our method performs well on both high-frequent and lessfrequent entity pairs. To the best of our knowledge, this is the first work to use a tree similarity metric in relation clustering.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The relation extraction task identifies various semantic relations such as location, affiliation, revival and so on between entities from text. For example, the sentence \"George Bush is the president of the United States.\" conveys the semantic relation \"President\", between the entities \"George Bush\" (PERSON) and \"the United States\" (GPE 1 ). The task of relation extraction was first introduced as part of the Template Element task in MUC6 and formulated as the Template Relation task in MUC7 [1] . Most work at MUC [1] was rule-based, which tried to use syntactic and semantic patterns to capture the corresponding relations by means of manually written linguistic rules. The major drawback of this method is the poor adaptability and the poor robustness in handling large-scale or new domain data due to two reasons. First, rules have to be rewritten for different tasks or when porting to different domains. Second, generating rules manually is quite labor-and time-consuming.",
                "cite_spans": [
                    {
                        "start": 495,
                        "end": 498,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 518,
                        "end": 521,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Since then, various supervised learning approaches [2, 3, 4, 5] have been explored extensively in relation extraction. These approaches automatically learn relation patterns or models from a large annotated corpus. To decrease the corpus annotation requirement, some researchers turned to weakly supervised learning approaches [6, 7] , which rely on a small set of initial seeds instead of a large annotated corpus. However, there is no systematic way in selecting initial seeds and deciding an \"optimal\" number of them.",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 54,
                        "text": "[2,",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 55,
                        "end": 57,
                        "text": "3,",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 58,
                        "end": 60,
                        "text": "4,",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 61,
                        "end": 63,
                        "text": "5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 327,
                        "end": 330,
                        "text": "[6,",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 331,
                        "end": 333,
                        "text": "7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Alternatively, Hasegawa et al. [8] proposed a cosine similarity-based unsupervised learning approach for extracting relations from a large raw corpus. The context words in between the same entity pairs in different sentences are used to form word vectors, which are then clustered according to the cosine similarity. This approach does not rely on any annotated corpus and works effectively on high-frequent entity pairs [8] . However, there are two problems in this approach:",
                "cite_spans": [
                    {
                        "start": 31,
                        "end": 34,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 421,
                        "end": 424,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 The assumption that the same entity pairs in different sentences have the same relation. \u2022 The cosine similarity measure between the flat feature vectors, which only consider the words between entities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a tree similarity-based unsupervised learning approach for relation extraction. In order to resolve the above two problems in Hasegawa et al. [8] , we assume that the same entity pairs in different sentences can have different relation types. Moreover, rather than the cosine similarity measure, a similarity function over parse trees is proposed to capture much larger feature spaces instead of the simple word features.",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 171,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of the paper is organized as follows. In Section 2, we discuss the proposed tree-similarity-based clustering algorithm. Section 3 shows the experimental result. Section 4 compares our work with the previous work. We conclude our work with a summary and an outline of the future direction in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We use the shallow parse tree as the representation of relation instances, and regard relation extraction as a clustering problem on shallow parse trees. Our method consists of three steps: 1) Calculating the similarity between two parse trees using a tree similarity function; 2) Clustering relation instances based on the similarities using a hierarchical clustering algorithm; 3) Labeling each cluster using indicative words as its relation type, and pruning out unreliable clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity-Based Unsupervised Learning",
                "sec_num": "2"
            },
            {
                "text": "In this section, we introduce the parse tree representation for a relation instance, define the tree similarity function, and describe the clustering algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity-Based Unsupervised Learning",
                "sec_num": "2"
            },
            {
