File size: 126,016 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
{
    "paper_id": "I11-1010",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:32:37.568316Z"
    },
    "title": "Multi-modal Reference Resolution in Situated Dialogue by Integrating Linguistic and Extra-Linguistic Clues",
    "authors": [
        {
            "first": "Ryu",
            "middle": [],
            "last": "Iida",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tokyo Institute of Technology",
                "location": {
                    "addrLine": "2-12-1 Ohokayama Meguro Tokyo",
                    "postCode": "W8-73, 152-8552",
                    "country": "Japan"
                }
            },
            "email": "ryu-i@cl.cs.titech.ac.jp"
        },
        {
            "first": "Masaaki",
            "middle": [],
            "last": "Yasuhara",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tokyo Institute of Technology",
                "location": {
                    "addrLine": "2-12-1 Ohokayama Meguro Tokyo",
                    "postCode": "W8-73, 152-8552",
                    "country": "Japan"
                }
            },
            "email": "yasuhara@cl.cs.titech.ac.jp"
        },
        {
            "first": "Takenobu",
            "middle": [],
            "last": "Tokunaga",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tokyo Institute of Technology",
                "location": {
                    "addrLine": "2-12-1 Ohokayama Meguro Tokyo",
                    "postCode": "W8-73, 152-8552",
                    "country": "Japan"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper focuses on examining the effect of extra-linguistic information, such as eye gaze, integrated with linguistic information on multi-modal reference resolution. In our evaluation, we employ eye gaze information together with other linguistic factors in machine learning, while in prior work such as Kelleher (2006) and Prasov and Chai (2008) the incorporation of eye gaze and linguistic clues was heuristically realised. Conducting our empirical evaluation using a data set extended the REX-J corpus (Spanger et al., 2010) including eye gaze information, we examine which types of clues are useful on these three data sets, which consist largely of pronouns, nonpronouns and both respectively. Our results demonstrate that a dynamically moving visible indicator within the computer display (e.g. a mouse cursor) contributes to reference resolution for pronouns, while eye gaze information is more useful for the resolution of non-pronouns.",
    "pdf_parse": {
        "paper_id": "I11-1010",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper focuses on examining the effect of extra-linguistic information, such as eye gaze, integrated with linguistic information on multi-modal reference resolution. In our evaluation, we employ eye gaze information together with other linguistic factors in machine learning, while in prior work such as Kelleher (2006) and Prasov and Chai (2008) the incorporation of eye gaze and linguistic clues was heuristically realised. Conducting our empirical evaluation using a data set extended the REX-J corpus (Spanger et al., 2010) including eye gaze information, we examine which types of clues are useful on these three data sets, which consist largely of pronouns, nonpronouns and both respectively. Our results demonstrate that a dynamically moving visible indicator within the computer display (e.g. a mouse cursor) contributes to reference resolution for pronouns, while eye gaze information is more useful for the resolution of non-pronouns.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The task of reference resolution has received much attention because it is important for applications that require interpreting text. In recent work on reference resolution within a text, several machine learning-based approaches have been proposed (McCarthy and Lehnert, 1995; Ge et al., 1998; Soon et al., 2001; Ng and Cardie, 2002; Iida et al., 2003; Yang et al., 2003; Denis and Baldridge, 2008) , each of which mainly exploits linguistic clues motivated by the Centering Theory (Grosz et al., 1995) to model the discourse salience of all candidate antecedents. For instance, Yang et al. (2003) and Iida et al. (2003) presented machine learning-based reference resolution mod-els where a pairwise comparison of candidate antecedents, in line with the basic idea of the Centering Theory, leads to the selection of the candidate with the highest salience for a given context. Denis and Baldridge (2008) extended the model by integrating the set of pairwise comparisons into ranking candidates to directly learn which clues of antecedents are useful.",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 277,
                        "text": "(McCarthy and Lehnert, 1995;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 278,
                        "end": 294,
                        "text": "Ge et al., 1998;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 295,
                        "end": 313,
                        "text": "Soon et al., 2001;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 314,
                        "end": 334,
                        "text": "Ng and Cardie, 2002;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 335,
                        "end": 353,
                        "text": "Iida et al., 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 354,
                        "end": 372,
                        "text": "Yang et al., 2003;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 373,
                        "end": 399,
                        "text": "Denis and Baldridge, 2008)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 483,
                        "end": 503,
