File size: 81,642 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
{
"paper_id": "I05-1034",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:26:17.661832Z"
},
"title": "Discovering Relations Between Named Entities from a Large Raw Corpus Using Tree Similarity-Based Clustering",
"authors": [
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {},
"email": "mzhang@i2r.a-star.edu.sg"
},
{
"first": "Jian",
"middle": [],
"last": "Su",
"suffix": "",
"affiliation": {},
"email": "sujian@i2r.a-star.edu.sg"
},
{
"first": "Danmei",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Guodong",
"middle": [],
"last": "Zhou",
"suffix": "",
"affiliation": {},
"email": "zhougd@i2r.a-star.edu.sg"
},
{
"first": "Chew",
"middle": [],
"last": "Lim",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National University of Singapore",
"location": {
"postCode": "117543",
"settlement": "Singapore"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We propose a tree-similarity-based unsupervised learning method to extract relations between Named Entities from a large raw corpus. Our method regards relation extraction as a clustering problem on shallow parse trees. First, we modify previous tree kernels on relation extraction to estimate the similarity between parse trees more efficiently. Then, the similarity between parse trees is used in a hierarchical clustering algorithm to group entity pairs into different clusters. Finally, each cluster is labeled by an indicative word and unreliable clusters are pruned out. Evaluation on the New York Times (1995) corpus shows that our method outperforms the only previous work by 5 in F-measure. It also shows that our method performs well on both high-frequent and lessfrequent entity pairs. To the best of our knowledge, this is the first work to use a tree similarity metric in relation clustering.",
"pdf_parse": {
"paper_id": "I05-1034",
"_pdf_hash": "",
"abstract": [
{
"text": "We propose a tree-similarity-based unsupervised learning method to extract relations between Named Entities from a large raw corpus. Our method regards relation extraction as a clustering problem on shallow parse trees. First, we modify previous tree kernels on relation extraction to estimate the similarity between parse trees more efficiently. Then, the similarity between parse trees is used in a hierarchical clustering algorithm to group entity pairs into different clusters. Finally, each cluster is labeled by an indicative word and unreliable clusters are pruned out. Evaluation on the New York Times (1995) corpus shows that our method outperforms the only previous work by 5 in F-measure. It also shows that our method performs well on both high-frequent and lessfrequent entity pairs. To the best of our knowledge, this is the first work to use a tree similarity metric in relation clustering.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The relation extraction task identifies various semantic relations such as location, affiliation, revival and so on between entities from text. For example, the sentence \"George Bush is the president of the United States.\" conveys the semantic relation \"President\", between the entities \"George Bush\" (PERSON) and \"the United States\" (GPE 1 ). The task of relation extraction was first introduced as part of the Template Element task in MUC6 and formulated as the Template Relation task in MUC7 [1] . Most work at MUC [1] was rule-based, which tried to use syntactic and semantic patterns to capture the corresponding relations by means of manually written linguistic rules. The major drawback of this method is the poor adaptability and the poor robustness in handling large-scale or new domain data due to two reasons. First, rules have to be rewritten for different tasks or when porting to different domains. Second, generating rules manually is quite labor-and time-consuming.",
"cite_spans": [
{
"start": 495,
"end": 498,
"text": "[1]",
"ref_id": "BIBREF0"
},
{
"start": 518,
"end": 521,
"text": "[1]",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Since then, various supervised learning approaches [2, 3, 4, 5] have been explored extensively in relation extraction. These approaches automatically learn relation patterns or models from a large annotated corpus. To decrease the corpus annotation requirement, some researchers turned to weakly supervised learning approaches [6, 7] , which rely on a small set of initial seeds instead of a large annotated corpus. However, there is no systematic way in selecting initial seeds and deciding an \"optimal\" number of them.",
"cite_spans": [
{
"start": 51,
"end": 54,
"text": "[2,",
"ref_id": "BIBREF1"
},
{
"start": 55,
"end": 57,
"text": "3,",
"ref_id": "BIBREF2"
},
{
"start": 58,
"end": 60,
"text": "4,",
"ref_id": "BIBREF3"
},
{
"start": 61,
"end": 63,
"text": "5]",
"ref_id": "BIBREF4"
},
{
"start": 327,
"end": 330,
"text": "[6,",
"ref_id": "BIBREF5"
},
{
"start": 331,
"end": 333,
"text": "7]",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Alternatively, Hasegawa et al. [8] proposed a cosine similarity-based unsupervised learning approach for extracting relations from a large raw corpus. The context words in between the same entity pairs in different sentences are used to form word vectors, which are then clustered according to the cosine similarity. This approach does not rely on any annotated corpus and works effectively on high-frequent entity pairs [8] . However, there are two problems in this approach:",
"cite_spans": [
{
"start": 31,
"end": 34,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 421,
