File size: 92,478 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
{
    "paper_id": "I11-1009",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:17.110840Z"
    },
    "title": "Automatic Topic Model Adaptation for Sentiment Analysis in Structured Domains",
    "authors": [
        {
            "first": "Geoffrey",
            "middle": [],
            "last": "Levine",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Illinois at Urbana-Champaign Urbana",
                "location": {
                    "region": "IL"
                }
            },
            "email": "levine@illinois.edu"
        },
        {
            "first": "Gerald",
            "middle": [],
            "last": "Dejong",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Illinois at Urbana-Champaign Urbana",
                "location": {
                    "region": "IL"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We present a novel topic modeling approach to sentiment analysis for documents organized into hierarchical categories. In our approach, positive, negative, and subject matter topics are learned and used to infer document labels. A Markov chain Monte Carlo model procedure adapts the number and structure of topics based on a minimum description length objective function. We apply our approach to Yelp.com business reviews and Amazon.com book reviews and demonstrate that 1) the model adaptation procedure selects a high quality model from the space of alternatives, and 2) the resulting model performs well relative to state of the art regression and topic modeling approaches.",
    "pdf_parse": {
        "paper_id": "I11-1009",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We present a novel topic modeling approach to sentiment analysis for documents organized into hierarchical categories. In our approach, positive, negative, and subject matter topics are learned and used to infer document labels. A Markov chain Monte Carlo model procedure adapts the number and structure of topics based on a minimum description length objective function. We apply our approach to Yelp.com business reviews and Amazon.com book reviews and demonstrate that 1) the model adaptation procedure selects a high quality model from the space of alternatives, and 2) the resulting model performs well relative to state of the art regression and topic modeling approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Selecting an appropriate model is an important part of any machine learning endeavor. The model must be chosen in a manner so as to balance two objectives: 1) Be sufficiently rich to capture the relevant patterns in the data, and 2) Be simple enough to avoid spurious patterns in the training data (overfitting). In natural language processing tasks, there are often many modeling choices to be made regarding what feature granularities and interactions to consider. It is important to make these decisions in a manner such that the resulting model strikes a balance between these two somewhat contradictory objectives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In order to appropriately make these choices, we must consider not only the task involved but also the training data available. With copious data we can reliably calibrate complex models, but with limited data complex models risk overfitting. Many general model selection techniques exist in which each candidate model is fit to the training data and scored with respect to a particular criterion. While these approaches allow us to compare a small number of models in order to select the most appropriate, they require calibrating each model's parameters to the training data. However, when there are many modeling choices to be made and thus a large space of alternative models, fitting all of them to the training data is computationally prohibitive.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we present a novel topic modeling approach for structured sentiment analysis domains and an automatic model adaptation approach that takes advantage of categorical metadata. This model adaptation approach resolves the structure of the metadata with the significant patterns in the training data to determine the number and range of latent topics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We demonstrate our approach on Yelp.com business reviews as well as Amazon.com book reviews. We show that our model adaptation approach selects an appropriate model given a particular amount of training data, and the resulting model is high quality relative to alternative regression and topic modeling approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Sentiment analysis, in which the opinion of the author is estimated from a document, has recently grown in popularity. Many works have explored unigram models (Pang and Lee, 2005; Snyder and Barzilay, 2007) . Higher-order n-gram models are explored in (Pang and Lee, 2008; Baccianella et al., 2009) . In order to combat the high dimensional feature space that accompanies such models, models restricting features based on part of speech patterns (Baccianella et al., 2009) or opinion templates (root, modifiers, negation words) (Qu et al., 2010) have been introduced.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 179,
                        "text": "(Pang and Lee, 2005;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 180,
                        "end": 206,
                        "text": "Snyder and Barzilay, 2007)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 252,
                        "end": 272,
                        "text": "(Pang and Lee, 2008;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 273,
                        "end": 298,
                        "text": "Baccianella et al., 2009)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 446,
                        "end": 472,
                        "text": "(Baccianella et al., 2009)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 528,
                        "end": 545,
                        "text": "(Qu et al., 2010)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2"
            },
            {
                "text": "Topic models are generative models in which the words in a document are assumed to be asso-ciated with one of a number of abstract \"topics.\" Latent Dirichlet allocation (Blei et al., 2003) is a popular topic model in which the topic distribution per document is assumed to have a Dirichlet prior. In supervised LDA (Blei and McAuliffe, 2007) , the distribution of document topics is used to produce a document label. (Zhao et al., 2010; Titov and McDonald, 2008b; Titov and McDonald, 2008a ) focus on topic modeling based approaches to aspect-based sentiment summarization, identifying product features and the opinion associated with each.",