                "text": "A parse tree T is a set of node {p 1 \u2026p n }, which are connected hierarchically. Here, a node p i includes a set of features { f 1 ,\u2026, f 4 } as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parse Tree Representation for Relation Instance",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Head Word ( 1 f ): for a leaf (or terminal) node, it is the word itself of the leaf node; for a non-terminal node, it is a \"Head Word\" propagated from a leaf node. This feature defines the main meaning of the phrase or the sub-tree rooted by the current node.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parse Tree Representation for Relation Instance",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Node Tag ( 2 f ): for a leaf node, it is the part-of-speech of this node; for a nonterminal node, it is a phrase name, such as Noun Phrase (NP), Verb Phrase (VP). This feature defines the linguistic category of this node.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parse Tree Representation for Relation Instance",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Entity Type ( 3 f ) 2 :it indicates the entity type which can be PER, COM or GPE if the current node refers to a Named Entity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parse Tree Representation for Relation Instance",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Relation Order ( 4 f ): it is used to differentiate asymmetric relations, e.g., \"A belongs to B\" or \"B belongs to A\". These features are widely-adopted in Relation Extraction task. In the parse tree representation, we denote by . ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parse Tree Representation for Relation Instance",
                "sec_num": "2.1"
            },
            {
                "text": "Inspired by the special property of kernel-based methods 3 , we extend the tree kernels in Zelenko et al. [3] to a novel tree similarity measure function, and apply the above tree similarity function to unsupervised learning for relation extraction. Mostly, in previous work, kernels are used in supervised learning algorithms such as SVM, Perceptron and PCA (Collins and Duffy, 2001 ). In our approach, the hierarchical clustering algorithm is adopted, this allows us to explore more robust and powerful similarity functions, other than a proper kernel function 4 . A similarity function returns a normalized, symmetric similarity score in the range [0, 1]. Especially, our tree similarity function 1 2",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 58,
                        "text": "3",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 106,
                        "end": 109,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 359,
                        "end": 383,
                        "text": "(Collins and Duffy, 2001",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 563,
                        "end": 564,
                        "text": "4",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "( , ) K T T over two trees 1 T and 2 T , with the root nodes 1 r and 2 r , is defined as follows:",
                "cite_spans": [
                    {
                        "start": 27,
                        "end": 28,
                        "text": "1",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 2 1 2 1 2 1 2 ( , ) ( , )* ( , ) ( [ ], [ ]) { } C K T T m s K r r r r r r = + c c",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "where, 2 For the features of \"Entity Type\", please refer to the literature ACE [22] for details. 3 As an alternative to the feature-based method [5] , the advantage of kernels [9] is that they can replace any dot product between input points in a high dimensional feature space. Compared with the feature-based method, the kernel method displays several unique characteristics, such as implicitly mapping the feature space from low-dimension to high-dimension, and effectively modeling structure data. A few kernels over structured data have been proposed in NLP study [10] [11] [12] [13] [14] [15] [16] . Zelenko et al. [3] and Culotta et al. [4] explored tree kernels with SVM [9] for relation extraction. We study the tree kernels from similarity measure viewpoints. 4 A function is a kernel function if and only if the function is symmetric and positive semidefinite [3, 9] ",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 8,
                        "text": "2",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 79,
                        "end": 83,
                        "text": "[22]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 97,
                        "end": 98,
                        "text": "3",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 145,
                        "end": 148,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 176,
                        "end": 179,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 569,
                        "end": 573,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 574,
                        "end": 578,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 579,
                        "end": 583,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 584,
                        "end": 588,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 589,
                        "end": 593,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 594,
                        "end": 598,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 599,
                        "end": 603,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 621,
                        "end": 624,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 644,
                        "end": 647,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 679,
                        "end": 682,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 770,
                        "end": 771,
                        "text": "4",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 871,
                        "end": 874,
                        "text": "[3,",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 875,
                        "end": 877,