"end": 424,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 The assumption that the same entity pairs in different sentences have the same relation. \u2022 The cosine similarity measure between the flat feature vectors, which only consider the words between entities.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we propose a tree similarity-based unsupervised learning approach for relation extraction. In order to resolve the above two problems in Hasegawa et al. [8] , we assume that the same entity pairs in different sentences can have different relation types. Moreover, rather than the cosine similarity measure, a similarity function over parse trees is proposed to capture much larger feature spaces instead of the simple word features.",
"cite_spans": [
{
"start": 168,
"end": 171,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The rest of the paper is organized as follows. In Section 2, we discuss the proposed tree-similarity-based clustering algorithm. Section 3 shows the experimental result. Section 4 compares our work with the previous work. We conclude our work with a summary and an outline of the future direction in Section 5.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We use the shallow parse tree as the representation of relation instances, and regard relation extraction as a clustering problem on shallow parse trees. Our method consists of three steps: 1) Calculating the similarity between two parse trees using a tree similarity function; 2) Clustering relation instances based on the similarities using a hierarchical clustering algorithm; 3) Labeling each cluster using indicative words as its relation type, and pruning out unreliable clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity-Based Unsupervised Learning",
"sec_num": "2"
},
{
"text": "In this section, we introduce the parse tree representation for a relation instance, define the tree similarity function, and describe the clustering algorithm.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity-Based Unsupervised Learning",
"sec_num": "2"
},
{
"text": "A parse tree T is a set of node {p 1 \u2026p n }, which are connected hierarchically. Here, a node p i includes a set of features { f 1 ,\u2026, f 4 } as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parse Tree Representation for Relation Instance",
"sec_num": "2.1"
},
{
"text": "\u2022 Head Word ( 1 f ): for a leaf (or terminal) node, it is the word itself of the leaf node; for a non-terminal node, it is a \"Head Word\" propagated from a leaf node. This feature defines the main meaning of the phrase or the sub-tree rooted by the current node.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parse Tree Representation for Relation Instance",
"sec_num": "2.1"
},
{
"text": "\u2022 Node Tag ( 2 f ): for a leaf node, it is the part-of-speech of this node; for a nonterminal node, it is a phrase name, such as Noun Phrase (NP), Verb Phrase (VP). This feature defines the linguistic category of this node.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parse Tree Representation for Relation Instance",
"sec_num": "2.1"
},
{
"text": "\u2022 Entity Type ( 3 f ) 2 :it indicates the entity type which can be PER, COM or GPE if the current node refers to a Named Entity.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parse Tree Representation for Relation Instance",
"sec_num": "2.1"
},
{
"text": "\u2022 Relation Order ( 4 f ): it is used to differentiate asymmetric relations, e.g., \"A belongs to B\" or \"B belongs to A\". These features are widely-adopted in Relation Extraction task. In the parse tree representation, we denote by . ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parse Tree Representation for Relation Instance",
"sec_num": "2.1"
},
{
"text": "Inspired by the special property of kernel-based methods 3 , we extend the tree kernels in Zelenko et al. [3] to a novel tree similarity measure function, and apply the above tree similarity function to unsupervised learning for relation extraction. Mostly, in previous work, kernels are used in supervised learning algorithms such as SVM, Perceptron and PCA (Collins and Duffy, 2001 ). In our approach, the hierarchical clustering algorithm is adopted, this allows us to explore more robust and powerful similarity functions, other than a proper kernel function 4 . A similarity function returns a normalized, symmetric similarity score in the range [0, 1]. Especially, our tree similarity function 1 2",
"cite_spans": [
{
"start": 57,
"end": 58,
"text": "3",
"ref_id": "BIBREF2"
},
{
"start": 106,
"end": 109,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 359,
"end": 383,
"text": "(Collins and Duffy, 2001",
"ref_id": "BIBREF9"
},
{
"start": 563,
"end": 564,
"text": "4",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "( , ) K T T over two trees 1 T and 2 T , with the root nodes 1 r and 2 r , is defined as follows:",
"cite_spans": [
{
"start": 27,
"end": 28,
"text": "1",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 2 1 2 1 2 1 2 ( , ) ( , )* ( , ) ( [ ], [ ]) { } C K T T m s K r r r r r r = + c c",
"eq_num": "(1)"
}
],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "where, 2 For the features of \"Entity Type\", please refer to the literature ACE [22] for details. 3 As an alternative to the feature-based method [5] , the advantage of kernels [9] is that they can replace any dot product between input points in a high dimensional feature space. Compared with the feature-based method, the kernel method displays several unique characteristics, such as implicitly mapping the feature space from low-dimension to high-dimension, and effectively modeling structure data. A few kernels over structured data have been proposed in NLP study [10] [11] [12] [13] [14] [15] [16] . Zelenko et al. [3] and Culotta et al. [4] explored tree kernels with SVM [9] for relation extraction. We study the tree kernels from similarity measure viewpoints. 4 A function is a kernel function if and only if the function is symmetric and positive semidefinite [3, 9] ",
"cite_spans": [
{
"start": 7,