                "cite_spans": [
                    {
                        "start": 169,
                        "end": 188,
                        "text": "(Blei et al., 2003)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 315,
                        "end": 341,
                        "text": "(Blei and McAuliffe, 2007)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 417,
                        "end": 436,
                        "text": "(Zhao et al., 2010;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 437,
                        "end": 463,
                        "text": "Titov and McDonald, 2008b;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 464,
                        "end": 489,
                        "text": "Titov and McDonald, 2008a",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2"
            },
            {
                "text": "Model selection is the act of using data to choose a statistical model from a set of candidates. Often, this task is performed by fitting each candidate model to the training data and using a criterion to score the models and select one. Popular criteria include the Akaike information criterion (AIC) (Akaike, 1974) , the Bayesian information criterion (BIC) (Schwarz, 1978) , and the minimum description length principle (MDL) (Rissanen, 1978; Grunwald, 2007) . Structural Risk Minimization (Vapnik, 1995) defines a general framework in which a nested hierarchy of hypotheses can be defined based on prior knowledge of the domain, such that a hypothesis balancing goodness of fit with simplicity can be identified. The work presented in this paper is closely related to the model adaptation procedure presented in (Levine et al., 2010) , in which a hill-climbing approach is used to explore a large space of generative models.",
                "cite_spans": [
                    {
                        "start": 302,
                        "end": 316,
                        "text": "(Akaike, 1974)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 360,
                        "end": 375,
                        "text": "(Schwarz, 1978)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 429,
                        "end": 445,
                        "text": "(Rissanen, 1978;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 446,
                        "end": 461,
                        "text": "Grunwald, 2007)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 493,
                        "end": 507,
                        "text": "(Vapnik, 1995)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 816,
                        "end": 837,
                        "text": "(Levine et al., 2010)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2"
            },
            {
                "text": "Our approach takes advantage of hierarchical categorical metadata. Formally, this hierarchy forms a tree structure, which we refer to as C (See Figure  1 ). Individual nodes in the tree are called categories, for which we use notation c. A categorization, c, is a set of categories,",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 144,
                        "end": 153,
                        "text": "Figure  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "c = {c d,1 , c d,2 , ...}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "c can be thought of as metadata about a product/service being reviewed. For example, with regard to a book review, c could equal {\"Fiction\", \"Fiction\\Drama\", \"Fiction\\Drama\\Romance\", ... }. c must be well formed. That is, if a node c \u2208 C appears in categorization c, all ancestors of c (in the tree C) must also appear in c. c can contain multiple distantly related categories. For example, a particular book could belong to both \"Fic-tion\\Poetry\" and \"Children\\Humor.\" Documents, or examples, are denoted d = Figure 1 : A subtree of the category tree, C, corresponding to the Amazon Books domain.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 510,
                        "end": 518,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "x d , c d , y d . x d = [w d,1 , w d,2 , ..., w d,|x d | ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "is a vector of words. Each word is an element from the vocabulary, V = {w 1 , w 2 , ..., w |V | }. c d is the document's categorization. y d is a numeric rating from a discrete space ({1,2,3,4,5} for our domains). The rating is an overall score given by the document's author to the product or service being reviewed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "We are given a collection of documents, D, and our goal is to learn a function f ( x, c ) to predict rating\u0177 from an unlabeled document so as to minimize the expected loss over the unknown distribution of documents:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "E (loss(y, f ( x, c )))",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "We use the squared error loss function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Modeling for Sentiment Analysis in Structured Domains",
                "sec_num": "3"
            },
            {
                "text": "We will start by presenting our generative document topic model. In this model, each review is composed of a mixture of topics, and each topic is associated with a distribution over words. We use t \u2208 T to denote a topic, and P t to denote t's word distribution. Within a document, each word is assumed to be generated from a particular topic, although which topic is unobservable. In many topic model approaches, such as latent Dirichlet allocation (Blei et al., 2003) , topics are learned in an unsupervised or weekly supervised fashion (as is the case with supervised LDA). In our model, we assume each document is generated according to a rigid topic distribution (more similar to labeled LDA (Ramage et al., 2011) ). Each document is a mixture of three topics: 1) a positive topic (+), in which the reviewer is speaking favorably about the product/service, 2) a negative topic (-), in which the reviewer is speaking unfavorably, and 3) a subject topic (s i ) corresponding to general text about the content/features of the product.",
                "cite_spans": [
                    {
