File size: 79,711 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
{
    "paper_id": "I05-1040",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:46.370143Z"
    },
    "title": "An Ensemble of Grapheme and Phoneme for Machine Transliteration",
    "authors": [
        {
            "first": "Jong-Hoon",
            "middle": [],
            "last": "Oh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "KAIST/KORTERM/BOLA",
                "location": {
                    "addrLine": "373-1 Guseong-dong, Yuseong-gu",
                    "postCode": "305-701",
                    "settlement": "Daejeon",
                    "country": "Republic of Korea"
                }
            },
            "email": ""
        },
        {
            "first": "Key-Sun",
            "middle": [],
            "last": "Choi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "KAIST/KORTERM/BOLA",
                "location": {
                    "addrLine": "373-1 Guseong-dong, Yuseong-gu",
                    "postCode": "305-701",
                    "settlement": "Daejeon",
                    "country": "Republic of Korea"
                }
            },
            "email": "kschoi@world.kaist.ac.kr"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. There has been increasing concern on machine transliteration as an assistant of machine translation and information retrieval. Three machine transliteration models, including \"grapheme-based model\", \"phonemebased model\", and \"hybrid model\", have been proposed. However, there are few works trying to make use of correspondence between source grapheme and phoneme, although the correspondence plays an important role in machine transliteration. Furthermore there are few works, which dynamically handle source grapheme and phoneme. In this paper, we propose a new transliteration model based on an ensemble of grapheme and phoneme. Our model makes use of the correspondence and dynamically uses source grapheme and phoneme. Our method shows better performance than the previous works about 15~23% in English-to-Korean transliteration and about 15~43% in English-to-Japanese transliteration.",
    "pdf_parse": {
        "paper_id": "I05-1040",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. There has been increasing concern on machine transliteration as an assistant of machine translation and information retrieval. Three machine transliteration models, including \"grapheme-based model\", \"phonemebased model\", and \"hybrid model\", have been proposed. However, there are few works trying to make use of correspondence between source grapheme and phoneme, although the correspondence plays an important role in machine transliteration. Furthermore there are few works, which dynamically handle source grapheme and phoneme. In this paper, we propose a new transliteration model based on an ensemble of grapheme and phoneme. Our model makes use of the correspondence and dynamically uses source grapheme and phoneme. Our method shows better performance than the previous works about 15~23% in English-to-Korean transliteration and about 15~43% in English-to-Japanese transliteration.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. For example, English word data is transliterated into Korean 'deita' 1 and Japanese 'deeta'. Transliteration is used to phonetically translate proper names and technical terms especially from languages in Roman alphabets to languages in non-Roman alphabets such as from English to Korean, Japanese, and Chinese and so on. There has been increasing concern on machine transliteration as an assistant of Machine Translation (MT) [2] , [10] , mono-lingual information retrieval (MLIR) [8] , [11] and cross-lingual information retrieval (CLIR) [6] . In the area of MLIR and CLIR, machine transliteration bridges the gap between a transliterated localized form and its original form by generating all possible transliterated forms from each original form. Especially for CLIR, machine transliteration gives a help to query translation where proper names and technical terms frequently appear in source language queries. In the area of MT, machine transliteration prevents translation failure when translations of proper names and technical terms are not registered in a translation dictionary. A machine transliteration system, therefore, may affect the performance of MT, MLIR, and CLIR system.",
                "cite_spans": [
                    {
                        "start": 240,
                        "end": 241,
                        "text": "1",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 598,
                        "end": 601,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 604,
                        "end": 608,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 653,
                        "end": 656,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 659,
                        "end": 663,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 711,
                        "end": 714,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Three machine transliteration models have been studied: called \"grapheme 2 -based transliteration model (\u03c8 G )\" [7] , [8] , [9] , [11] , [12] , [13] , \"phoneme 3 -based transliteration model (\u03c8 P )\" [10] , [12] , and \"hybrid transliteration model (\u03c8 H )\" [2] , [4] , [12] . \u03c8 G and \u03c8 P are classified in terms of units to be transliterated. \u03c8 G is referred to the direct model because it directly transforms source language graphemes to target language graphemes without any phonetic knowledge of source language words. \u03c8 P is called the pivot model because it makes use of phonemes as a pivot during a transliteration process. Therefore \u03c8 P usually needs two steps; the first step is to produce phonemes from source language graphemes, and the second step is to produce target language graphemes from phonemes. \u03c8 H combines \u03c8 G and \u03c8 P with the linear interpolation style. Hereafter, we will use a source grapheme for a source language grapheme and a target grapheme for a target language grapheme.",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 115,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 118,
                        "end": 121,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 124,
                        "end": 127,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 130,
                        "end": 134,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 137,
                        "end": 141,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 144,
                        "end": 148,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 199,
                        "end": 203,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 206,
                        "end": 210,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 255,
                        "end": 258,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 261,
                        "end": 264,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 267,