"end": 8,
"text": "2",
"ref_id": "BIBREF1"
},
{
"start": 79,
"end": 83,
"text": "[22]",
"ref_id": "BIBREF21"
},
{
"start": 97,
"end": 98,
"text": "3",
"ref_id": "BIBREF2"
},
{
"start": 145,
"end": 148,
"text": "[5]",
"ref_id": "BIBREF4"
},
{
"start": 176,
"end": 179,
"text": "[9]",
"ref_id": "BIBREF8"
},
{
"start": 569,
"end": 573,
"text": "[10]",
"ref_id": "BIBREF9"
},
{
"start": 574,
"end": 578,
"text": "[11]",
"ref_id": "BIBREF10"
},
{
"start": 579,
"end": 583,
"text": "[12]",
"ref_id": "BIBREF11"
},
{
"start": 584,
"end": 588,
"text": "[13]",
"ref_id": "BIBREF12"
},
{
"start": 589,
"end": 593,
"text": "[14]",
"ref_id": "BIBREF13"
},
{
"start": 594,
"end": 598,
"text": "[15]",
"ref_id": "BIBREF14"
},
{
"start": 599,
"end": 603,
"text": "[16]",
"ref_id": "BIBREF15"
},
{
"start": 621,
"end": 624,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 644,
"end": 647,
"text": "[4]",
"ref_id": "BIBREF3"
},
{
"start": 679,
"end": 682,
"text": "[9]",
"ref_id": "BIBREF8"
},
{
"start": 770,
"end": 771,
"text": "4",
"ref_id": "BIBREF3"
},
{
"start": 871,
"end": 874,
"text": "[3,",
"ref_id": "BIBREF2"
},
{
"start": 875,
"end": 877,
"text": "9]",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "j i i j f f p p m p p \u23a7 \u23aa = \u23a8 \u23aa \u23a9 = (2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "The binary function (1) means that two nodes are matched only if they share the same Node Tag.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "\u2022 1 2 ( , ) p p s",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "is a similarity function between two nodes i p and j p :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "1 1 3 3 1 1 & if , else if other features m atch no match . . 1 . . ( ) 0.5 . . 0.25 0 i j i j j i i j p f p f p f p f p p f f p p s \u23a7 = \u23aa \u23a8 = \u23aa \u23a9 \u23a7 \u23aa \u23aa \u23aa = = \u23a8 \u23aa \u23aa \u23aa \u23a9 (3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "where the values of the weights are assigned empirically according to the discriminative ability of the feature types. Function (3) measures the similarity between two nodes according to the weights of matched features. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p c : 1 2 1 2 , , ( ) ( ) ( [ ], [ ]) ( [ ], [ ]) argmax { } C l l K p p K p p = = a b a b c c a b (4) 1 2 2 1 ( ) 1 ( [ ], [ ]) ( [ ], [ ]) l i K p p K p p = = \u2211 i i a a b a b",
"eq_num": "(5)"
}
],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "where a and b are two index sequences, i.e., a is a sequence easily resolved by the dynamic programming (DP) algorithm 5 . By traversing the two trees from top to down and applying the DP algorithm layer by layer, the parse tree similarity 1 2",
"cite_spans": [
{
"start": 119,
"end": 120,
"text": "5",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "( , ) K T T defined by Formula (1) is obtained. Due to the DP algorithm, the defined tree similarity function is computable in O(mn), where m and n are the number of nodes in the two trees, respectively. The matching function , ) ( i j m p p in Formula (2) can narrow down the search space during similarity calculation, since the sub-trees with unmatched root nodes are unnecessary to be further explored.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Function",
"sec_num": "2.2"
},
{
"text": "From the above discussion, we can see that our defined tree similarity function is trying to detect the two trees' maximum isomorphic sub-structures. The similarity score between the maximum isomorphic sub-structures is returned as the value of the similarity function. Fig. 1 illustrates the sub-structures with the maximum similarity between two trees. Among the all matched sub-structures, only the sub-structures circled by the dashed lines are the isomorphic sub-structures with the maximum similarity. The similarity score between the sub-structures is obtained by summing up the similarity score between the corresponding matched nodes.",
"cite_spans": [],
"ref_spans": [
{
"start": 270,
"end": 276,
"text": "Fig. 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Fig. 1. Sub-structure with maximum similarity",
"sec_num": null
},
{
"text": "Finally, since the size of the input parse tree is not constant, the similarity score is normalized as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fig. 1. Sub-structure with maximum similarity",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 2 1 1 2 2 1 2 ( , ) ( , )* ( , ) ( , ) K T T K T T K T T K T T =",
"eq_num": "(6)"
}
],
"section": "Fig. 1. Sub-structure with maximum similarity",
"sec_num": null
},
{
"text": "The value of 1 2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fig. 1. Sub-structure with maximum similarity",
"sec_num": null
},
{
"text": "( , ) K T T ranges from 0 to 1. In particular, The above similarity score is more than one. This is because we did not normalize the score using Formula (6).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fig. 1. Sub-structure with maximum similarity",
"sec_num": null
},
{
"text": "Our method consists of five steps: 1) Named Entity (NE) tagging and sentence parsing: Detailed and accurate NE types provide more effective information for relation discovery. Here we use Sekine's NE tagger [20] , where 150 hierarchical types and subtypes of Named Entities are defined [21] . This NE tagger has also been adopted by Hasegawa et al. [8] . Besides, Collin's parser [18] is adopted to generate shallow parse trees.",
"cite_spans": [
{
"start": 207,
"end": 211,
"text": "[20]",
"ref_id": "BIBREF19"
},
{
"start": 286,
"end": 290,
"text": "[21]",
"ref_id": "BIBREF20"
},
{
"start": 349,
"end": 352,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 380,
"end": 384,
"text": "[18]",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Based Unsupervised Learning",
"sec_num": "2.3"