                        "start": 449,
                        "end": 468,
                        "text": "(Blei et al., 2003)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 696,
                        "end": 717,
                        "text": "(Ramage et al., 2011)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "The proportion of positive words to negative words is a function of the rating score. Subject topics reflect the language used when discussing a particular product or group of products, and do not directly influence a document's rating. Still, learning these topics appropriately is crucial to the performance of the model. When a word is indicative of either the positive or negative topic, it is important to account for its probability in the subject topic. For example, the word \"good\" may be less indicative of a book review's rating if the review discusses a book about ethics. Furthermore, if subject topics are not learned appropriately, words related to the subject matter of products/services with a disproportionate number of positive training reviews would be attributed to the positive word topic. This will lead to poor performance on unseen data. On the other hand, if these words are correctly attributed to the subject topic, then the high ratings will appropriately be attributed to the unconditional positive words appearing in the reviews.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "What constitutes a subject worthy of having its own topic? For books, should we only make broad distinctions such as fiction vs. non-fiction? Should we learn a unique subject topic for each book? Should we use something in between these two extremes? In answering these questions, we need to balance goodness of fit to the training data with model simplicity. There is no optimal answer, it is a function both of the domain (in that we need to make the most \"significant\" distinctions), and the amount of training data available to calibrate our model (more training data allows us to reliably learn the additional parameters introduced by making additional distinctions).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "There exists a many-to-one relationship between documents and subject topics. The mapping from document to subject topic is a function of the document's categorization,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "s i = g(c d ), s i \u2208 T .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "We call the function g the topic mapping function. The range of g is the set of subject topics, {s 1 , s 2 , ..., s N } \u2282 T . In Sections 3.1.1 and 3.1.2 we assume that g is fixed. In Section 3.2, we consider exploring the space of alternative topic mapping functions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "We assume that in expectation, a fixed but unknown fraction, \u03b1 of each document is composed of the subject topic. The remainder of the review is composed of the positive and negative topics, and the positive/negative ratio is related to the docu-ment's rating. Let y min and y max represent the minimum and maximum scores in the rating scale. For document d with score y d the expected fractional breakdown into topics is as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "Positive: f + (y d ) =(1 \u2212 \u03b1) y d \u2212 y min y max \u2212 y min Negative: f \u2212 (y d ) =(1 \u2212 \u03b1) y max \u2212 y d y max \u2212 y min Subject: f s (y d ) =\u03b1 (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "In total, a model M is composed of the topic mapping function, the value \u03b1, and the word distributions associated with each topic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "M = (g, \u03b1, P + , P \u2212 , P s 1 , P s 2 , ..., P s N ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Structure",
                "sec_num": "3.1"
            },
            {
                "text": "Expectation maximization (Hastie et al., 2001 ) can be used to train our topic model. The procedure works by iteratively updating 1) the assignment of words in each document to latent topics (Expectation Step), and 2) the word distributions associated with each topic (Maximization Step). EM proceeds as follows:",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 45,
                        "text": "(Hastie et al., 2001",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "Expectation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "Step Each word is assigned an expected topic distribution. For word i in document d:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "q d,i (+) = f + (y d )P + (w d,i ) Z d,i q d,i (\u2212) = f \u2212 (y d )P \u2212 (w d,i ) Z d,i q d,i (g(c d )) = f s (y d )P g(c d ) (w d,i ) Z d,i Z d,i = t\u2208{+,\u2212,g(c d )} f t (y d )P t (w d,i ) (3) Maximization",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "Step Topic word distributions are updated so as to maximize the likelihood of the training data. For each topic t:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P t (w) = d\u2208D |x d | i=1 I w (w d,i )q d,i (t) d\u2208D |x d | i=1 q d,i (t)",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "I w (w d,i ) = 1 if w d,i = w 0 otherwise (5) 3.1.2 Inference",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "Given the trained topic models we use Bayes' theorem to compute the probability that an unlabeled document x d , c d is associated with a particular rating. Let T d = {+, \u2212, g(c d )}:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (y|x d , c d ) = P (y)P (x d , c d |y) P (x d , c d ) = P (y) |x d | i=1 t\u2208T d f t (y)P t (w d,i ) y P (y ) |x d | i=1 t\u2208T d f t (y)P t (w d,i )",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "For evaluation purposes, we output the expected value of y and compute the squared error to the true value.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "In this section we introduce a Markov chain Monte Carlo approach to selecting a topic mapping function g. Here, we stochastically explore the space of topic mapping functions, driven by the minimum description length principle and estimates of the effect of modifications to g. This approach resists local minima and efficiently finds a high quality topic mapping function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Adaptation",
                "sec_num": "3.2"
            },
            {