                        "text": "(Grosz et al., 1995)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 580,
                        "end": 598,
                        "text": "Yang et al. (2003)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 603,
                        "end": 621,
                        "text": "Iida et al. (2003)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 878,
                        "end": 904,
                        "text": "Denis and Baldridge (2008)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Through the empirical evaluations using the data sets provided by the Message Understanding Conference (MUC) 1 and the Automatic Content Extraction (ACE) 2 , which consist of newspaper articles and transcripts of broadcasts, linguistically motivated approaches have achieved better performance than state-of-the-art rule-based reference resolution systems (e.g. Soon et al. (2001) and Ng and Cardie (2002) ).",
                "cite_spans": [
                    {
                        "start": 362,
                        "end": 380,
                        "text": "Soon et al. (2001)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 385,
                        "end": 405,
                        "text": "Ng and Cardie (2002)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In contrast to this research paradigm (i.e. research focusing on only the linguistic aspect of reference), research in the area of multi-modal interfaces has focused on referring expressions used in multi-modal conversations, in other words, identifying referents of referring expressions in a static scene or a situated world (e.g. objects depicted in a computer display), taking extralinguistic clues into account (Byron, 2005; Prasov and Chai, 2008; Prasov and Chai, 2010; Sch\u00fctte et al., 2010, etc.) . For instance, Kelleher and van Genabith (2004) used the centrality and size of a object in the display to determine its visual salience. Prasov and Chai (2008) and Prasov and Chai (2010) exploited eye fixations to detect users' focus of attention in terms of visual prominence; their research has been motivated by work in the cognitive sciences (Tanenhaus et al., 1995; Tanenhaus et al., 2000; Hanna et al., 2003; Hanna and Tanenhaus, 2004; Hanna and Brennan, 2007; Metzing and Brennan, 2003; Ferreira and Tanenhaus, 2007; Brown-Schmidt et al., 2002) .",
                "cite_spans": [
                    {
                        "start": 416,
                        "end": 429,
                        "text": "(Byron, 2005;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 430,
                        "end": 452,
                        "text": "Prasov and Chai, 2008;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 453,
                        "end": 475,
                        "text": "Prasov and Chai, 2010;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 476,
                        "end": 503,
                        "text": "Sch\u00fctte et al., 2010, etc.)",
                        "ref_id": null
                    },
                    {
                        "start": 520,
                        "end": 552,
                        "text": "Kelleher and van Genabith (2004)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 643,
                        "end": 665,
                        "text": "Prasov and Chai (2008)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 670,
                        "end": 692,
                        "text": "Prasov and Chai (2010)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 852,
                        "end": 876,
                        "text": "(Tanenhaus et al., 1995;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 877,
                        "end": 900,
                        "text": "Tanenhaus et al., 2000;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 901,
                        "end": 920,
                        "text": "Hanna et al., 2003;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 921,
                        "end": 947,
                        "text": "Hanna and Tanenhaus, 2004;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 948,
                        "end": 972,
                        "text": "Hanna and Brennan, 2007;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 973,
                        "end": 999,
                        "text": "Metzing and Brennan, 2003;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1000,
                        "end": 1029,
                        "text": "Ferreira and Tanenhaus, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1030,
                        "end": 1057,
                        "text": "Brown-Schmidt et al., 2002)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "These previous studies have shown how promising using eye gaze information for multi-modal reference resolution can be. However, they rely on heuristic techniques for determining visual salience. Hence, there is still room for improvement by introducing eye gaze information in a more systematic and principled manner 3 . This paper, therefore, focuses on a multi-modal reference resolution model that integrates eye gaze and linguistic information by using a machine learning technique. Adapting a ranking-based anaphora resolution model, such as was proposed by Denis and Baldridge (2008) , we integrate extra-linguistic information with other linguistic factors for more accurate reference resolution. With the above as a suitable background, this paper focuses on the issue of how to effectively combine linguistic and extra-linguistic factors for multi-modal reference resolution, taking collaborative task dialogues in Japanese as our target data set.",
                "cite_spans": [
                    {
                        "start": 564,