                        "text": "9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "j i i j f f p p m p p \u23a7 \u23aa = \u23a8 \u23aa \u23a9 = (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "The binary function (1) means that two nodes are matched only if they share the same Node Tag.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 1 2 ( , ) p p s",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "is a similarity function between two nodes i p and j p :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "1 1 3 3 1 1 & if , else if other features m atch no match . . 1 . . ( ) 0.5 . . 0.25 0 i j i j j i i j p f p f p f p f p p f f p p s \u23a7 = \u23aa \u23a8 = \u23aa \u23a9 \u23a7 \u23aa \u23aa \u23aa = = \u23a8 \u23aa \u23aa \u23aa \u23a9 (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "where the values of the weights are assigned empirically according to the discriminative ability of the feature types. Function (3) measures the similarity between two nodes according to the weights of matched features. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p c : 1 2 1 2 , , ( ) ( ) ( [ ], [ ]) ( [ ], [ ]) argmax { } C l l K p p K p p = = a b a b c c a b (4) 1 2 2 1 ( ) 1 ( [ ], [ ]) ( [ ], [ ]) l i K p p K p p = = \u2211 i i a a b a b",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "where a and b are two index sequences, i.e., a is a sequence easily resolved by the dynamic programming (DP) algorithm 5 . By traversing the two trees from top to down and applying the DP algorithm layer by layer, the parse tree similarity 1 2",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 120,
                        "text": "5",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "( , ) K T T defined by Formula (1) is obtained. Due to the DP algorithm, the defined tree similarity function is computable in O(mn), where m and n are the number of nodes in the two trees, respectively. The matching function , ) ( i j m p p in Formula (2) can narrow down the search space during similarity calculation, since the sub-trees with unmatched root nodes are unnecessary to be further explored.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Function",
                "sec_num": "2.2"
            },
            {
                "text": "From the above discussion, we can see that our defined tree similarity function is trying to detect the two trees' maximum isomorphic sub-structures. The similarity score between the maximum isomorphic sub-structures is returned as the value of the similarity function. Fig. 1 illustrates the sub-structures with the maximum similarity between two trees. Among the all matched sub-structures, only the sub-structures circled by the dashed lines are the isomorphic sub-structures with the maximum similarity. The similarity score between the sub-structures is obtained by summing up the similarity score between the corresponding matched nodes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 270,
                        "end": 276,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Fig. 1. Sub-structure with maximum similarity",
                "sec_num": null
            },
            {
                "text": "Finally, since the size of the input parse tree is not constant, the similarity score is normalized as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fig. 1. Sub-structure with maximum similarity",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 2 1 1 2 2 1 2 ( , ) ( , )* ( , ) ( , ) K T T K T T K T T K T T =",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Fig. 1. Sub-structure with maximum similarity",
                "sec_num": null
            },
            {
                "text": "The value of 1 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fig. 1. Sub-structure with maximum similarity",
                "sec_num": null
            },
            {
                "text": "( , ) K T T ranges from 0 to 1. In particular, The above similarity score is more than one. This is because we did not normalize the score using Formula (6).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fig. 1. Sub-structure with maximum similarity",
                "sec_num": null
            },
            {
                "text": "Our method consists of five steps: 1) Named Entity (NE) tagging and sentence parsing: Detailed and accurate NE types provide more effective information for relation discovery. Here we use Sekine's NE tagger [20] , where 150 hierarchical types and subtypes of Named Entities are defined [21] . This NE tagger has also been adopted by Hasegawa et al. [8] . Besides, Collin's parser [18] is adopted to generate shallow parse trees.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 211,
                        "text": "[20]",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 286,
                        "end": 290,
                        "text": "[21]",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 349,
                        "end": 352,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 380,
                        "end": 384,
                        "text": "[18]",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Based Unsupervised Learning",
                "sec_num": "2.3"
            },
            {
                "text": "2) Similarity calculation: The similarity between two relation instances is defined between two parse trees. However, the state-of-the-art of parser is always error-prone. Therefore, we only use the minimum span parse tree including the NE pairs when calculating the similarity function [4] . Please note that the two entities may not be the leftmost or rightmost node in the sub-tree.",
                "cite_spans": [
                    {
                        "start": 287,
                        "end": 290,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tree Similarity Based Unsupervised Learning",
                "sec_num": "2.3"
            },
            {