                "text": "Our goal is to find a model that balances fit to the training data with simplicity, and concentrates its flexibility where most useful to capture relevant patterns in the domain. We accomplish this by utilizing a two part minimum description length objective function. The objective is the sum of 1) the description length (in bits) required to encode the model and 2) the description length of the data given the model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L(M, D) = L(M ) + L(D|M )",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "where L(M ) is a function of the number of model parameters (\u2248 the product of the number of topics and the vocabulary size) and L(D|M ) is the negative log likelihood of the data given the model. Thus the goal is to jointly minimize the complexity of the model and maximize the likelihood of the data given the model, and the objective can be rewritten as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L(M, D) = \u03b2(N + 2)|V | + \u2212log (l(D|M ))",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "Figure 2: Two possible partitioning trees for the Amazon.com Books category tree (Figure 1 ). Tree b) is formed by splitting s 2 in a) based on membership in the \"Computer\\Software\" category.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 81,
                        "end": 90,
                        "text": "(Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "where \u03b2 is a complexity penalty constant, which is selected via cross-validation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Description Length Objective",
                "sec_num": "3.2.1"
            },
            {
                "text": "The topic mapping function g maps from categorization c to a subject topic s i \u2208 T . We select a particular g from the space of binary partitioning trees, G. In a binary partitioning tree, each internal node references a category c, and each leaf node references a subject topic s i . See Figure 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 289,
                        "end": 297,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Topic Mapping Functions",
                "sec_num": "3.2.2"
            },
            {
                "text": "Starting at the root, a categorization, c is recursively assigned by each internal node to 1) the left subtree if the referenced category c is in c, and 2) the right subtree otherwise, until a leaf (with associated subject topic) is reached. For example, within the book review domain, a node may reference the category \"Computers.\" In this case, computer books are recursively assigned a subject topic by the left subtree, and all others by the right subtree. We allow only well formed partitioning trees: Any node in g that references a category c with parent category parent(c) \u2208 C must have an ancestor that references parent(c). For example, we do not allow a node in g to reference \"Com-puters\\Software\", unless we have already conditioned on the \"Computers\" category. This constraint guarantees that we partition the space of categorizations into coherent regions (we would never assign \"Computer\\Hardware\" and \"Fiction\" books to the same subject topic while assigning \"Computer\\Software\" to a different topic).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Mapping Functions",
                "sec_num": "3.2.2"
            },
            {
                "text": "In order to guide the search through G, we consider 2 types of modification operations: We can 1) Split a leaf based on category c \u2208 C, splitting one partition into two, adding an additional subject topic to the model, or 2) Merge two leaves with the same parent, combining two partitions into one, removing a subject topic from the model. Given a particular g, there are a finite number of possible merge and split operations to the leaves. Key to our search is the fact that we can estimate the change to the description length objective that each possible modification will cause, using the latent topic distributions assigned to each topic during expectation maximization. Consider merging two subject topics s i and s j :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2206L = \u2212\u03b2|V | \u2212 t\u2208{s i ,s j } w\u2208V # t (w)log P m i,j (w) P t (w)",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "# t (w) = d\u2208D |x d | i=1 I w (w d,i )q d,i (t) P m i,j (w) = t\u2208{s i ,s j } # t (w) t\u2208{s i ,s j } d\u2208(D) |x d | i=1 q d,i (t)",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "Now consider splitting subject topic s i based on category c:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2206L = \u03b2|V | \u2212 t\u2208{s i,c ,s i,!c } w\u2208V # t (w)log P t (w) P s i (w)",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "# s i,c (w) = d=(x,c,y)\u2208D s.t.c\u2208c |x d | i=1 I w (w d,i )q d,i (s i ) P s i,c (w) = # s i,c (w) d=(x,c,y)\u2208D s.t.c\u2208c |x d | i=1 q d,i (s i ) # s i,!c (w) = d=(x,c,y)\u2208D s.t.c / \u2208c |x d | i=1 I w (w d,i )q d,i (s i ) P s i,!c (w) = # s i,!c (w) d=(x,c,y)\u2208D s.t.c / \u2208c |x d | i=1 q d,i (s i )",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "These estimates are upper bounds on the change to the description length objective function. Incorporating these changes (and the associated word distributions) and then retraining the model with expectation maximization may further reduce the objective. These bounds serve as a guide to estimate the objective for models that have not been fit to the training data, which will drive our search through G for the optimal topic mapping function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjacent Model Estimation",
                "sec_num": "3.2.3"
            },
            {
                "text": "Markov chain Monte Carlo (Gilks et al., 1996) stochastically steps through the space of alternative topic mapping functions. At each iteration of MCMC, the topic model with the current topic mapping function is fit to the training data and the objective change associated with all possible merges and splits is estimated. We then construct a proposal distribution for alternative models that can be reached with these operations. Limiting the proposal distribution to these candidate models, as in (Titov and Klementiev, 2011) and (Singh et al., 2011) induces a decomposable, feasible computation. A model is sampled from this distribution and adopted if certain criteria on its fitness are met.",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 45,
                        "text": "(Gilks et al., 1996)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 498,
                        "end": 526,