                        "end": 590,
                        "text": "Denis and Baldridge (2008)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper is organised as follows. We first explain related work and our stance on multi-modal reference resolution in Section 2; we then present which multi-modal task we chose and how we merge eye gaze information into the predefined multi-modal task in Section 3. Section 4 introduces what types of information are used in the experiments shown in Section 5. We finally conclude this paper and discuss future directions in Section 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Within the field of computational linguistics, researchers have focused on developing computational models of reference resolution, taking into account various linguistic factors, such as grammatical, semantic and discourse clues mainly acquired from the relationship between an anaphor and any candidate antecedents (Mitkov, 2002; Lappin and Leass, 1994; Brennan et al., 1987; Strube and Hahn, 1996, etc.) . Research trends for reference resolution have shifted from handcrafted rule-based approaches to corpus-based approaches due to the growing success of machine learning algorithms (e.g. Support Vector Ma- 3 Frampton et al. (2009) employed the incorporation of linguistic and visual features on reference resolution of multiparty dialogues. However, their target was limited to only the expression you in dialogues, while our focus is to investigate the use of the expressions bridging between a dialogue and the real world (e.g. expressions referring to puzzle pieces on a computer display).",
                "cite_spans": [
                    {
                        "start": 317,
                        "end": 331,
                        "text": "(Mitkov, 2002;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 332,
                        "end": 355,
                        "text": "Lappin and Leass, 1994;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 356,
                        "end": 377,
                        "text": "Brennan et al., 1987;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 378,
                        "end": 406,
                        "text": "Strube and Hahn, 1996, etc.)",
                        "ref_id": null
                    },
                    {
                        "start": 612,
                        "end": 613,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 614,
                        "end": 636,
                        "text": "Frampton et al. (2009)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "chines (Vapnik, 1998) ). For instance, an approach to coreference resolution proposed by Soon et al. (2001) , in which the problem of reference resolution is decomposed into a set of binary classification problems of whether a pair of markables (e.g. NP) are anaphoric or not, achieved performance comparable to the state-of-the-art rule-based system, even though they used only a limited number of simple features. Researchers' concerns in this area cover a broad range of research topics from modeling the coreferential transitivity of a set of markables, to integrating discourse salience motivated by the Centering Theory (Grosz et al., 1995) . This research area has continued to produce novel reference resolution models over the years, but the target of reference resolution is limited to only written texts or transcripts of speech.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 21,
                        "text": "(Vapnik, 1998)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 89,
                        "end": 107,
                        "text": "Soon et al. (2001)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 626,
                        "end": 646,
                        "text": "(Grosz et al., 1995)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In contrast to the above research area, researchers in the multi-modal community also have paid attention to reference resolution because it is also a crucial task for realising interaction between humans and computers. In this area, the evaluation is typically conducted in the situation where a set of objects (i.e. candidate referents) are depicted within a computer display. For instance, Stoia et al. (2008) designed an experiment where two participants controlled an avatar in a virtual world for exploring hidden treasures. In this case, the task of reference resolution is to identify an object shown on the computer display as referred to by a referring expression used by the participants during dialogue. The task becomes more complicated than typical coreference resolution for written texts because a referent is considered as either anaphoric (i.e. it has already appeared in the previous discourse history) or exophoric, (i.e. the reference resolution system needs to search for the referent from the set of objects shown in a computer display).",
                "cite_spans": [
                    {
                        "start": 393,
                        "end": 412,
                        "text": "Stoia et al. (2008)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In order to capture the characteristics of exophoric cases, extra-linguistic information acquired from participants' eye gaze data and the visual prominence of each object are also exploited together with linguistic information. A series of research by Kelleher and his colleagues (Kelleher and van Genabith, 2004; Kelleher et al., 2005; Kelleher, 2006; Sch\u00fctte et al., 2010) tackled the problem of modeling visual salience of objects in situated dialogue. In their algorithm, the visual salience of each object is estimated based on its centrality within the scene and its size; their hy-pothesis was that the salience is higher if a object is larger and is placed nearer the centre of the computer display. In Kelleher (2006) 's approach to reference resolution, linguistic clues such as ranking rules of candidate referents based on the Centering Theory (Grosz et al., 1995) were introduced in addition to using visual salience, but the integration of both clues was done in a heuristic way.",