                        "end": 271,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Though transliteration is the phonetic process (\u03c8 P ) rather than the orthographic one (\u03c8 G ) [10] , we should consider both source grapheme and phoneme to achieve high performance in machine transliteration because the standard transliterations are not restricted to phoneme-based transliterations 4 . However, many previous works make use of either source grapheme or phoneme. They simplify a machine transliteration problem into either \u03c8 G or \u03c8 P assuming that one of \u03c8 G and \u03c8 P is able to cover all transliteration behaviors. However, transliteration is a complex process, which does not rely on either source grapheme or phoneme. For example, the standard Korean transliterations of amylase and data are grapheme-based transliteration 'amillaaje' and phoneme-based transliteration 'deiteo', respectively. A machine transliteration model, therefore, should reflect the dynamic transliteration behaviors in order to produce the correct transliterations. \u03c8 H has the limited power for producing the correct transliterations because it just combines \u03c8 G and \u03c8 P with the linear interpolation style. \u03c8 H does not consider correspondence between source grapheme and phoneme during the transliteration process. However the correspondence plays important roles in machine transliteration. For example, phoneme /AH/ 5 produces high ambiguities since it can be mapped to almost every single vowels in source language and target language (the underlined grapheme corresponds to /AH/: cinema, hostel, holocaust in English, 'sinema', 'hostel', 'hollokoseuteu' in their Korean counterparts, and 'sinema', 'hoseuteru', 'horokoosuto' in their Japanese counterparts). If we know the correspondence between source grapheme and phoneme in this context, then we can more easily infer the correct transliteration of /AH/, since a target grapheme of /AH/ usually depends on a source grapheme corresponding to /AH/. Korean transliterations of source grapheme a is various such as 'a', 'ei', 'o', 'eo' and so on. Like the previous example, correspondence makes it possible to reduce transliteration ambiguities like Table 1 . In Table 1 , the underlined source grapheme a in the example column is pronounced as the phoneme in the phoneme column. The correct Korean transliterations of source grapheme a can be more easily found, like in the Korean grapheme column, by means of phonemes in the phoneme column. In this paper, we propose a new machine transliteration model based on an ensemble of source grapheme and phoneme, symbolized as \u03c8 C (\"correspondence-based transliteration model\"). \u03c8 C has two strong points over \u03c8 G , \u03c8 P , and \u03c8 H . First, \u03c8 C can produce transliterations by considering correspondence between source grapheme and phoneme. As described above, correspondence is very useful for reducing transliteration ambiguities. From the viewpoint of reducing the ambiguities, \u03c8 C has an advantage over \u03c8 G , \u03c8 P , and \u03c8 H because \u03c8 C can more easily reduce the ambiguities by considering the correspondence. Second, \u03c8 C can dynamically handle source grapheme and phoneme according to their contexts. Because of this property, \u03c8 C can produce grapheme-based transliterations as well as phoneme-based transliterations. It can also produce a transliteration, where one part is a grapheme-based transliteration and the other part is a phoneme-based transliteration. For example, the Korean transliteration of neomycin, 'neomaisin', where 'neo' is a grapheme-based transliteration and 'maisin' is a phoneme-based transliteration.",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 98,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 299,
                        "end": 300,
                        "text": "4",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2098,
                        "end": 2105,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 2111,
                        "end": 2118,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Correspondence-based transliteration model (\u03c8 C ) is composed of two component functions (\u03c8 C : \u03b4 p \u00d7\u03b4 t ). In this paper, we refer to \u03b4 p as a function for \"producing pronunciation\" and \u03b4 t as a function for \"producing target grapheme\". First, \u03b4 p produces pronunciation and then \u03b4 t produces target graphemes with correspondence between source grapheme and phoneme produced by \u03b4 p . The goal of the \u03b4 p is to produce the most probable sequence of phonemes corresponding to source graphemes. For example, \u03b4 p produces /B/, /AO/, /~/ 6 , /R/, and /D/ for each source grapheme, b, o, a, r, and d in board (see \"The result of \u03b4 p \" in the right side of Fig 1) . In this step, pronunciation is generated through two ways; pronunciation dictionary search and pronunciation estimation. A pronunciation dictionary contains the correct pronunciation corresponding to English words. Therefore, English words are first investigated whether they are registered in the dictionary otherwise their pronunciation is estimated by pronunciation estimation. The goal of \u03b4 t is to produce the most probable sequence of target graphemes with correspondence between source grapheme and phoneme, which is the result of \u03b4 p . For example, \u03b4 t produces 'b', 'o', '~', '~', and 'deu' using the result of \u03b4 p , b-/B/, o-/AO/, a-/~/, r-/R/, and d-/D/ (see \"The result of \u03b4 t \" in the right side of Fig 1) . Finally, the target language transliteration, such as the Korean transliteration 'bodeu' for board, can be acquired by concatenating the sequence of target graphemes in the result of \u03b4 t . Table 2 . Feature types used for correspondence-based transliteration model: where S is a set of source graphemes (e.g. English alphabets), P is a set of phonemes defined in ARPABET, T is a set of target graphemes. Note that f S,GS is a symbol for indicating both f S and f GS . f P,GP is a symbol for indicating both f P and f GP . ",
                "cite_spans": [
                    {
                        "start": 534,
                        "end": 535,
                        "text": "6",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 651,
                        "end": 657,
                        "text": "Fig 1)",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1372,
                        "end": 1378,
                        "text": "Fig 1)",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1570,
                        "end": 1577,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Correspondence-Based Machine Transliteration Model",
                "sec_num": "2"
            },
            {
                "text": "board /D/ /R/ /~/ /AO/ /B/ d r a o b /D/ /R/ /~/ /AO/ /B/ 'deu' 'o' 'b' d r a o b p p p p t t Result of p",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Correspondence-Based Machine Transliteration Model",
                "sec_num": "2"