                        "text": "(Titov and Klementiev, 2011)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 531,
                        "end": 551,
                        "text": "(Singh et al., 2011)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "MCMC will converge to a probability distribution over models. By making better models (those with a lower objective) more probable, the MCMC chain will be driven towards higher quality models. We use an exponential distribution over models:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (M ) = e \u2212L(M,D) Z P",
                        "eq_num": "(13)"
                    }
                ],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "with normalization factor Z P . The proposal distribution, Q assigns some probability to all candidate models that can be reached by a single merge or split to each of the leaves in the current partitioning tree. In Q, splits and merges to leaves without a common parent are independent by construction. Now, consider a particular leaf, l, that has the following possible splits, S = {c 1 , c 2 , ..., c l }, and cannot be merged with another leaf. For example, in Figure 2a , the leaf corresponding to s 1 meets this condition as it cannot be merged to another leaf and has possible splits {\"Fiction\\Drama\", \"Fiction\\Poetry\", \"Nonfiction\", \"Computers\", \"Children\", ... }. Let M l represent the subset of models where l is not split, and M l,c i represent the subset of candidate models where l has been split with respect to category c i .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 465,
                        "end": 474,
                        "text": "Figure 2a",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "Q(M l ) = e \u2212\u03c4 L(M,D) Z l Q(M l,c i ) = e \u2212\u03c4 L(M l,c i ,D) |S|Z l Z l = e \u2212\u03c4 L(M,D) + c\u2208S 1 |S| e \u2212 L(M l,c ,D) (14)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "0 < \u03c4 \u2264 1 controls a balance between having the proposal distribution completely influenced by the estimated objectives vs. a uniform proposal distribution. For all pairs of leaves that share a common parent, we entertain a merge operation. In Figure 2a the leaves corresponding to s 2 and s 3 meet this criteria. Suppose two leaves, l and l have possible splits S = {c 1 , c 2 , ..., c l } and S = {c 1 , c 2 , ..., c l } respectively. In addition to the one merged alternative, there are w = (|S| + 1)(|S | + 1) alternatives that involve only splits to the two leaves. Let M l,l represent the subset of candidate models where l and l are merged",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 244,
                        "end": 253,
                        "text": "Figure 2a",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Q(M l,l ) = w \u2212 1 2 e \u2212\u03c4 L(M l,l ,D) w \u2212 1 2 e \u2212\u03c4 L(M l,l ,D) + (Z l )(Z l )",
                        "eq_num": "(15)"
                    }
                ],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "The factor of w \u2212 1 2 accounts for the difference between the number of neighbors that the models with l and l merged vs. split have. If the two leaves are not merged, then the conditional probability for each of the (|S| + 1)(|S | + 1) remaining structural alternatives is computed in Equation 14.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "A new topic mapping function g is sampled from Q and fit to the training data via the expectation maximization presented in Section 3.1.1. If a random value sampled uniformly from U[0, 1) is less than",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (M g )Q(g|g ) P (M g )Q(g |g)",
                        "eq_num": "(16)"
                    }
                ],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "then g is accepted as the new topic mapping function g t+1 . This guarantees that the Markov chain will converge to the distribution P as t \u2192 \u221e. Because the ratio P (M g )/P (M g ) appears in Equation 16, the normalization factor Z P in Equation 13 cancels out and does not need to be computed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MCMC exploration",
                "sec_num": "3.2.4"
            },
            {
                "text": "We perform a set of experiments to demonstrate the following: 1) Given the topic model structure outlined in Section 3.1, the model adaptation procedure in section 3.2 selects a high performing topic mapping function while only evaluating a small fraction of the total number of funtions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "4"
            },
            {
                "text": "2) The topic model resulting from model adaptation is high quality relative to alternative stateof-the-art approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "4"
            },
            {
                "text": "We demonstrate our approach to two structured sentiment analysis datasets. First, we gathered a collection of approximately 8,000 Yelp.com business reviews from the greater New York area. For this data, businesses are assigned into categories and subcategories based on the Yelp.com business hierarchy. There are 22 primary categories {Arts and Entertainment, Education, Financial Services, Restaurants,...}, each with 6 to 100 subcategories (restaurants have the most subcategories, {Japanese, Barbeque, Cafe, Fast Food, Burgers, Ultra High Enc, Formal, Full Bar,...}). Businesses can be assigned to multiple categories and subcategories within the hierarchy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "4.1"
            },
            {
                "text": "Second, we utilize 20,000 Amazon.com book reviews, extracted from the data set first presented in (Qu et al., 2010) . Categorical distinctions in these domains are related to the Amazon.com product hierarchy. A small portion of the product hierarchy appears in Figure 1 . Books can be assigned to multiple distantly related categories. For example, the book Six Wives of Henry VIII belongs to \"History\\Europe\\England\\Tudor and Stuart,\" \"Biographies and Memoirs\\Specific Groups\\Women\" and three other categories For each domain, we have at most one review corresponding to any particular business/book. This allows for a broad coverage of the space of categorizations.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 115,
                        "text": "(Qu et al., 2010)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 261,
                        "end": 269,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "4.1"