                "cite_spans": [
                    {
                        "start": 299,
                        "end": 314,
                        "text": "Genabith, 2004;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 315,
                        "end": 337,
                        "text": "Kelleher et al., 2005;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 338,
                        "end": 353,
                        "text": "Kelleher, 2006;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 354,
                        "end": 375,
                        "text": "Sch\u00fctte et al., 2010)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 712,
                        "end": 727,
                        "text": "Kelleher (2006)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 857,
                        "end": 877,
                        "text": "(Grosz et al., 1995)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In addition to the visual salience assessed from the characteristics of objects in the world, eye gaze has received much attention as a clue for reference resolution. Prasov and Chai (2008) , for example, employed eye gaze on the task of identifying a referent in the situation where objects are placed in a static scene. The time span after a speaker most recently fixates on an object is incorporated into their reference resolution model as well as the information of how recently the object was referred to by a referring expression. Although the results of their evaluation demonstrated that eye gaze significantly contributes to increasing performance, there is still room for improvement by adapting machine learning techniques, because in their work the linguistic and visual attention information was heuristically integrated.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 189,
                        "text": "Prasov and Chai (2008)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In contrast, our previous work employed a machine learning technique to identify the most likely candidate referent, taking into account linguistic features together with cues capturing visual salience found within the situated dialogues contained in the REX-J corpus (Spanger et al., 2010) . We reported that extra-linguistic information contributes to improving performance (especially, in pronominal reference). However, in Iida et al. (2010) eye gaze information was not considered, even though in the area of cognitive science researchers have demonstrated that a speaker's eye fixations are strong clues for identifying a referent of a referring expression (Tanenhaus et al., 1995; Tanenhaus et al., 2000; Hanna et al., 2003; Hanna and Tanenhaus, 2004; Hanna and Brennan, 2007; Metzing and Brennan, 2003; Ferreira and Tanenhaus, 2007; Brown-Schmidt et al., 2002) . Against this background, we investigate the effect of linguistic and extra-linguistic information including eye gaze on multi-modal reference resolution, extending Iida et al. 2010 ",
                "cite_spans": [
                    {
                        "start": 268,
                        "end": 290,
                        "text": "(Spanger et al., 2010)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 663,
                        "end": 687,
                        "text": "(Tanenhaus et al., 1995;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 688,
                        "end": 711,
                        "text": "Tanenhaus et al., 2000;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 712,
                        "end": 731,
                        "text": "Hanna et al., 2003;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 732,
                        "end": 758,
                        "text": "Hanna and Tanenhaus, 2004;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 759,
                        "end": 783,
                        "text": "Hanna and Brennan, 2007;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 784,
                        "end": 810,
                        "text": "Metzing and Brennan, 2003;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 811,
                        "end": 840,
                        "text": "Ferreira and Tanenhaus, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 841,
                        "end": 868,
                        "text": "Brown-Schmidt et al., 2002)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In our evaluation of automatic reference resolution, we focus on investigating the interaction between linguistic and extra-linguistic clues including eye fixations on multi-modal reference resolution. Therefore, corpora where participants frequently utter both anaphoric and exophoric referring expressions are preferable for our evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "In recent multi-modal problem settings for data collection, researchers have been concerned with more realistic situations, such as dynamically changing scenes rendered in a 3D virtual world (e.g. (Byron, 2005) ). However, if we use data collected from such a scenario, referring expressions will be relatively skewed to exophoric cases because of frequently occurring scene updates. On the other hand, if we adopt the data collected using a static scene, we will have a disadvantage in that the change of visual salience of objects is not observed because the centrality and size of each object is fixed through dialogues.",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 210,