            },
            {
                "text": "(s i ) uses (f S , f GS , f P ) and \u03b4 t (s i , \u03b4 p (s i )) does (f S , f P , f GS , f GP , f T ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Correspondence-Based Machine Transliteration Model",
                "sec_num": "2"
            },
            {
                "text": "Producing pronunciation (\u03b4 p :S\u2192P) is a function that finds phonemes in a set P for each source grapheme, where P is a set of phonemes defined in ARPABET, and S is a set of source graphemes (e.g. English alphabets). The results of this step can be represented as a sequence of correspondences between source grapheme and phoneme. We will denote it as GP={gp 1 ,gp 2 ,\u2026,gp n ; gp i =(s i ,\u03b4 p (s i ))} where s i is the i th source grapheme of SW=s 1 ,s 2 ,...,s n . Producing pronunciation is composed of two steps. The first step involves a search in the pronunciation dictionary, which contains English words and their pronunciation. This paper uses The CMU Pronouncing Dictionary 7 , which contains 120,000 English words and their pronunciation. The second step involves pronunciation estimation. If an English word is not registered in the pronunciation dictionary, we must estimate its pronunciation. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Producing Pronunciation (\u03b4 p )",
                "sec_num": "2.1"
            },
            {
                "text": "\u03b4 p (C0) f S $ $ $ b o a r f GS $ $ $ C V V C /B/ f P $ $ $ Let SW=s 1 ,s 2 ,.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Producing Pronunciation (\u03b4 p )",
                "sec_num": "2.1"
            },
            {
                "text": "..,s n be an English word, and P SW = p 1 ,p 2 ,...,p n be SW's pronunciation, where s i represents the i th grapheme and p i =\u03b4 p (s i ). Pronunciation estimation is a task to find the most relevant phoneme among a set of all possible phonemes, which can be derived from source grapheme s i . Table 3 shows an example of pronunciation estimation for b in board. In Table 3 , L1~L3 and R1~R3 represent the left contexts and right contexts, respectively. C0 means the current context (or focus). \u03b4 p (C0) means the estimated phoneme of C0. $ is a symbol for representing the start of words. The result can be interpreted as follows. The most relevant phoneme of b, /B/, can be produced with the context, f S , f GS , and f P in contexts of L1~L3, C0, and R1~R3. Other phonemes for o, a, r, and d in board are produced in the same manner. Thus, we can get the pronunciation of board as /B AO R D/ by concatenating the phoneme sequence.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 294,
                        "end": 301,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 366,
                        "end": 373,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Producing Pronunciation (\u03b4 p )",
                "sec_num": "2.1"
            },
            {
                "text": "Producing target graphemes (\u03b4 t :S\u00d7P\u2192T) is a function that finds the target grapheme in T for each gp i that is a result of \u03b4 p . A result of this step, GT, is represented by a sequence of gp i and its corresponding target graphemes generated by \u03b4 t , like GT={gt 1 , gt 2 ,\u2026, gt n ; gt i =(gp i ,\u03b4 t (gp i ))}. ) , phoneme type (f GP ) and \u03b4 t 's previous output (f T ) in the context window. Table 4 shows an example of \u03b4 t for b in board. \u03b4 t produces the most probable sequence of target graphemes (e.g. Korean), like \u03b4 t (gp",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 312,
                        "end": 313,
                        "text": ")",
                        "ref_id": null
                    },
                    {
                        "start": 394,
                        "end": 401,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Producing Target Graphemes (\u03b4 t )",
                "sec_num": "2.2"
            },
            {
                "text": "\u03b4 t (C0) f S $ $ $ b o a r 'b' f P $ $ $ /B/ /AO/ /~/ /R/ f GS $ $ $ C V V C f GP $ $ $ C V /~/ C f T $ $ $ Let",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Producing Target Graphemes (\u03b4 t )",
                "sec_num": "2.2"
            },
            {
                "text": "1 )= 'b', \u03b4 t (gp 2 )= 'o', \u03b4 t (gp 3 )='~', \u03b4 t (gp 4 )='~'",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Producing Target Graphemes (\u03b4 t )",
                "sec_num": "2.2"
            },
            {
                "text": ", and \u03b4 t (gp 5 )='deu' for board. Finally, the target language transliteration of board as 'bodeu' can be acquired by concatenating the sequence of produced target graphemes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Producing Target Graphemes (\u03b4 t )",
                "sec_num": "2.2"
            },
            {
                "text": "In this section we will describe a way of modeling component functions using three machine learning algorithms (maximum entropy model, decision tree, and memorybased learning).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Machine Learning Algorithms for Each Component Function",
                "sec_num": "3"
            },
            {
                "text": "The maximum entropy model (MEM) is a widely used probability model that can incorporate heterogeneous information effectively [3] . In the maximum entropy model, an event ev is usually composed of a target event (te) and a history event (he), say ev=<te, he>. Event ev is represented by a bundle of feature functions, fe i (ev), which represent the existence of a certain characteristic in event ev. A feature function is a binary valued function. It is activated (fe i (ev)=1) when it meets its activating condition, otherwise it is deactivated (fe i (ev)=0) [ ",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 129,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 560,
                        "end": 561,
                        "text": "[",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Model",
                "sec_num": "3.1"
            },
            {
                "text": "f T (i-3,i-1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Model",
                "sec_num": "3.1"
            },
            {
                "text": "where i is a index of the current source grapheme and phoneme to be transliterated and f X(l,m) represents features of feature type f X located from position l to position m. Target events are a set of target graphemes (phonemes) derived from history events of \u03b4 t (\u03b4 p ). Given history events, \u03b4 t (\u03b4 p ) finds the most probable target grapheme (phoneme), which maximizes formula (1). One important thing in designing a model based on the maximum entropy model is to determine feature functions which effectively support certain decision of the model. Our basic philosophy of feature function design for each component function is that context information collocated with the unit of interest is an important factor. With the philosophy, we determined the history events (or activating conditions) of the feature functions by combinations of features in feature types. Possible feature combinations for history events are between features in the same feature type and between features in different feature types. The used feature combinations in each component function are listed in Table 5 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1085,