            },
            {
                "text": "To compensate for extreme variations in the training data we apply two smoothing steps. First, we found that for longer reviews, the assumption that each word is drawn independently from the document's topics is too strong, and so for reviews with more than 35 words, we scale the term counts such that the total is 35. Second, because of the large size of the vocabulary, after training, some rare words have zero or near zero probability in some of the topics. When these words are observed during inference, they have a very strong effect on the document's expected rating. We found that smoothing the subject topics with the overall word distribution across topics stabilizes the predicted ratings and improves performance. The amount of smoothing could be optimized to maximize the likelihood of the test data, but we found that performance varied little for a wide range of values and so we choose a 1 to 1 smoothing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "From each dataset, we sample a subset of size 1000 for cross validation parameter tuning and use the remaining examples for experimentation. The validation data is used to learn the values of \u03b1, the subject topic fraction, and \u03b2, the complexity penalty. We found that setting \u03c4 , the MCMC smoothing factor, equal to .1 worked well across our datasets. For each trial, then, disjoint training and test sets are sampled from the remaining data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "First, we apply our Markov chain Monte Carlo model adaptation procedure along with greedy and random alternatives to demonstrate the necessity of a directed and stochastic approach. In the greedy approach, at each iteration we estimate the objective for all candidate models that can be reached with a single split/merge to each subject topic and adopt the model with the minimum estimate. For the random approach, at each iteration we start with the simplest topic mapping function (mapping all categorizations to one subject topic), and uniformly at random add distinctions until the model has the same number of subject topics as the optimal model found by the MCMC approach. We choose this instead of sampling at random from all possible topic mapping functions as the vast majority of such functions have nearly as many subject topics as training examples. For each approach, at iteration i, we chart the test mean squared error for the best (lowest objective) model observed during training in iterations 1 to i. Figure 3 charts the per iteration mean squared error on the Yelp test data for the three model adaptation approaches. The greedy approach initially makes the fastest progress, but it is susceptible to local minima, and it levels off before being overtaken by the MCMC approach. As the random approach does not leverage the data in determining what distinctions to make, it fails to make progress at the rate of the other approaches. Its poor performance is indicative of the importance of having an efficient directed model adaptation approach, as high performing models are few and far between, even if we limit our search to models of the appropriate complexity level (number of subject topics). Figure 4 shows a representative partitioning tree learned from the Yelp.com dataset.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1019,
                        "end": 1027,
                        "text": "Figure 3",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1717,
                        "end": 1725,
                        "text": "Figure 4",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "Next we compare our approach to alternative regression and topic modeling approaches. In order to implement regression, we 1) Form a vector of unigram (and optionally bigram) occurrences normalized to length 1 (which we found to work better than unnormalized or frequency vectors), and 2) Form a vector corresponding to categorical membership with one element for each node in category tree C. For each example, we set each element in the vector to value \u03b3 if the example belongs to the corresponding category, and 0 otherwise. The feature vector is the concatenation of these two vectors. We tested three regression approaches: ridge regression, lasso, and -support vector regression with a quadratic kernel (Chang and Lin, 2001 ). In each case, the cross validation dataset is used to tune the value of \u03b3 and the regularization parameter (for ridge regression and lasso) or and the cost parameter (for SVR). We found that in all cases, lasso and SVR were ouperformed by ridge regression, and so omit their results.",
                "cite_spans": [
                    {
                        "start": 709,
                        "end": 729,
                        "text": "(Chang and Lin, 2001",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "For the supervised latent Dirichlet allocation approach, as the space of labels is numeric and discrete, we can treat the task either as a regression problem (Blei and McAuliffe, 2007) , or as a multiclass classification problem We used an open source implementation of each approach, (Chang, 2010) and (Wang, 2009) , and found that utilizing the multiclass approach and predicting the expected rating based on the posterior likelihood of each class outperformed the regression approach, so we present these results. The cross validation data is used to learn the number of latent topics and Dirichlet distribution parameter. For the Markov chain Monte Carlo approach, in order to hasten learning for this comparison, starting from the simplest topic mapping function, we perform a greedy model adaptation until reaching an estimated local minimum, and then apply 50 additional iterations of MCMC model adaptation. Figure 5 shows the average mean squared error for each approach for various amounts of training data. Our topic model with model adaptation has lower error than each of the alternatives. Paired ttests reveal that the differences are statistically significant in all cases (p < .01 for all Yelp.com and p < .05 for all Amazon.com tests). Using MCMC model adaptation also outperforms using either the simplest topic mapping function or the most complex mapping function (which maps each distinct training categorization to a different subject topic).",
                "cite_spans": [
                    {
                        "start": 158,
                        "end": 184,