},
{
"text": "2) Similarity calculation: The similarity between two relation instances is defined between two parse trees. However, the state-of-the-art of parser is always error-prone. Therefore, we only use the minimum span parse tree including the NE pairs when calculating the similarity function [4] . Please note that the two entities may not be the leftmost or rightmost node in the sub-tree.",
"cite_spans": [
{
"start": 287,
"end": 290,
"text": "[4]",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tree Similarity Based Unsupervised Learning",
"sec_num": "2.3"
},
{
"text": "Clustering of NE pairs is based on the similarity score generated by the tree similarity function. Rather than k-means [17] , we used a bottom-up hierarchical clustering method so that there is no need to determine the number of clusters in advance. This means that we are not restricted to the limited types of relations defined in MUC [1] or ACE [22] . Therefore, more substantial existing relations can be discovered. We adopt the group-average clustering algorithm [17] since it produces the best performance compared with the complete-link and single-link algorithms in our study.",
"cite_spans": [
{
"start": 119,
"end": 123,
"text": "[17]",
"ref_id": "BIBREF16"
},
{
"start": 337,
"end": 340,
"text": "[1]",
"ref_id": "BIBREF0"
},
{
"start": 348,
"end": 352,
"text": "[22]",
"ref_id": "BIBREF21"
},
{
"start": 469,
"end": 473,
"text": "[17]",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "3) NE pairs clustering:",
"sec_num": null
},
{
"text": "In our study, we label each cluster by the most frequent \"Head Word\" in this cluster. As indicated in subsection 2.1, the \"Head Word\" of root node defines the main meaning of a parse tree. This way, the \"Head Word\" of the root node of the minimum span tree naturally characterizes the relation between this NE pair in this tree. Thus, we simply count the frequency of the \"Head Word\" of the root node in the cluster, and then chose the most frequent \"Head Word\" as the relation type of the cluster. 5) Cluster pruning: Unreliable clusters may be generated due to various reasons such as divergent relation type distributions and the fact that most of the entity pairs inside this cluster are totally unrelated. Therefore, pruning is necessary and done in our approach using two criteria. Firstly, if the most frequent \"Head Word\" occurs less than a predefined percentage in this cluster, which means that the relation type defined by this \"Head Word\" is not significant statistically, the cluster is pruned out. Secondly, we prune out the clusters whose NE pair number is below a predefined threshold because such clusters may not be representative enough for this relation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "4) Cluster labeling:",
"sec_num": null
},
{
"text": "To verify our proposed method and establish proper comparison with Hasegawa et al. [8] , we use the same corpus \"The New York Times (1995)\", and evaluate our work on the same two kinds of NE pairs: COMPANY-COMPANY (COM-COM) and PERSON-GPE (PER-GPE) as Hasegawa et al. in [8] . First, we iterate over all pairs of Named Entities occurring in the same sentence to generate potential relation instances. Then, according to the co-occurrence frequency of NE pairs, all the relation instances are grouped into three categories: 1) High frequent instances with the co-occurrence frequency not less than 30. In this category, only the relation instances, which satisfy the all criteria of Hasegawa et al. [8] 6 , are kept for final experiment. By doing so, this category data is the same as the entire experimental set used by Hasegawa et al. [8] . 2) Intermediate frequent instances with the co-occurrence frequency between 5 and 30. In this category, only two distinct NE pairs are randomly picked at each frequency for final evaluation due to the large number of such NE pairs. 3) Less frequent instances with the co-occurrence frequency not more than 5. In this category, twenty distinct NE pairs are randomly picked at each frequency for final evaluation due to the similar reason as 2). Table 1 reports the statistics of the entire evaluation corpus 7 which is manually tagged. Table 2 reports the percentage of the NE pairs which carry more than one relation types when occurring at different relation instances. The numbers inside parentheses in Table 1 and Table 2 correspond to the statistical values of the NE pair \"PER-GPE\", while the numbers outside parentheses are related to the NE pair \"COM-COM\". Table 2 shows that at least 9.88% of distinct NE pairs have more than one relation types in the test corpus. Thus it is reasonable and necessary to assume that each occurrence of NE pairs forms one individual relation instance. ",
"cite_spans": [
{
"start": 83,
"end": 86,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 271,
"end": 274,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 698,
"end": 701,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 836,
"end": 839,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 918,
"end": 919,
"text": "5",
"ref_id": "BIBREF4"
}
],
"ref_spans": [
{
"start": 1286,
"end": 1293,
"text": "Table 1",
"ref_id": null
},
{
"start": 1377,
"end": 1384,
"text": "Table 2",
"ref_id": null
},
{
"start": 1547,
"end": 1566,
"text": "Table 1 and Table 2",
"ref_id": null
},
{
"start": 1706,
"end": 1713,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Setting",
"sec_num": "3.1"
},
{