                "text": "Clustering of NE pairs is based on the similarity score generated by the tree similarity function. Rather than k-means [17] , we used a bottom-up hierarchical clustering method so that there is no need to determine the number of clusters in advance. This means that we are not restricted to the limited types of relations defined in MUC [1] or ACE [22] . Therefore, more substantial existing relations can be discovered. We adopt the group-average clustering algorithm [17] since it produces the best performance compared with the complete-link and single-link algorithms in our study.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 123,
                        "text": "[17]",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 337,
                        "end": 340,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 348,
                        "end": 352,
                        "text": "[22]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 469,
                        "end": 473,
                        "text": "[17]",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "3) NE pairs clustering:",
                "sec_num": null
            },
            {
                "text": "In our study, we label each cluster by the most frequent \"Head Word\" in this cluster. As indicated in subsection 2.1, the \"Head Word\" of root node defines the main meaning of a parse tree. This way, the \"Head Word\" of the root node of the minimum span tree naturally characterizes the relation between this NE pair in this tree. Thus, we simply count the frequency of the \"Head Word\" of the root node in the cluster, and then chose the most frequent \"Head Word\" as the relation type of the cluster. 5) Cluster pruning: Unreliable clusters may be generated due to various reasons such as divergent relation type distributions and the fact that most of the entity pairs inside this cluster are totally unrelated. Therefore, pruning is necessary and done in our approach using two criteria. Firstly, if the most frequent \"Head Word\" occurs less than a predefined percentage in this cluster, which means that the relation type defined by this \"Head Word\" is not significant statistically, the cluster is pruned out. Secondly, we prune out the clusters whose NE pair number is below a predefined threshold because such clusters may not be representative enough for this relation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4) Cluster labeling:",
                "sec_num": null
            },
            {
                "text": "To verify our proposed method and establish proper comparison with Hasegawa et al. [8] , we use the same corpus \"The New York Times (1995)\", and evaluate our work on the same two kinds of NE pairs: COMPANY-COMPANY (COM-COM) and PERSON-GPE (PER-GPE) as Hasegawa et al. in [8] . First, we iterate over all pairs of Named Entities occurring in the same sentence to generate potential relation instances. Then, according to the co-occurrence frequency of NE pairs, all the relation instances are grouped into three categories: 1) High frequent instances with the co-occurrence frequency not less than 30. In this category, only the relation instances, which satisfy the all criteria of Hasegawa et al. [8] 6 , are kept for final experiment. By doing so, this category data is the same as the entire experimental set used by Hasegawa et al. [8] . 2) Intermediate frequent instances with the co-occurrence frequency between 5 and 30. In this category, only two distinct NE pairs are randomly picked at each frequency for final evaluation due to the large number of such NE pairs. 3) Less frequent instances with the co-occurrence frequency not more than 5. In this category, twenty distinct NE pairs are randomly picked at each frequency for final evaluation due to the similar reason as 2). Table 1 reports the statistics of the entire evaluation corpus 7 which is manually tagged. Table 2 reports the percentage of the NE pairs which carry more than one relation types when occurring at different relation instances. The numbers inside parentheses in Table 1 and Table 2 correspond to the statistical values of the NE pair \"PER-GPE\", while the numbers outside parentheses are related to the NE pair \"COM-COM\". Table 2 shows that at least 9.88% of distinct NE pairs have more than one relation types in the test corpus. Thus it is reasonable and necessary to assume that each occurrence of NE pairs forms one individual relation instance. ",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 86,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 271,
                        "end": 274,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 698,
                        "end": 701,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 836,
                        "end": 839,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 918,
                        "end": 919,
                        "text": "5",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1286,
                        "end": 1293,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 1377,
                        "end": 1384,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 1547,
                        "end": 1566,
                        "text": "Table 1 and Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 1706,
                        "end": 1713,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setting",
                "sec_num": "3.1"
            },
            {