                        "text": "(Blei and McAuliffe, 2007)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 285,
                        "end": 298,
                        "text": "(Chang, 2010)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 303,
                        "end": 315,
                        "text": "(Wang, 2009)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 915,
                        "end": 923,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "Ridge regression with unigrams uses the same word and categorical representations as our approach. However, it is unable to entertain the nonlinear relationships between document categorizations and words and is outperformed in all cases. Bigrams improve the performance of ridge regression, especially for larger amounts of training data. This suggests that accounting for word ordering could potentially improve the performance of our topic model as well. sLDA is unable to take advantage of the categorical information during topic construction, and with the limited training data available, its performance is marginally better than guessing the mean label (MSE: 1.675 for Yelp.com data and 1.660 for Amazon.com data).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4.2"
            },
            {
                "text": "We present an approach to sentiment analysis for structured domains. In our approach, positive, negative, and subject topics are learned and used to infer document labels. Partitioning tree based topic mapping functions define the number and structure of subject topics. A Markov chain Monte Carlo model adaptation procedure explores the space of topic mapping functions based on a minimum description length objective. We demonstrate the approach on two sentiment analysis domains and show that the model adaptation procedure efficiently finds a high performance model that leverages the categorical structure of the documents to outperform other regression and topic modeling approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "This material is based upon work supported by the Office of Naval Research under Award No. ONR Grant N00014-09-1-0693. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the Office of Naval Research.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgment",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A new look at the statistical model identification",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Akaike",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "IEEE Transactions on Automatic Control",
                "volume": "19",
                "issue": "6",
                "pages": "716--723",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Akaike. 1974. A new look at the statistical model identification. IEEE Transactions on Auto- matic Control, 19(6):716-723.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Muli-facet rating of product reviews",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Baccianella",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "The 31st European Conference on Information Retrieval Research",
                "volume": "",
                "issue": "",
                "pages": "461--472",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Baccianella, A. Esuli, and F. Sebastiani. 2009. Muli-facet rating of product reviews. In The 31st European Conference on Information Retrieval Re- search, pages 461-472.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Supervised topic models",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Mcauliffe",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Blei and J. McAuliffe. 2007. Supervised topic mod- els. In Neural Information Processing Systems.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Latent dirichlet allocation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Jordan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Blei, A. Ng, and M. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993-1022.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "LIB-SVM: A Library for Support Vector Machines",
                "authors": [
                    {
                        "first": "Chih-Chung",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Chih-Jen",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chih-Chung Chang and Chih-Jen Lin, 2001. LIB- SVM: A Library for Support Vector Machines. Software available at http://www.csie.ntu. edu.tw/\u02dccjlin/libsvm.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Lda: Collapsed gibbs sampling methods for topic models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Chang. 2010. Lda: Collapsed gibbs sampling meth- ods for topic models. online.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Markov Chain Monte Carlo in Practice",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Gilks",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Spiegelhalter",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Gilks, S. Richardson, and D. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Minimum Description Length Principle",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Grunwald",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Grunwald. 2007. The Minimum Description Length Principle. The MIT Press, Cambridge, Mass.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "The Elements of Statistical Learning",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hastie",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Tibshirani",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Hastie, R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical Learning. Springer, New York, NY.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic model adaptation for complex structured domains",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Levine",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Dejong",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samdani",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vembu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases",
                "volume": "",
                "issue": "",