                        "text": "(Byron, 2005)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "For these reasons, we adopt the same task setting as introduced in the REX-J corpus (Spanger et al., 2010) , which consists of collaborative work (solving Tangram puzzles) by two participants; the setting of this corpus is more suitable for our purposes because of the frequent occurrence of both anaphoric and exophoric referring expressions.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 106,
                        "text": "(Spanger et al., 2010)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "For collecting data, we recruited 18 Japanese graduate students, and split them into 9 pairs 4 . All pairs knew each other previously and were of the same gender and approximately the same age. Each pair was instructed to solve four different Tangram puzzles. The goal of the puzzle is to construct a given shape by arranging seven pieces (of different simple shapes) as shown in Figure 1 . The precise positions of every piece and every action that the participants make are recorded by the Tangram simulator in which the pieces on the computer display can be moved, rotated and flipped with simple mouse operations. The piece position and the mouse actions were recorded at intervals of 1/65 msec. The simulator displays two areas: a goal shape area (the left side of Figure 1 ) and a working area (the right side of Figure 1 ) where pieces are shown and can be manipulated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 380,
                        "end": 388,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 770,
                        "end": 778,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 819,
                        "end": 827,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "A different role was assigned to each participant OP-UT (SV-UT) stands for the number of utterances of operators (solvers). The right side of OP-REX (SV-REX) is the frequency of referring expressions uttered by the operators (solvers), whereas the left side stands for the frequency of pronominal expressions uttered by the operators (solvers). ERR-OP (ERR-SV) is the error rate of measuring the operators' (solvers') eye gaze. SD means the standard derivation. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "\u00a1 \u00a2 \u00a3 \u00a4 \u00a5 \u00a2 \u00a6 \u00a7 \u00a2 \u00a8 \u00a7 \u00a2 \u00a9 \u00a1 \u00a8 \u00a2 \u00a8 \u00a7 \u00a2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "Figure 1: Screenshot of the Tangram simulator of a pair: a solver and an operator. Given a certain goal shape, the solver thinks of the necessary arrangement of the pieces and gives instructions to the operator for how to move them. The operator manipulates the pieces with the mouse according to the solver's instructions. During this interaction, frequent uttering of referring expressions is needed to distinguish between the different puzzle pieces. This collaboration is achieved by placing a set of participants side by side, each with their own display showing the work area and the mouse cursor begin manipulated by the operator in real time, and a shield screen set between them to prevent the operator from seeing the goal shape, which is visible only on the solver's screen, and to further restrict their interaction to only speech. We put no constraint on the contents of their dialogues. In addition to the attributes considered in the original REX-J corpus, we also collected eye gaze data synchronized with speech by using the Tobii T60 Eye Tracker, sampling at 60 Hz for recording users' eye gaze with 0.5 degrees in accuracy. Because the tracking results acquired from Tobii contain tracking errors, 5 dialogues in which the tracking results contain more than 40% errors were removed from the data set used in our evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "Annotating referring expressions and their referents were conducted in the same manner as Spanger et al. (2010) , i.e. annotation was conducted using a multimedia annotation tool, ELAN 5 ; an annotator manually detects a referring expression and then selects its referent out of the possible puzzle pieces shown on the computer display. Note that only Tangram pieces were tagged as referents of referring expressions, therefore the expressions referring to abstract entities such as an action and event were not annotated. In the corpus multiple pieces were annotated as a single referent, but such referents were excluded in our evaluation because of their infrequent occurrence. Table 1 summarises the statistics of our new version of the REX-J corpus, consisting of 27 dialogues.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 111,
                        "text": "Spanger et al. (2010)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 681,
                        "end": 688,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "4 Multi-modal reference resolution",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collecting eye gaze data in situated dialogues",
                "sec_num": "3"
            },
            {