"text": "All the experiments are carried out against the manually annotated evaluation corpus. We adopt the same criteria as Hasegawa et al. [8] to evaluate the performance of our method. Grouping and labeling are evaluated separately. For grouping evaluation, all the single NE pair clusters are labeled as non-relation while all the other clusters are labeled as the most frequent relation type counted in this cluster. For each individual relation instance, if the manually assigned relation type is the same as its cluster label, the grouping of this relation instance is counted as correct, otherwise, are counted as incorrect. Recall (R), Precision (P) and F-measure (F) are adopted as the main performance measure for grouping [8] . For labeling evaluation, a cluster is labeled correctly only if the labeling relation type, represented by most frequent \"Head Word\" of the root node of the minimal-span subtree, is the same as the cluster label gotten in the grouping process.",
"cite_spans": [
{
"start": 132,
"end": 135,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 725,
"end": 728,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Measures",
"sec_num": "3.2"
},
{
"text": "Like other applications using clustering algorithms, the performance of the proposed method also depends on the threshold of the clustering similarity. Here this threshold is used to truncate the hierarchical tree, so that the different clusters are generated. When the threshold is set to 1, then each individual relation instance forms one unique group; when the threshold is set to 0, then the all relation instance form one big group. Table 3 reports the evaluation results of grouping, where the best F-measures and the corresponding similarity thresholds are listed. We can see that our method not only achieves good performance on the high-frequent data, but also performs well on the intermediate and less-frequent data. The higher frequency, the higher performance.",
"cite_spans": [],
"ref_spans": [
{
"start": 439,
"end": 446,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "3.3"
},
{
"text": "Since the best thresholds of the two NE cases are the almost same, we just fix the universal threshold as the one used in \"PER-GPE\" case in each category. Table 3 . Performance evaluation of Grouping phase, the numbers inside parentheses correspond to the evaluation score of \"PER-GPE\" while the numbers outside parentheses are related to \"COM-COM\". Our approach Hasegawa et al. [8] PER-GPE 87 82",
"cite_spans": [
{
"start": 379,
"end": 382,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [
{
"start": 155,
"end": 162,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "3.3"
},
{
"text": "COM-COM 80 77 Table 4 compares the performances of the proposed method and Hasegawa et al. [8] , where the best F-measures on the same high-frequent data are reported. Table 4 shows that our method outperforms the previous approach by 5 and 3 F-measures in clustering NE pairs of \"PER-GPE\" and \"COM-COM\", respectively.",
"cite_spans": [
{
"start": 91,
"end": 94,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [
{
"start": 14,
"end": 21,
"text": "Table 4",
"ref_id": "TABREF5"
},
{
"start": 168,
"end": 175,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Performance",
"sec_num": null
},
{
"text": "An interesting phenomenon is that the best threshold is set to be just above 0 for the cosine similarity in Hasegawa et al. [8] . This means that each word feature vector of each combination of NE pairs in the same cluster shares at least one word in common ---and most of these common words were pertinent to the relations [8] . This also prevents them from working well on less-frequent data [8] . In contrast, for the similarity function in our approach, the best threshold is much greater than 0. The difference between the two thresholds implies that the similarity function over the parse trees can capture more common structured features than the word feature vectors can. This is also the reason why our method is effective on both high and lessfrequent data.",
"cite_spans": [
{
"start": 124,
"end": 127,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 324,
"end": 327,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 394,
"end": 397,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Performance",
"sec_num": null
},
{
"text": "It is not surprising that we do have that a few identical NE pairs, occurring in different relation instances, are grouped into different relation sets. For example, the NE pairs \"General Electric Co. and NBC\", in one sentence \"General Electric Co., which bought NBC in 1986, will announce a new marketing plan.\", is grouped into the relation set \"M&A\", but in another sentence \"Prime Star Partners and General Electric Co., parent of NBC, has signed up 430,000 subscribers.\", is grouped into another relation set \"parent\". Among all the NE pairs that carry more than one relation types, 41.8% of them are grouped correctly using our tree similarity function.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Performance",
"sec_num": null
},
{
"text": "The performance of grouping is the upper bound of the performances of labeling and pruning. In the final, there are 146 PER-GPE clusters and 95 COM-COM clusters are generated after grouping. Out of which, only 57 PER-GPE clusters and 42 COM-COM clusters are labeled correctly before pruning. This is because that a large portion of the non-relation clusters are labeled as one kind of true relations. After pruning, 117 PER-GPE clusters and 84 COM-COM clusters are labeled correctly. This is because lots of the non-relation clusters are labeled correctly by the pruning process, so we can say that pruning is a non-relation labeling process, which greatly improves the performance of labeling.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Performance",
"sec_num": null
},
{
"text": "The experimental results discussed above suggest that our proposed method is an effective solution for discovering relation from a large raw corpus.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Performance",
"sec_num": null
},
{