                        "end": 1092,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Maximum Entropy Model",
                "sec_num": "3.1"
            },
            {
                "text": "= = i i GS S i i P i i p i i GP P i i GS S i i T i i p i t f f p p s f f f t p s s \u03b4 \u03b4 \u03b4 (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Model",
                "sec_num": "3.1"
            },
            {
                "text": "Decision tree learning is one of the most widely used and well-known methods for inductive inference [15] . ID3, which is a greedy algorithm and constructs decision trees in a top-down manner, adopts a statistical measure called information gain that measures how well a given feature (or attribute) separates training examples according to their target class [15] . We use C4.5 [15] , which is a well-known tool for decision tree learning and implementation of Quinlan's ID3 algorithm.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 105,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 360,
                        "end": 364,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 379,
                        "end": 383,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decision Tree",
                "sec_num": "3.2"
            },
            {
                "text": "Training data for each component function is represented by features of feature types in the context of L3~L1, C0, and R1~R3 as described in Table 3 . Fig. 2 shows a fraction of our decision trees for \u03b4 p and \u03b4 t in English-to-Korean transliteration (note that the left side represents the decision tree for \u03b4 p and the right side represents the decision tree for \u03b4 t ). A set of the target classes in the decision tree for \u03b4 p will be a set of phonemes and that for \u03b4 t will be a set of target graphemes. In Fig. 2, rectangles indicate a leaf node and circles indicate a decision node. In order to simplify our examples, we just use f S and f P in Fig. 2 . Intuitively, the most effective feature for \u03b4 p and \u03b4 t may be located in C0 among L3~L1, C0, and R1~R3 because the correct outputs of \u03b4 p and \u03b4 t strongly depend on source grapheme or phoneme in the C0 position.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 148,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 151,
                        "end": 157,
                        "text": "Fig. 2",
                        "ref_id": null
                    },
                    {
                        "start": 509,
                        "end": 527,
                        "text": "Fig. 2, rectangles",
                        "ref_id": null
                    },
                    {
                        "start": 649,
                        "end": 655,
                        "text": "Fig. 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decision Tree",
                "sec_num": "3.2"
            },
            {
                "text": "As we expected, the most effective feature in the decision trees is located in the C0 position like C0(f S ) for \u03b4 p and C0(f P ) for \u03b4 t (Note that the first feature to be tested is the most effective feature). In Fig. 2 , the decision tree for \u03b4 p outputs phoneme /AO/ for the instance x(SP) by retrieving the decision nodes C(f S )=o, R1(f S )=a, and R2(f S )=r represented with '*'. With the similar manner, the decision tree for \u03b4 t produces target grapheme (Korean grapheme) 'o' for the instance x(SPT) by retrieving the decision nodes from C0(f P )=/AO/ to R1(f P )=/~/ represented with '*'. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 215,
                        "end": 221,
                        "text": "Fig. 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decision Tree",
                "sec_num": "3.2"
            },
            {
                "text": "C0(f S ): i C0(f S ): i L2(f S ): a L2(f S ): a L2(f S ): r L2(fS): r L2(f S ): $ L2(f S ): $ \u2026\u2026 'o' \u2192 d r a o b $ $ f S x(SPT) f P Feature type /D/ /R/ /~/ /AO/ /B/ $ $ \u03b4t R3 R2 R1 C0 L1 L2 L3",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decision Tree",
                "sec_num": "3.2"
            },
            {
                "text": "Decision tree for \u03b4 t Decision tree for \u03b4 t Fig. 2 . Decision tree for \u03b4 p and\u03b4 t",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 44,
                        "end": 50,
                        "text": "Fig. 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decision Tree",
                "sec_num": "3.2"
            },
            {
                "text": "Memory-based learning (MBL) is an example-based learning method. It is also called instance-based learning and case-based learning method. It is based on a k-nearest neighborhood algorithm [1] , [5] . MBL represents a training data as a vector. In the training phase, MBL puts all training data as examples in memory, and clusters some examples with a k-nearest neighborhood principle. It then outputs a target class using similarity-based reasoning between test data and examples in the memory. Let test data be x and a set of examples in a memory be Y, the similarity between x and Y is estimated by a distance function, \u2206(x,Y). MBL selects an example y i or a cluster of examples that are most similar to x, then assign a target class of the example to x's class. We use a memory-based learning tool called TiMBL (Tilburg memory-based learner) version 5.0 [5] .",
                "cite_spans": [
                    {
                        "start": 189,
                        "end": 192,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 195,
                        "end": 198,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 859,
                        "end": 862,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory-Based Learning",
                "sec_num": "3.3"
            },
            {
                "text": "Training data for each component function is represented by features of feature types in the context of L3~L1, C0, and R1~R3 as described in Table 4 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 148,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Memory-Based Learning",
                "sec_num": "3.3"
            },
            {
                "text": "<-3, +3> X GPC O X X Unbounded O GMEM O X X <-3, +3> O HWFST O O X - - Ours O O O <-3, +3> O",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory-Based Learning",
                "sec_num": "3.3"
            },
            {