                "pages": "243--258",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Levine, G. DeJong, L. Wang, R. Samdani, S. Vembu, and D. Roth. 2010. Automatic model adaptation for complex structured domains. In The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pages 243-258.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "The 43rd Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Pang and L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In The 43rd Annual Meet- ing of the Association for Computational Linguis- tics: Human Language Technologies, page 124.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "1--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Pang and L. Lee. 2008. Opinion mining and senti- ment analysis. Foundations and Trends in Informa- tion Retrieval, 2(1-2):1-135.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The bag-ofopinions method for review rating prediction from sparse text patterms",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Ifrim",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Weikum",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "The International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "913--921",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Qu, G. Ifrim, and G. Weikum. 2010. The bag-of- opinions method for review rating prediction from sparse text patterms. In The International Confer- ence on Computational Linguistics, pages 913-921.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ramage",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "The Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Ramage, D. Hall, R. Nallapati, and C. Manning. 2011. Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In The Conference on Empirical Methods in Natural Lan- guage Processing.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Modeling by shortest data description",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Rissanen",
                        "suffix": ""
                    }
                ],
                "year": 1978,
                "venue": "Automatica",
                "volume": "14",
                "issue": "",
                "pages": "445--471",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Rissanen. 1978. Modeling by shortest data descrip- tion. Automatica, 14:445-471.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Estimating the dimension of a model",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "E"
                        ],
                        "last": "Schwarz",
                        "suffix": ""
                    }
                ],
                "year": 1978,
                "venue": "Annals of Statistics",
                "volume": "6",
                "issue": "2",
                "pages": "461--464",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. E. Schwarz. 1978. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Large-scale cross-document coreference using distributed inference and hierarchical models",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Subramanya",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Singh, A. Subramanya, F. Pereira, and A. McCallum. 2011. Large-scale cross-document coreference us- ing distributed inference and hierarchical models. In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Tech- nologies.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Multiple aspect ranking using the good grief algorithm",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Snyder",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "The 8th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "300--307",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Snyder and R. Barzilay. 2007. Multiple aspect rank- ing using the good grief algorithm. In The 8th An- nual Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, pages 300-307.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A bayesian model for unsupervised semantic parsing",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Klementiev",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "The 49th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Titov and A. Klementiev. 2011. A bayesian model for unsupervised semantic parsing. In The 49th An- nual Meeting of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A joint model of text and aspect ratings for sentiment summarization",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "The 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "308--316",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Titov and R. McDonald. 2008a. A joint model of text and aspect ratings for sentiment summarization. In The 46th Annual Meeting of the Association for Computational Linguistics: Human Language Tech- nologies, pages 308-316.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Modeling online reviews with multi-grain topic models",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "The Seventeenth International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "111--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Titov and R. McDonald. 2008b. Modeling online re- views with multi-grain topic models. In The Seven- teenth International Conference on World Wide Web, pages 111-120.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The Nature of Statistical Learning Theory",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer-Verlag.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Simultaneous image classification and annotation",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Fei-Fei",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IEEE Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Wang, D. Blei, and L. Fei-Fei. 2009. Simultane- ous image classification and annotation. In IEEE Conference on Computer Vision and Pattern Recog- nition.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Supervised latent dirichlet allocation for classification",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Wang. 2009. Supervised latent dirichlet allocation for classification. online.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Jointly modeling aspects and opinions with a maxent-lda hybrid",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "The Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "56--65",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Zhao, J. Jiang, H. Yan, and X. Li. 2010. Jointly modeling aspects and opinions with a maxent-lda hybrid. In The Conference on Empirical Methods in Natural Language Processing, pages 56-65.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Learning curves for three model sampling approaches on Yelp.com test data with 500 training examples (averaged over 20 trials).",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "text": "A representative partitioning tree learned from 500 training examples on the Yelp.com data.",
                "uris": null,
                "type_str": "figure",
                "num": null
            }
        }
    }
}