"text": "It would be interesting to review and summarize how the proposed method deals with the relation extraction issue differently from other related works. Table 5 in the next page summarizes the differences between our method and Hasegawa et al. [8] . In addition, since our tree similarity function has benefited from the relation tree kernels of Zelenko et al. [3] , let us compare our similarity measure function with their relation kernel function [3] from the viewpoint of computational efficiency. Zelenko et al. [3] defined the first parse tree kernels for relation extraction, and then this relation tree kernels were extended to dependency tree kernels by Culotta et al. [4] . Their tree kernels sum up the similarity scores among all possible subsequences of children nodes with matching parents, and give a penalty to longer sequences. Their tree kernels are closely related to the convolution kernels [12] . But, by doing so, lots of sub-trees will be considered again and again. An extreme case occurs when two tree structures are identical. In that situation all the sub-trees will be considered exhaustedly, even if the sub-tree is a part of other bigger sub-trees. We use the maximum score in Formula (4) instead of the summation in our approach. With our approach, the entire tree is only considered once. The replacement of summation with maximization reduces the computational time greatly.",
"cite_spans": [
{
"start": 242,
"end": 245,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 359,
"end": 362,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 448,
"end": 451,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 515,
"end": 518,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 676,
"end": 679,
"text": "[4]",
"ref_id": "BIBREF3"
},
{
"start": 909,
"end": 913,
"text": "[12]",
"ref_id": "BIBREF11"
}
],
"ref_spans": [
{
"start": 151,
"end": 158,
"text": "Table 5",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Discussions",
"sec_num": "4"
},
{
"text": "We modified the relation tree kernels [3] to be a tree similarity measure function by replacing the summation over all possible subsequences of children nodes with maximization, and used it in clustering for relation extraction. The experimental result showed much improvement over the previous best result [8] on the same test corpus. It also showed that our method is high effective on both high-frequent and lessfrequent data. Our work demonstrated the effectiveness of combining the tree similarity measure with unsupervised learning for relation extraction.",
"cite_spans": [
{
"start": 38,
"end": 41,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 307,
"end": 310,
"text": "[8]",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Directions",
"sec_num": "5"
},
{
"text": "Although our method shows good performance, there are still other aspects of the proposed method worth discussing here. Without additional knowledge, relation detecting and relation labeling are still not easy to be resolved, especially in lessfrequent data. We expect that using additional easily-acquired knowledge can improve the performance of the proposed method. For example, we can introduce the WordNet [19] thesaurus information into Formula (3) to obtain more accurate node similarities and resolve data sparse problem. We can also use the same resource to improve the labeling scheme and find more abstract relation types like the definitions used in ACE program [22] .",
"cite_spans": [
{
"start": 411,
"end": 415,
"text": "[19]",
"ref_id": "BIBREF18"
},
{
"start": 674,
"end": 678,
"text": "[22]",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Directions",
"sec_num": "5"
},
{
"text": "GPE is an acronym introduced by the ACE (2004) program to represent a Geo-Political Entity ---an entity with land and a government.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "A well-known application of Dynamic Programming is to compute the edit distance between two character strings. Let us regard a node as a character and a node sequence as a character string. Then given the similarity score between nodes, Formula (4) can be resolved using DP algorithm in the same way as that of strings. Due to space limitation, the implementation deatils are not discussed here.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "To discover reliable relations, Hasegawa et al.[8] sets five conditions to generate relation instance set. NE pair co-occurrence more than 30 times is one of the five conditions.7 Due to the parsing errors and NE tagging errors, the actual number of relation instances is less than the theory number that we should pick up.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "The nist MUC website",
"authors": [
{
"first": "",
"middle": [],
"last": "Muc",
"suffix": ""
}
],
"year": 1987,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "MUC. 1987-1998. The nist MUC website: http://www.itl.nist.gov/iaui/894.02/related_ projects/muc/",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A novel use of statistical parsing to extract information from text",
"authors": [
{
"first": "S",
"middle": [],
"last": "Miller",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Fox",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Ramshaw",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Weischedel",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of NAACL-00",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miller, S., Fox, H., Ramshaw, L. and Weischedel, R. 2000. A novel use of statistical pars- ing to extract information from text. Proceedings of NAACL-00",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Kernel Methods for Relation Extraction",
"authors": [
{
"first": "D",
"middle": [],
"last": "Zelenko",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Aone",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Richardella",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of Machine Learning Research",