                "text": "From the viewpoint of information usage, if a transliteration model adopts wide context window and considers previous outputs, it tends to show better performance. For example, GMEM that satisfies the conditions gives more accurate results than GDT which does not satisfy one of them. Because machine transliteration is sensitive to context, wider contexts give more powerful transliteration ability to machine transliteration systems. Note that the previous works, however, limit their context window size to 3, because the context window size over 3 degrades the performance [8] or does not change the performance of their transliteration model [9] . Determining reasonable context window size, therefore, is very important for machine transliteration.",
                "cite_spans": [
                    {
                        "start": 577,
                        "end": 580,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 647,
                        "end": 650,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory-Based Learning",
                "sec_num": "3.3"
            },
            {
                "text": "For \"Context window size test\", we use \u03c8 C based on MBL, which shows the best performance among three machine learning algorithms in Table 6 . Experiments are performed by changing the context window size from 1 to 5. Table 8 shows results of context window size test. The results indicate that the best performance is shown when the context window size is 3. When the context window size is 1, there are many cases where the correct transliterations are not produced due to lack of information. For example, in order to produce the correct target grapheme of t in -tion, we need the right three graphemes of t, -ion. When the context window size is over 3, it is difficult to generalize the training data because of increase of variety of the training data. With the two reasons, our system shows the best performance when the context window size is 3. Table 8 also shows that context size should be at least 2 to avoid significant decrease of performance due to lack of contextual information. In summary, our method shows significant performance improvement, about 15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in English-to-Japanese transliteration. Experiments show that a good transliteration system should consider; 1) source grapheme and phoneme along with their correspondence simultaneously and 2) reasonable context size and previous output. Our transliteration model satisfies the two conditions, thus it shows higher performance than the previous works.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 133,
                        "end": 140,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 218,
                        "end": 225,
                        "text": "Table 8",
                        "ref_id": "TABREF11"
                    },
                    {
                        "start": 854,
                        "end": 861,
                        "text": "Table 8",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Memory-Based Learning",
                "sec_num": "3.3"
            },
            {
                "text": "This paper has described a correspondence-based machine transliteration model (\u03c8 C ). Unlike the previous transliteration models, \u03c8 C uses correspondence between source grapheme and phoneme. The correspondence makes it possible for \u03c8 C to effectively produce both grapheme-based transliterations and phoneme-based transliterations. Moreover, the correspondence helps \u03c8 C to reduce transliteration ambiguities more easily. Experiments show that \u03c8 C is more powerful transliteration model than the previous transliteration models (\u03c8 C shows significant performance improvement, about 15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in English-to-Japanese transliteration).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In future work, we will apply our transliteration model to English-to-Chinese transliteration model. In order to prove usefulness of our method in NLP applications, we need to apply our system to applications such as automatic bi-lingual dictionary construction, information retrieval, machine translation, speech recognition and so on.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In this paper, target language transliterations are represented with their Romanization form in a quotation mark ('') .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Graphemes refer to the basic units (or the smallest contrastive units) of written language: for example, English has 26 graphemes or letters, Korean has 24, and German has 30.3 Phonemes are the simplest significant unit of sound (or the smallest contrastive units of the spoken language): for example, the /M/, /AE/, and /TH/ in math.4 In an English-to-Korean transliteration test set[14], we find that about 60% are phonemebased transliterations, while about 30% are grapheme-based ones. The others are transliterations generated by combining \u03c8 G and \u03c8 P .5 ARPAbet symbol will be used for representing phonemes. ARPAbet is one of the methods used for coding phonemes into ASCII characters (www.cs.cmu.edu/~laura/pages/arpabet.ps).In this paper, we will denote phonemes and pronunciation with two slashes like so : /AH/. Pronunciation represented in this paper is based on The CMU Pronunciation Dictionary and The American Heritage(r) Dictionary of the English Language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In this paper, '/~/' represents silence and '~' represents null target grapheme.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.csse.monash.edu.au/~jwb/j_edict.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the Korea Ministry of Science and Technology, the Korea Ministry of Commerce, Industry and Energy, and the Korea Science and Engineering Foundation (KOSEF).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": null
            },
            {
                "text": "Training instances in a memory (\u03b4 t ) Training instances in a memory (\u03b4 t ) Fig. 3 . Memory-based learning for \u03b4 p and \u03b4 t",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 76,
                        "end": 82,
                        "text": "Fig. 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            },
            {