                "text": "All the experiments are carried out against the manually annotated evaluation corpus. We adopt the same criteria as Hasegawa et al. [8] to evaluate the performance of our method. Grouping and labeling are evaluated separately. For grouping evaluation, all the single NE pair clusters are labeled as non-relation while all the other clusters are labeled as the most frequent relation type counted in this cluster. For each individual relation instance, if the manually assigned relation type is the same as its cluster label, the grouping of this relation instance is counted as correct, otherwise, are counted as incorrect. Recall (R), Precision (P) and F-measure (F) are adopted as the main performance measure for grouping [8] . For labeling evaluation, a cluster is labeled correctly only if the labeling relation type, represented by most frequent \"Head Word\" of the root node of the minimal-span subtree, is the same as the cluster label gotten in the grouping process.",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 135,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 725,
                        "end": 728,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Measures",
                "sec_num": "3.2"
            },
            {
                "text": "Like other applications using clustering algorithms, the performance of the proposed method also depends on the threshold of the clustering similarity. Here this threshold is used to truncate the hierarchical tree, so that the different clusters are generated. When the threshold is set to 1, then each individual relation instance forms one unique group; when the threshold is set to 0, then the all relation instance form one big group. Table 3 reports the evaluation results of grouping, where the best F-measures and the corresponding similarity thresholds are listed. We can see that our method not only achieves good performance on the high-frequent data, but also performs well on the intermediate and less-frequent data. The higher frequency, the higher performance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 439,
                        "end": 446,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "3.3"
            },
            {
                "text": "Since the best thresholds of the two NE cases are the almost same, we just fix the universal threshold as the one used in \"PER-GPE\" case in each category. Table 3 . Performance evaluation of Grouping phase, the numbers inside parentheses correspond to the evaluation score of \"PER-GPE\" while the numbers outside parentheses are related to \"COM-COM\". Our approach Hasegawa et al. [8] PER-GPE 87 82",
                "cite_spans": [
                    {
                        "start": 379,
                        "end": 382,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 155,
                        "end": 162,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "3.3"
            },
            {
                "text": "COM-COM 80 77 Table 4 compares the performances of the proposed method and Hasegawa et al. [8] , where the best F-measures on the same high-frequent data are reported. Table 4 shows that our method outperforms the previous approach by 5 and 3 F-measures in clustering NE pairs of \"PER-GPE\" and \"COM-COM\", respectively.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 94,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 14,
                        "end": 21,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 168,
                        "end": 175,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": null
            },
            {
                "text": "An interesting phenomenon is that the best threshold is set to be just above 0 for the cosine similarity in Hasegawa et al. [8] . This means that each word feature vector of each combination of NE pairs in the same cluster shares at least one word in common ---and most of these common words were pertinent to the relations [8] . This also prevents them from working well on less-frequent data [8] . In contrast, for the similarity function in our approach, the best threshold is much greater than 0. The difference between the two thresholds implies that the similarity function over the parse trees can capture more common structured features than the word feature vectors can. This is also the reason why our method is effective on both high and lessfrequent data.",
                "cite_spans": [
                    {
                        "start": 124,
                        "end": 127,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 324,
                        "end": 327,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 394,
                        "end": 397,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": null
            },
            {
                "text": "It is not surprising that we do have that a few identical NE pairs, occurring in different relation instances, are grouped into different relation sets. For example, the NE pairs \"General Electric Co. and NBC\", in one sentence \"General Electric Co., which bought NBC in 1986, will announce a new marketing plan.\", is grouped into the relation set \"M&A\", but in another sentence \"Prime Star Partners and General Electric Co., parent of NBC, has signed up 430,000 subscribers.\", is grouped into another relation set \"parent\". Among all the NE pairs that carry more than one relation types, 41.8% of them are grouped correctly using our tree similarity function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": null
            },
            {
                "text": "The performance of grouping is the upper bound of the performances of labeling and pruning. In the final, there are 146 PER-GPE clusters and 95 COM-COM clusters are generated after grouping. Out of which, only 57 PER-GPE clusters and 42 COM-COM clusters are labeled correctly before pruning. This is because that a large portion of the non-relation clusters are labeled as one kind of true relations. After pruning, 117 PER-GPE clusters and 84 COM-COM clusters are labeled correctly. This is because lots of the non-relation clusters are labeled correctly by the pruning process, so we can say that pruning is a non-relation labeling process, which greatly improves the performance of labeling.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": null