"volume": "",
"issue": "2",
"pages": "1083--1106",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zelenko, D., Aone, C. and Richardella, A. 2003. Kernel Methods for Relation Extraction. Journal of Machine Learning Research. 2003(2):1083-1106",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Dependency Tree Kernel for Relation Extraction",
"authors": [
{
"first": "A",
"middle": [],
"last": "Culotta",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sorensen",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Culotta, A. and Sorensen, J. 2004. Dependency Tree Kernel for Relation Extraction. Pro- ceeding of ACL-04",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Extracting Relations",
"authors": [
{
"first": "N",
"middle": [],
"last": "Kambhatla",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceeding of ACL-04",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kambhatla, N. 2004. Combining Lexical, Syntactic, and Semantic Features with Maxi- mum Entropy Models for Extracting Relations. Proceeding of ACL-04, Poster paper.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Snow-ball: Extracting Relations from Large Plaintext Collections",
"authors": [
{
"first": "E",
"middle": [],
"last": "Agichtein",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Gravano",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of the Fifth ACM International Conference on Digital Libraries",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Agichtein, E. and Gravano, L. 2000. Snow-ball: Extracting Relations from Large Plain- text Collections. Proceedings of the Fifth ACM International Conference on Digital Li- braries.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "An Unsupervised WordNet-based Algorithm for Relation Extraction",
"authors": [
{
"first": "M",
"middle": [],
"last": "Stevenson",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 4th LREC workshop \"Beyond Named Entity: Semantic Labeling for NLP tasks",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stevenson, M. 2004. An Unsupervised WordNet-based Algorithm for Relation Extraction. Proceedings of the 4th LREC workshop \"Beyond Named Entity: Semantic Labeling for NLP tasks\"",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Discovering Relations among Named Entities from Large Corpora",
"authors": [
{
"first": "T",
"middle": [],
"last": "Hasegawa",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Sekine",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hasegawa, T., Sekine, S. and Grishman, R. 2004. Discovering Relations among Named Entities from Large Corpora. Proceeding of ACL-04",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Statistical Learning Theory",
"authors": [
{
"first": "V",
"middle": [],
"last": "Vapnik",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vapnik, V. 1998. Statistical Learning Theory. John Wiley",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Convolution Kernels for Natural Language. Proceeding",
"authors": [
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Duffy",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Collins, M. and Duffy, N. 2001. Convolution Kernels for Natural Language. Proceeding of NIPS-01",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "New Ranking Algorithm for Parsing and Tagging: Kernel over Discrete Structure, and the Voted Perceptron. Proceeding of ACL-02",
"authors": [
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Duffy",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Collins, M. and Duffy, N. 2002. New Ranking Algorithm for Parsing and Tagging: Kernel over Discrete Structure, and the Voted Perceptron. Proceeding of ACL-02.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Convolution Kernels on Discrete Structures",
"authors": [
{
"first": "D",
"middle": [],
"last": "Haussler",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Haussler, D. 1999. Convolution Kernels on Discrete Structures. Technical Report UCS- CRL-99-10, University of California",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Text classification using string kernel",
"authors": [
{
"first": "H",
"middle": [],
"last": "Lodhi",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Saunders",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Shawe-Taylor",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Cristianini",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Watkins",
"suffix": ""
}
],
"year": 2002,
"venue": "Journal of Machine Learning Research",
"volume": "",
"issue": "2",
"pages": "419--444",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. and Watkins, C. 2002. Text clas- sification using string kernel. Journal of Machine Learning Research, 2002(2):419-444",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data",
"authors": [
{
"first": "J",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Hirao",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Sasaki",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Maeda",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of ACL-03",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Suzuki, J., Hirao, T., Sasaki Y. and Maeda, E. 2003. Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data. Proceedings of ACL-03",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Convolution Kernels with Feature Selection for Natural Language Processing Tasks",
"authors": [
{
"first": "J",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Isozaki",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Maeda",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of ACL-04",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Suzuki, J., Isozaki, H. and Maeda, E. 2003. Convolution Kernels with Feature Selection for Natural Language Processing Tasks. Proceedings of ACL-04",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "A study on Convolution Kernels for Shallow Semantic Parsing",