                "text": "To investigate the impact of extra-linguistic information on reference resolution, we conducted an empirical evaluation in which a reference resolution model chooses a referent (i.e. a piece) for a given referring expression from the set of pieces on the computer display. As a basis of our reference resolution model, we adopt an existing model for reference resolution. Recently, machine learning-based approaches to reference resolution (Soon et al., 2001; Ng and Cardie, 2002, etc.) focus on identifying anaphoric relations in texts, and have achieved better performance than hand-crafted rule-based approaches. These models for reference resolution take into account linguistic factors, such as relative salience of candidate antecedents, which have been discussed mainly in Centering Theory (Grosz et al., 1995) by ranking candidate antecedents appearing in the preceding discourse (Iida et al., 2003; Yang et al., 2003; Denis and Baldridge, 2008) . In order to take advantage of existing models, we adopt the ranking-based approach as a basis for our reference resolution model. More precisely, we em-eye gaze features GZ1: [0, 1] the frequency of fixating P in the time period [t \u2212 T, t], normalised by the frequency of the total fixations during the period. GZ2: [0, 1] the length of a fixation on P in the time period [t \u2212 T, t], nomalised by T . GZ3: [0, 1] the length of a fixation on P in the time period [t \u2212 T, t], nomalised by the total length of fixation. GZ4: [0, 1] the frequency of fixating P in the time period uttering a referring expression, normalised by the frequency of the total fixations during the period. GZ5: [0, 1] the length of a fixation on P in the time period uttering a referring expression, nominalised by T . GZ6: [0, 1] the length of a fixation on P in the time period uttering a referring expression, nominalised by the total length of fixation. GZ7: yes,no whether the frequency of fixating P in the time period [t \u2212 T, t] is most frequent. GZ8: yes,no whether the frequency of fixating P in the time period [t \u2212 T, t] is more than 1. GZ9: yes,no whether the fixation time of P in the time period [t \u2212 T, t] is longest out of all pieces. GZ10: yes,no whether there exists the fixation time of P in the time period [t \u2212 T, t]. GZ11: yes,no whether the frequency of fixating P in the time period uttering a referring expression is most frequent. GZ12: yes,no whether the frequency of fixating P in the time period uttering a referring expression is more than 1. GZ13: yes,no whether the fixation time of P in the time period uttering a referring expression is longest out of all pieces. GZ14: yes,no whether there exists the fixation time of P in the time period uttering a referring expression.",
                "cite_spans": [
                    {
                        "start": 440,
                        "end": 459,
                        "text": "(Soon et al., 2001;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 460,
                        "end": 486,
                        "text": "Ng and Cardie, 2002, etc.)",
                        "ref_id": null
                    },
                    {
                        "start": 797,
                        "end": 817,
                        "text": "(Grosz et al., 1995)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 888,
                        "end": 907,
                        "text": "(Iida et al., 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 908,
                        "end": 926,
                        "text": "Yang et al., 2003;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 927,
                        "end": 953,
                        "text": "Denis and Baldridge, 2008)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1131,
                        "end": 1134,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1135,
                        "end": 1137,
                        "text": "1]",
                        "ref_id": null
                    },
                    {
                        "start": 1272,
                        "end": 1275,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1276,
                        "end": 1278,
                        "text": "1]",
                        "ref_id": null
                    },
                    {
                        "start": 1362,
                        "end": 1365,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1366,
                        "end": 1368,
                        "text": "1]",
                        "ref_id": null
                    },
                    {
                        "start": 1478,
                        "end": 1481,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1482,
                        "end": 1484,
                        "text": "1]",
                        "ref_id": null
                    },
                    {
                        "start": 1640,
                        "end": 1643,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1644,
                        "end": 1646,
                        "text": "1]",
                        "ref_id": null
                    },
                    {
                        "start": 1753,
                        "end": 1756,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 1757,
                        "end": 1759,
                        "text": "1]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base models",
                "sec_num": "4.1"
            },
            {
                "text": "t is the onset time of a referring expression. P denotes a piece, T is a fixed time window (1500ms). Yang et al. (2003) ). In Denis and Baldridge (2008) 's ranking-based model, the most likely candidate antecedent is decided by simultaneously ranking all candidate antecedents. To induce a ranker used in the ranking process, we adopt the Ranking SVM algorithm (Joachims, 2002) 6 , which learns a weight vector to rank candidates for a given partial ranking of each referent, while the original work by Denis and Baldridge (2008) uses Maximum Entropy to create their ranking-based model. Each training instance is created from the set of all referents for each referring expression. To define the partial ranking of referents, we simply rank referents of a given referring expression as first place and any other referents as second place.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 119,
                        "text": "Yang et al. (2003)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 126,