            },
            {
                "text": "The experimental results discussed above suggest that our proposed method is an effective solution for discovering relation from a large raw corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": null
            },
            {
                "text": "It would be interesting to review and summarize how the proposed method deals with the relation extraction issue differently from other related works. Table 5 in the next page summarizes the differences between our method and Hasegawa et al. [8] . In addition, since our tree similarity function has benefited from the relation tree kernels of Zelenko et al. [3] , let us compare our similarity measure function with their relation kernel function [3] from the viewpoint of computational efficiency. Zelenko et al. [3] defined the first parse tree kernels for relation extraction, and then this relation tree kernels were extended to dependency tree kernels by Culotta et al. [4] . Their tree kernels sum up the similarity scores among all possible subsequences of children nodes with matching parents, and give a penalty to longer sequences. Their tree kernels are closely related to the convolution kernels [12] . But, by doing so, lots of sub-trees will be considered again and again. An extreme case occurs when two tree structures are identical. In that situation all the sub-trees will be considered exhaustedly, even if the sub-tree is a part of other bigger sub-trees. We use the maximum score in Formula (4) instead of the summation in our approach. With our approach, the entire tree is only considered once. The replacement of summation with maximization reduces the computational time greatly.",
                "cite_spans": [
                    {
                        "start": 242,
                        "end": 245,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 359,
                        "end": 362,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 448,
                        "end": 451,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 515,
                        "end": 518,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 676,
                        "end": 679,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 909,
                        "end": 913,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 158,
                        "text": "Table 5",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Discussions",
                "sec_num": "4"
            },
            {
                "text": "We modified the relation tree kernels [3] to be a tree similarity measure function by replacing the summation over all possible subsequences of children nodes with maximization, and used it in clustering for relation extraction. The experimental result showed much improvement over the previous best result [8] on the same test corpus. It also showed that our method is high effective on both high-frequent and lessfrequent data. Our work demonstrated the effectiveness of combining the tree similarity measure with unsupervised learning for relation extraction.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 41,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 307,
                        "end": 310,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Directions",
                "sec_num": "5"
            },
            {
                "text": "Although our method shows good performance, there are still other aspects of the proposed method worth discussing here. Without additional knowledge, relation detecting and relation labeling are still not easy to be resolved, especially in lessfrequent data. We expect that using additional easily-acquired knowledge can improve the performance of the proposed method. For example, we can introduce the WordNet [19] thesaurus information into Formula (3) to obtain more accurate node similarities and resolve data sparse problem. We can also use the same resource to improve the labeling scheme and find more abstract relation types like the definitions used in ACE program [22] .",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 415,
                        "text": "[19]",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 674,
                        "end": 678,
                        "text": "[22]",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Directions",
                "sec_num": "5"
            },
            {
                "text": "GPE is an acronym introduced by the ACE (2004) program to represent a Geo-Political Entity ---an entity with land and a government.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "A well-known application of Dynamic Programming is to compute the edit distance between two character strings. Let us regard a node as a character and a node sequence as a character string. Then given the similarity score between nodes, Formula (4) can be resolved using DP algorithm in the same way as that of strings. Due to space limitation, the implementation deatils are not discussed here.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "To discover reliable relations, Hasegawa et al.[8] sets five conditions to generate relation instance set. NE pair co-occurrence more than 30 times is one of the five conditions.7 Due to the parsing errors and NE tagging errors, the actual number of relation instances is less than the theory number that we should pick up.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The nist MUC website",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Muc",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "MUC. 1987-1998. The nist MUC website: http://www.itl.nist.gov/iaui/894.02/related_ projects/muc/",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A novel use of statistical parsing to extract information from text",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Fox",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of NAACL-00",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miller, S., Fox, H., Ramshaw, L. and Weischedel, R. 2000. A novel use of statistical pars- ing to extract information from text. Proceedings of NAACL-00",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Kernel Methods for Relation Extraction",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Zelenko",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Aone",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Richardella",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "",