                "text": "We perform experiments for English-to-Korean and English-to-Japanese transliteration. English-to-Korean test set (EKSet) [14] consists of 7,185 English-Korean pairsthe number of training data is 6,185 and that of test data is 1,000. EKSet contains no transliteration variations. English-to-Japanese test set (EJSet), which is an Englishkatakana pair in EDICT 8 , consists of 10,398 -1,000 for test and the rest for training. EJSet contains transliteration variations, like (micro, 'maikuro') and (micro, 'mikuro'); the average number of Japanese transliterations for an English word is 1.15. Evaluation is performed by word accuracy (W. A.) in formula (2) . We perform two experiments called \"Comparison test\" and \"Context window size test\". In the \"Comparison test\", we compare our \u03c8 C with the previous works. In \"Context window size test\", we evaluate the performance of our transliteration model depending on context window size. Table 6 shows results of \"Comparison test\". MEM, DT, and MBL represent \u03c8 C based on maximum entropy model, decision tree, and memory-based learning, respectively. GDT [8] , GPC [9] , GMEM [7] and HWFST [4] , which are one of the best machine transliteration methods in English-to-Korean transliteration and English-to-Japanese transliteration, are compared with \u03c8 C . Table 7 shows the key feature of each method in the viewpoint of information type (SG, PH, COR) and information usage (Context size, POut). Information type indicates that each transliteration method belongs to which transliteration model. For example, GDT, GPC, and GMEM will belong to \u03c8 G because they use only the source grapheme; while HWFST belongs to \u03c8 H . Information usage gives information about what kinds of information each transliteration method can deal with. From the viewpoint of information type, phoneme and correspondence, which most previous works do not consider, is the key point of the performance gap between our method and the previous works.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 125,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 359,
                        "end": 360,
                        "text": "8",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 652,
                        "end": 655,
                        "text": "(2)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1101,
                        "end": 1104,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1111,
                        "end": 1114,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1122,
                        "end": 1125,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1136,
                        "end": 1139,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 934,
                        "end": 941,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 1302,
                        "end": 1309,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Lazy learning: Special issue editorial",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "W"
                        ],
                        "last": "Aha",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Artificial Intelligence Review",
                "volume": "11",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aha, D. W. Lazy learning: Special issue editorial. Artificial Intelligence Review, 11:710, (1997).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Translating Named Entities Using Monolingual and Bilingual Resources",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Al-Onaizan",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "the Proceedings of ACL 2002",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Al-Onaizan Y. and Kevin Knight, \"Translating Named Entities Using Monolingual and Bilingual Resources\", In the Proceedings of ACL 2002, (2002)",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "Della"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Della Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--71",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berger, A., S. Della Pietra, and V. Della Pietra. , A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), (1996), 39-71",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Improving Back-Transliteration by Combining Information Sources",
                "authors": [
                    {
                        "first": "Bilac",
                        "middle": [],
                        "last": "Slaven",
                        "suffix": ""
                    },
                    {
                        "first": "Hozumi",
                        "middle": [],
                        "last": "Tanaka",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of IJC-NLP2004",
                "volume": "",
                "issue": "",
                "pages": "542--547",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bilac Slaven and Hozumi Tanaka. \"Improving Back-Transliteration by Combining Infor- mation Sources\". In Proc. of IJC-NLP2004, (2004) 542-547",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Timble TiMBL: Tilburg Memory Based Learner",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    },
                    {
                        "first": "Jakub",
                        "middle": [],
                        "last": "Zavrel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ko Van Der",
                        "suffix": ""
                    },
                    {
                        "first": "Antal",
                        "middle": [],
                        "last": "Sloot",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daelemans, W., Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch, 2002, Timble TiMBL: Tilburg Memory Based Learner, version 4.3, Reference Guide, ILK Technical Report 02-10, (2002).",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration",
                "authors": [
                    {
                        "first": "Atsushi",
                        "middle": [],
                        "last": "Fujii",
                        "suffix": ""
                    },
                    {
                        "first": "Ishikawa",
                        "middle": [],
                        "last": "Tetsuya",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Computers and the Humanities",
                "volume": "35",
                "issue": "4",
                "pages": "389--420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fujii, Atsushi and Tetsuya, Ishikawa. Japanese/English Cross-Language Information Re- trieval: Exploration of Query Translation and Transliteration. Computers and the Humani- ties, Vol.35, No.4, (2001) 389-420",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Transliteration Considering Context Information Based on the Maximum Entropy Method",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Goto",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Kato",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Uratani",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ehara",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of MT-Summit IX",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Goto, I., N. Kato, N. Uratani and T. Ehara, Transliteration Considering Context Informa- tion Based on the Maximum Entropy Method, In Proceedings of MT-Summit IX, (2003)",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Automatic Transliteration and Back-transliteration by Decision Tree Learning",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "J"
                        ],
                        "last": "Kang",
                        "suffix": ""
                    },
                    {