"authors": [
{
"first": "A",
"middle": [],
"last": "Moschitti",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Moschitti, A. 2004. A study on Convolution Kernels for Shallow Semantic Parsing. Pro- ceedings of ACL-04",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Foundations of Statistical Natural Language Processing",
"authors": [
{
"first": "C",
"middle": [],
"last": "Manning",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Schutze",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "500--527",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Manning, C. and Schutze, H. 1999. Foundations of Statistical Natural Language Process- ing. The MIT Press: 500-527",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Head-Driven Statistical Models for Natural Language Parsing",
"authors": [
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. Thesis. University of Pennsylvania",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "WordNet: An Electronic Lexical Database and some of its Applications",
"authors": [
{
"first": "C",
"middle": [],
"last": "Fellbaum",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fellbaum, C. 1998. WordNet: An Electronic Lexical Database and some of its Applica- tions. Cambridge, MA: MIT Press.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "OAK System",
"authors": [
{
"first": "S",
"middle": [],
"last": "Sekine",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sekine, S. 2001. OAK System (English Sentence Analysis). Http://nlp.cs.nyu.edu/oak",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Extended named entity hierarchy",
"authors": [
{
"first": "S",
"middle": [],
"last": "Sekine",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Sudo",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Nobata",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of LREC-02",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sekine, S., Sudo, K. and Nobata, C. 2002. Extended named entity hierarchy. Proceedings of LREC-02",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "The Automatic Content Extraction (ACE) Projects",
"authors": [],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ACE. 2004. The Automatic Content Extraction (ACE) Projects. http://www.ldc.upenn.edu/ Projects/ACE/",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "is the similarity function over the two children node sequences1 [ ]"
},
"FIGREF1": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "example, given two parse trees A and B, and A is a subtree of B, then under Formula (1), K(A, B) = K(A, A). However, after the normalization through Equation(6), we can get\u02c6\u02c6 ( , ) ( , ) 1 K A B K A A < = . In this way, we can differentiate such two cases. According to the Formula (1) to (5), the similarity function 1 2( , ) K T T over the two trees inFig. 1is computed as follows: 1 [NP, VP], [NP, VP]) ([bought, NP], [sold, NP, yesterday]) 1 bought sold (NP, NP) = 1+0.25+0.25+ ([a, red, car]"
},
"TABREF1": {
"content": "<table><tr><td>\u2022</td><td colspan=\"6\">, ) ( i j m p p j p .</td></tr><tr><td/><td colspan=\"6\">In this paper, only the node tag feature ( 2 f ) is considered:</td></tr><tr><td/><td>(</td><td>, )</td><td>1 if .</td><td>2</td><td>.</td><td>2</td></tr><tr><td/><td/><td/><td colspan=\"2\">0 otherwise</td><td/></tr><tr><td/><td>.</td><td/><td/><td/><td/></tr></table>",
"type_str": "table",
"text": "is a matching function over the features of two tree nodes i p and",
"num": null,
"html": null
},
"TABREF3": {
"content": "<table><tr><td>Category by</td><td colspan=\"2\"># of instances</td><td># of distinct NE pairs</td><td># of relation</td></tr><tr><td>frequency</td><td/><td/><td/><td>types</td></tr><tr><td>High</td><td colspan=\"2\">8931 (13205)</td><td>65 (177)</td><td>10 (38)</td></tr><tr><td>Intermediate</td><td colspan=\"2\">672 (783)</td><td>38 (41)</td><td>6 (7)</td></tr><tr><td>Less</td><td colspan=\"2\">276 (215)</td><td>76 (81)</td><td>5 (8)</td></tr><tr><td colspan=\"2\">Category by frequency</td><td colspan=\"3\">% of NE pairs have more than one relations</td></tr><tr><td>High</td><td/><td/><td>15.4 (12.99)</td></tr><tr><td colspan=\"2\">Intermediate</td><td/><td>28.9 (24.4)</td></tr><tr><td>Less</td><td/><td/><td>11.8 (9.88)</td></tr></table>",
"type_str": "table",
"text": "Statistics on the manually annotated evaluation data % of distinct NE pairs with more than one relation types on the evaluation data",
"num": null,
"html": null
},
"TABREF5": {
"content": "<table/>",
"type_str": "table",
"text": "Best performance comparison in the high-frequent data (F)",
"num": null,
"html": null
},
"TABREF6": {
"content": "<table><tr><td/><td>Our approach</td><td>Hasegawa et al. [8]</td></tr><tr><td>Similarity</td><td>tree similarity over parse</td><td>cosine similarity between the</td></tr><tr><td>Measure</td><td>tree structures</td><td>context word feature vectors</td></tr><tr><td>Assumption</td><td>No</td><td>Yes (The same entity pairs in</td></tr><tr><td/><td/><td>different sentences have the</td></tr><tr><td/><td/><td>same relation)</td></tr><tr><td>Labeling</td><td>the most frequent \"Head</td><td>the most frequent context</td></tr><tr><td/><td>Word\" of the root node of</td><td>word</td></tr><tr><td/><td>sub-tree</td><td/></tr><tr><td>Pruning</td><td>Yes (We present two prun-</td><td>No</td></tr><tr><td/><td>ing criterion)</td><td/></tr><tr><td>Data Frequency</td><td>effective on both high and</td><td>effective only on high-</td></tr><tr><td/><td>less-frequent data</td><td>frequent data</td></tr></table>",
"type_str": "table",
"text": "The differences between our method and Hasegawa et al.[8]",
"num": null,
"html": null
}
}
}
} |