                "issue": "2",
                "pages": "1083--1106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zelenko, D., Aone, C. and Richardella, A. 2003. Kernel Methods for Relation Extraction. Journal of Machine Learning Research. 2003(2):1083-1106",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Dependency Tree Kernel for Relation Extraction",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Culotta",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Sorensen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Culotta, A. and Sorensen, J. 2004. Dependency Tree Kernel for Relation Extraction. Pro- ceeding of ACL-04",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Extracting Relations",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Kambhatla",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceeding of ACL-04",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kambhatla, N. 2004. Combining Lexical, Syntactic, and Semantic Features with Maxi- mum Entropy Models for Extracting Relations. Proceeding of ACL-04, Poster paper.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Snow-ball: Extracting Relations from Large Plaintext Collections",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Agichtein",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Gravano",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the Fifth ACM International Conference on Digital Libraries",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Agichtein, E. and Gravano, L. 2000. Snow-ball: Extracting Relations from Large Plain- text Collections. Proceedings of the Fifth ACM International Conference on Digital Li- braries.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "An Unsupervised WordNet-based Algorithm for Relation Extraction",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 4th LREC workshop \"Beyond Named Entity: Semantic Labeling for NLP tasks",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stevenson, M. 2004. An Unsupervised WordNet-based Algorithm for Relation Extraction. Proceedings of the 4th LREC workshop \"Beyond Named Entity: Semantic Labeling for NLP tasks\"",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Discovering Relations among Named Entities from Large Corpora",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hasegawa",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hasegawa, T., Sekine, S. and Grishman, R. 2004. Discovering Relations among Named Entities from Large Corpora. Proceeding of ACL-04",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Statistical Learning Theory",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vapnik, V. 1998. Statistical Learning Theory. John Wiley",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Convolution Kernels for Natural Language. Proceeding",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Duffy",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collins, M. and Duffy, N. 2001. Convolution Kernels for Natural Language. Proceeding of NIPS-01",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "New Ranking Algorithm for Parsing and Tagging: Kernel over Discrete Structure, and the Voted Perceptron. Proceeding of ACL-02",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Duffy",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collins, M. and Duffy, N. 2002. New Ranking Algorithm for Parsing and Tagging: Kernel over Discrete Structure, and the Voted Perceptron. Proceeding of ACL-02.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Convolution Kernels on Discrete Structures",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Haussler",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haussler, D. 1999. Convolution Kernels on Discrete Structures. Technical Report UCS- CRL-99-10, University of California",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Text classification using string kernel",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Lodhi",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Saunders",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Shawe-Taylor",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Cristianini",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Watkins",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Journal of Machine Learning Research",
                "volume": "",
                "issue": "2",
                "pages": "419--444",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. and Watkins, C. 2002. Text clas- sification using string kernel. Journal of Machine Learning Research, 2002(2):419-444",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hirao",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Sasaki",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Maeda",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACL-03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Suzuki, J., Hirao, T., Sasaki Y. and Maeda, E. 2003. Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data. Proceedings of ACL-03",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Convolution Kernels with Feature Selection for Natural Language Processing Tasks",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Maeda",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACL-04",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Suzuki, J., Isozaki, H. and Maeda, E. 2003. Convolution Kernels with Feature Selection for Natural Language Processing Tasks. Proceedings of ACL-04",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A study on Convolution Kernels for Shallow Semantic Parsing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Moschitti, A. 2004. A study on Convolution Kernels for Shallow Semantic Parsing. Pro- ceedings of ACL-04",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Foundations of Statistical Natural Language Processing",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Schutze",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "500--527",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manning, C. and Schutze, H. 1999. Foundations of Statistical Natural Language Process- ing. The MIT Press: 500-527",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Head-Driven Statistical Models for Natural Language Parsing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. Thesis. University of Pennsylvania",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "WordNet: An Electronic Lexical Database and some of its Applications",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Fellbaum",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fellbaum, C. 1998. WordNet: An Electronic Lexical Database and some of its Applica- tions. Cambridge, MA: MIT Press.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "OAK System",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sekine, S. 2001. OAK System (English Sentence Analysis). Http://nlp.cs.nyu.edu/oak",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Extended named entity hierarchy",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Sudo",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Nobata",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of LREC-02",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sekine, S., Sudo, K. and Nobata, C. 2002. Extended named entity hierarchy. Proceedings of LREC-02",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The Automatic Content Extraction (ACE) Projects",
                "authors": [],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ACE. 2004. The Automatic Content Extraction (ACE) Projects. http://www.ldc.upenn.edu/ Projects/ACE/",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "is the similarity function over the two children node sequences1 [ ]"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "example, given two parse trees A and B, and A is a subtree of B, then under Formula (1), K(A, B) = K(A, A). However, after the normalization through Equation(6), we can get\u02c6\u02c6 ( , ) ( , ) 1 K A B K A A < = . In this way, we can differentiate such two cases. According to the Formula (1) to (5), the similarity function 1 2( , ) K T T over the two trees inFig. 1is computed as follows: 1 [NP, VP], [NP, VP]) ([bought, NP], [sold, NP, yesterday]) 1 bought sold (NP, NP) = 1+0.25+0.25+ ([a, red, car]"
            },
            "TABREF1": {
                "content": "<table><tr><td>\u2022</td><td colspan=\"6\">, ) ( i j m p p j p .</td></tr><tr><td/><td colspan=\"6\">In this paper, only the node tag feature ( 2 f ) is considered:</td></tr><tr><td/><td>(</td><td>, )</td><td>1 if .</td><td>2</td><td>.</td><td>2</td></tr><tr><td/><td/><td/><td colspan=\"2\">0 otherwise</td><td/></tr><tr><td/><td>.</td><td/><td/><td/><td/></tr></table>",
                "type_str": "table",
                "text": "is a matching function over the features of two tree nodes i p and",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Category by</td><td colspan=\"2\"># of instances</td><td># of distinct NE pairs</td><td># of relation</td></tr><tr><td>frequency</td><td/><td/><td/><td>types</td></tr><tr><td>High</td><td colspan=\"2\">8931 (13205)</td><td>65 (177)</td><td>10 (38)</td></tr><tr><td>Intermediate</td><td colspan=\"2\">672 (783)</td><td>38 (41)</td><td>6 (7)</td></tr><tr><td>Less</td><td colspan=\"2\">276 (215)</td><td>76 (81)</td><td>5 (8)</td></tr><tr><td colspan=\"2\">Category by frequency</td><td colspan=\"3\">% of NE pairs have more than one relations</td></tr><tr><td>High</td><td/><td/><td>15.4 (12.99)</td></tr><tr><td colspan=\"2\">Intermediate</td><td/><td>28.9 (24.4)</td></tr><tr><td>Less</td><td/><td/><td>11.8 (9.88)</td></tr></table>",
                "type_str": "table",
                "text": "Statistics on the manually annotated evaluation data % of distinct NE pairs with more than one relation types on the evaluation data",
                "num": null,
                "html": null
            },
            "TABREF5": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Best performance comparison in the high-frequent data (F)",
                "num": null,
                "html": null
            },
            "TABREF6": {
                "content": "<table><tr><td/><td>Our approach</td><td>Hasegawa et al. [8]</td></tr><tr><td>Similarity</td><td>tree similarity over parse</td><td>cosine similarity between the</td></tr><tr><td>Measure</td><td>tree structures</td><td>context word feature vectors</td></tr><tr><td>Assumption</td><td>No</td><td>Yes (The same entity pairs in</td></tr><tr><td/><td/><td>different sentences have the</td></tr><tr><td/><td/><td>same relation)</td></tr><tr><td>Labeling</td><td>the most frequent \"Head</td><td>the most frequent context</td></tr><tr><td/><td>Word\" of the root node of</td><td>word</td></tr><tr><td/><td>sub-tree</td><td/></tr><tr><td>Pruning</td><td>Yes (We present two prun-</td><td>No</td></tr><tr><td/><td>ing criterion)</td><td/></tr><tr><td>Data Frequency</td><td>effective on both high and</td><td>effective only on high-</td></tr><tr><td/><td>less-frequent data</td><td>frequent data</td></tr></table>",
                "type_str": "table",
                "text": "The differences between our method and Hasegawa et al.[8]",
                "num": null,
                "html": null
            }
        }
    }
}