                        "first": "K-S",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 2nd International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kang B.J. and K-S. Choi, \"Automatic Transliteration and Back-transliteration by Decision Tree Learning\", In Proceedings of the 2nd International Conference on Language Re- sources and Evaluation, (2000)",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "English-to-Korean Transliteration using Multiple Unbounded Overlapping Phoneme Chunks",
                "authors": [
                    {
                        "first": "I",
                        "middle": [
                            "H"
                        ],
                        "last": "Kang",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "C"
                        ],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 18th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kang, I.H. and G.C. Kim, \"English-to-Korean Transliteration using Multiple Unbounded Overlapping Phoneme Chunks\", In Proceedings of the 18th International Conference on Computational Linguistics, (2000).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Machine Transliteration",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Graehl",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings. of the 35th Annual Meetings of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Knight, K. and J. Graehl, \"Machine Transliteration\". In Proceedings. of the 35th Annual Meetings of the Association for Computational Linguistics (ACL), (1997)",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "English to Korean Statistical transliteration for information retrieval",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "S"
                        ],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Computer Processing of Oriental Languages",
                "volume": "12",
                "issue": "1",
                "pages": "17--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, J. S. and K. S. Choi, English to Korean Statistical transliteration for information re- trieval. Computer Processing of Oriental Languages, 12(1), (1998), 17-37.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "An English-Korean transliteration and Retransliteration model for Cross-lingual information retrieval",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, J.S., An English-Korean transliteration and Retransliteration model for Cross-lingual information retrieval, PhD Thesis, Computer Science Dept., KAIST, (1999)",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A Joint Source-Channel Model for Machine Transliteration",
                "authors": [
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Haizhou",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "159--166",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li Haizhou, Min Zhang and Jian Su , A Joint Source-Channel Model for Machine Trans- literation , ACL 2004, (2004), 159-166",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Foreign dictionary, Sung-An-Dang publisher",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [
                            "S"
                        ],
                        "last": "Nam",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nam, Y.S., Foreign dictionary, Sung-An-Dang publisher, (1997)",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "C4.5: Programs for Machine Learning",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Quinlan",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Quinlan, J.R., \"C4.5: Programs for Machine Learning\", Morgan Kauffman, (1993)",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Maximum Entropy Modeling Toolkit for Python and C++",
                "authors": [
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, Le. Maximum Entropy Modeling Toolkit for Python and C++. http://www.nlplab.cn/zhangle/, (2004)",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "The overall system architecture",
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "text": "S ): y R1(fS): y R1(f S ): e or q R1(fS): e or q R1(f S ): a(S ): x R1(fS): x \u2026\u2026 R2(f S ): d R2(f S ): d R2(f S ): r(*) R2( R2(f f S S): r(*) ): r(*) R2(f S ): others R2(f S ): others R2(f S ): $ R2(f S ): $ /OW/ /OW/ /OW/ /OW/ /AO/(*) /AO/(*) /AO/(*) R1(f S ): b R1(fS): b L2(f S ): a L2(f S ): a L2(f S ): r L2(f S ): r L2(f S ): $ L2(f S ): $ \u2026\u2026 S ): a C0(f S ): a C0(f S ): e C0(f S ): e C0(f S ): o(S ): others C0(fS): others \u2026\u2026 R1(f P ): /R/ R1(f P ): /R/ R1(f S ): /~/(*) R1( R1(f f S S): /~/(*) ): /~/(*) R1(f P ): others R1(f P ): others",
                "type_str": "figure",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "text": "shows examples of \u03b4 p and \u03b4 t based on MBL in English-to-Korean transliteration. In order to simplify our examples, we just use f S and f P in Fig. 3. All training data are represented with their features in the context of L3~L1, C0, and R1~R3 and their target classes for \u03b4 p and \u03b4 t . They are stored in the memory through a training phase. Feature weighting for dealing with features of differing importance is also performed in the training phase. In Fig. 3, \u03b4 p based on MBL outputs the phoneme /AO/ for x(SP) by comparing the similarities between x(SP) and Y using distance metric \u2206(x(SP),Y). With the similar manner, \u03b4 t based on MBL outputs the target grapheme 'o'.",
                "type_str": "figure",
                "uris": null
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Examples of Korean graphemes derived from source grapheme a and its correspond-",
                "content": "<table><tr><td colspan=\"3\">ing phoneme: the underline indicates source graphemes corresponding to each phoneme in the</td></tr><tr><td>phoneme column</td><td/><td/></tr><tr><td>Korean grapheme</td><td>Phoneme</td><td>Example</td></tr><tr><td>'a'</td><td>/AA/</td><td>adagio, safari, vivace</td></tr><tr><td>'ae'</td><td>/AE/</td><td>advantage, alabaster, travertine</td></tr><tr><td>'ei'</td><td>/EY/</td><td>chamber, champagne, chaos</td></tr><tr><td>'i'</td><td>/IH/</td><td>advantage, average, silage</td></tr><tr><td>'o'</td><td>/AO/</td><td>allspice, ball, chalk</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Pronunciation estimation in \u03b4 p and \u03b4 t are trained by machine learning algorithms. To train each component function, we need features that represent training instance and data.Table 2shows five feature types, f S , f P , f GS , f GP, and f T that our model uses. Depending on component functions, different feature types are used. For example, \u03b4 p",
                "content": "<table><tr><td colspan=\"2\">Feature Type</td><td>Description</td><td>Possible feature values</td></tr><tr><td>f S,GS</td><td>f S</td><td>Source graphemes</td><td>Source grapheme in S; 26 alphabets</td></tr><tr><td/><td/><td/><td>for English</td></tr><tr><td/><td>f GS</td><td>Source grapheme type</td><td>Consonant (C), and Vowel (V)</td></tr><tr><td>f P,GP</td><td>f P</td><td>Phonemes</td><td>Phonemes in P (/AA/, /AE/, etc.)</td></tr><tr><td/><td>f GP</td><td>Phoneme type</td><td>Consonant (C), Vowel (V), Semi-</td></tr><tr><td/><td/><td/><td>vowel (SV) and silence (/~/)</td></tr><tr><td/><td>f T</td><td>Target graphemes</td><td>Target graphemes in T</td></tr></table>"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "An example of pronunciation estimation for b in board",
                "content": "<table><tr><td>Feature type L3</td><td>L2</td><td>L1</td><td>C0 R1</td><td>R2</td><td>R3</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "An example of \u03b4 t for b in board",
                "content": "<table><tr><td>Feature type</td><td>L3</td><td>L2</td><td>L1</td><td>C0</td><td>R1</td><td>R2</td><td>R3</td></tr></table>"
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "SW=s 1 ,s 2 ,...,s n be a source language word, P SW = p 1 ,p 2 ,...,p n be SW's pronunciation and T SW = t 1 , t 2 ,...,t n be a target language word of SW, where s i , \u03b4 p (s i )=p i and \u03b4 t (gp i ) = t i represent the i th source grapheme, phoneme corresponding to s i , and target graph-",
                "content": "<table/>"
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "3].\u03b4 p and \u03b4 t based on the maximum entropy model can be represented as formula(1).",
                "content": "<table><tr><td>History events in each component function are made from the left, right and current context. For example, history events for \u03b4 t are composed of f S,GS (i-3,i+3) , f P,GP (i-3,i+3) , and</td></tr></table>"
            },
            "TABREF8": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Used feature combinations for history eventsIn formula (1), history events of \u03b4 p and \u03b4 t are defined by the conditions described inTable 5. Target events of \u03b4 t are all possible target graphemes derived from its history events; while those of \u03b4 p are all possible phonemes derived from its history events. In order to model each component function based on MEM, Zhang's maximum entropy modeling tool is used[16].",
                "content": "<table><tr><td>\u03b4 p</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">\u03b4 t</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td colspan=\"12\">Between features in the same feature</td><td/><td/><td colspan=\"13\">Between features in the same feature</td></tr><tr><td>type</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"3\">type</td><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td colspan=\"12\">Between features in different feature</td><td/><td/><td colspan=\"13\">Between features in different feature</td></tr><tr><td>types</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"5\">types</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td colspan=\"3\">f S,GS and f P</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"6\">f S,GS and f P,GP</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"6\">f S,GS and f T</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"6\">f P,GP and f T</td></tr><tr><td>(</td><td>,</td><td>(</td><td colspan=\"2\">))</td><td>arg</td><td colspan=\"2\">max</td><td>(</td><td>|</td><td/><td>\u2212</td><td>3</td><td>,</td><td>1 \u2212</td><td>,</td><td/><td>,</td><td/><td>3 \u2212</td><td>,</td><td>+</td><td>3</td><td>,</td><td>,</td><td>\u2212</td><td>3</td><td>,</td><td>+</td><td>3</td><td>)</td></tr><tr><td>(</td><td>)</td><td colspan=\"2\">arg</td><td colspan=\"2\">max</td><td>(</td><td>|</td><td>3 \u2212</td><td>,</td><td>1 \u2212</td><td>,</td><td/><td>,</td><td/><td>\u2212</td><td>, 3</td><td>+</td><td>3</td><td>)</td><td/><td/><td/><td/><td/><td/></tr></table>"
            },
            "TABREF9": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "",
                "content": "<table><tr><td>y i</td><td>Feature type</td><td>L3</td><td>L2</td><td>L1</td><td>C0</td><td>R1</td><td/><td>R2</td><td>R3</td><td colspan=\"2\">\u03b4 p (C0)</td><td>\u0394 (x(SP),y i )</td></tr><tr><td>1*</td><td>f S</td><td>$</td><td>a</td><td>b</td><td>o</td><td>a</td><td/><td>r</td><td>d</td><td colspan=\"2\">/AO/</td><td>0.93</td></tr><tr><td>2</td><td>f S</td><td>h</td><td>a</td><td>b</td><td>o</td><td>$</td><td/><td>$</td><td>$</td><td colspan=\"2\">/OW/</td><td>0.38</td></tr><tr><td>3</td><td>fS</td><td>$</td><td>$</td><td>b</td><td>o</td><td>a</td><td/><td>s</td><td>t</td><td colspan=\"2\">/OW/</td><td>0.81</td></tr><tr><td>4</td><td>fS</td><td>$</td><td>$</td><td>b</td><td>o</td><td>a</td><td/><td>t</td><td>$</td><td colspan=\"2\">/OW/</td><td>0.81</td></tr><tr><td>5</td><td>f S</td><td>$</td><td>$</td><td>c</td><td>o</td><td>a</td><td/><td>r</td><td>s</td><td colspan=\"2\">/AO/</td><td>0.73</td></tr><tr><td>6</td><td>f S</td><td>$</td><td>e</td><td>d</td><td>o</td><td>a</td><td/><td>r</td><td>d</td><td colspan=\"2\">/W/</td><td>0.75</td></tr><tr><td>7</td><td>fS</td><td>c</td><td>k</td><td>s</td><td>a</td><td>w</td><td/><td>$</td><td>$</td><td colspan=\"2\">/AO/</td><td>0.16</td></tr><tr><td>8</td><td>fS</td><td>e</td><td>a</td><td>b</td><td>o</td><td>u</td><td/><td>t</td><td>$</td><td colspan=\"2\">/UW/</td><td>0.51</td></tr><tr><td/><td>x(SP)</td><td colspan=\"2\">Feature type</td><td>L3</td><td>L2</td><td>L1</td><td>C0</td><td>R1</td><td>R2</td><td>R3</td><td>\u03b4 p</td></tr><tr><td/><td/><td>f S</td><td/><td>$</td><td>$</td><td>b</td><td>o</td><td>a</td><td>r</td><td>d</td><td>\u2192</td><td>/AO/</td></tr></table>"
            },
            "TABREF10": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Evaluation results of \"Comparison test\" Key features of our machine transliteration model and the previous works: SG, PH, COR and POut represent source grapheme, phoneme, correspondence and previous output, respectively",
                "content": "<table><tr><td>Method</td><td/><td>EKSet</td><td/><td/><td>EJSet</td></tr><tr><td/><td/><td>W.A</td><td colspan=\"2\">Chg %</td><td>W.A</td><td>Chg %</td></tr><tr><td>GDT</td><td/><td>51.4%</td><td>23.2%</td><td/><td>50.3%</td><td>43.5%</td></tr><tr><td>GPC</td><td/><td>55.1%</td><td>17.6%</td><td/><td>53.2%</td><td>35.7%</td></tr><tr><td>GMEM</td><td/><td>55.9%</td><td>16.4%</td><td/><td>56.2%</td><td>28.5%</td></tr><tr><td>HWFST</td><td/><td>58.3%</td><td>14.7%</td><td/><td>62.5%</td><td>15.5%</td></tr><tr><td>DT</td><td/><td>62.0%</td><td>7.3%</td><td/><td>66.8%</td><td>8.1%</td></tr><tr><td>MEM</td><td/><td>63.3%</td><td>5.4%</td><td/><td>67.0%</td><td>7.8%</td></tr><tr><td>MBL</td><td/><td>66.9%</td><td>0%</td><td/><td>72.2%</td><td>0%</td></tr><tr><td>Method</td><td>SG</td><td>PH</td><td>COR</td><td colspan=\"2\">Context size</td><td>POut</td></tr><tr><td>GDT</td><td>O</td><td>X</td><td>X</td><td/><td/></tr></table>"
            },
            "TABREF11": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Evaluation results of \"Context window size test\"",
                "content": "<table><tr><td>Context Size</td><td>EKSet</td><td>EJSet</td></tr><tr><td>1</td><td>54.5%</td><td>62.7%</td></tr><tr><td>2</td><td>63.3%</td><td>70.0%</td></tr><tr><td>3</td><td>66.9%</td><td>72.2%</td></tr><tr><td>4</td><td>63.9%</td><td>70.7%</td></tr><tr><td>5</td><td>63.8%</td><td>69.3%</td></tr></table>"
            }
        }
    }
}