                        "end": 152,
                        "text": "Denis and Baldridge (2008)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 361,
                        "end": 377,
                        "text": "(Joachims, 2002)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 503,
                        "end": 529,
                        "text": "Denis and Baldridge (2008)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base models",
                "sec_num": "4.1"
            },
            {
                "text": "As we mentioned in Section 2, a speaker's eye gaze contributes to disambiguating referents appearing in the speaker's utterances because the speaker tends to see the target object before it is referred to by a referring expression (Spivey et al., 2002) . Several aspects must be considered in order to integrate a speaker's eye gaze data. First, because the eye gaze data includes saccades, the inhibition factor of perceptual sensitivity, we extract only eye fixations as discussed in Richardson et al. (2007) . For separating saccades and eye fixations, we employ Dispersion-threshold identification (Salvucci and Anderson, 2001) , detecting fixations by using the concentration of eye gaze based on the fact the fixations are relatively slower than saccades. Second, because of the errors in measuring eye gaze by the eye tracker, the fixation data needs to be interpolated by the surrounding data. More specifically, if the error interval is less than 100 msec and the difference of the centers of two fixations is smaller then 16 pixels, these fixations are concatenated according to the work by Richardson et al. (2007) .",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 252,
                        "text": "(Spivey et al., 2002)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 486,
                        "end": 510,
                        "text": "Richardson et al. (2007)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 602,
                        "end": 631,
                        "text": "(Salvucci and Anderson, 2001)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 1101,
                        "end": 1125,
                        "text": "Richardson et al. (2007)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Eye gaze features",
                "sec_num": "4.2"
            },
            {
                "text": "The clues exploited in this paper are based on the fact that the direction of eye gaze directly reflects the focus of attention (Richardson et al., 2007; Just and Carpenter, 1976) , i.e. when one utters a referring expression, he potentially focuses on the object involved by fixating his eyes on it. Therefore, we use the eye fixations as clues for identifying the pieces focused on using the following criteria: the nearest piece to the eye fixation point is more likely a target of focus over all other pieces. To reflect this, we introduce the feature set shown in Table 2 . We henceforth call these features the eye gaze features. Note that the parameter T is set to 1,500 ms based on the previous work done by Prasov and Chai (2010) .",
                "cite_spans": [
                    {
                        "start": 128,
                        "end": 153,
                        "text": "(Richardson et al., 2007;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 154,
                        "end": 179,
                        "text": "Just and Carpenter, 1976)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 716,
                        "end": 738,
                        "text": "Prasov and Chai (2010)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 569,
                        "end": 576,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Eye gaze features",
                "sec_num": "4.2"
            },
            {
                "text": "In order to investigate the effect of extra-linguistic information with or without linguistic factors, we conducted empirical evaluations using the updated version of the REX-J corpus explained in (a) Linguistic features L1 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether P is referred to by the most recent referring expression. L2 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the time distance to the last mention of P is less than or equal to 10 sec. L3 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the time distance to the last mention of P is more than 10 sec and less than or equal to 20 sec. L4 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the time distance to the last mention of P is more than 20 sec. L5 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether P has never been referred to by any mentions in the preceding utterances. L6 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no, N/A whether the attributes of P are compatible with the attributes of R. L7 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether R is followed by the case marker 'o (accusative)'. L8 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether R is followed by the case marker 'ni (dative)'. L9 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether R is a pronoun and the most recent reference to P is not a pronoun. L10 : yes, no whether R is not a pronoun and was most recently referred to by a pronoun. (b) Task specific features T1 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the mouse cursor was over P at the beginning of uttering R. T2 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether P is the last piece that the mouse cursor was over when feature T1 is 'no'. T3 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the time distance is less than or equal to 10 sec after the mouse cursor was over P.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "5"
            },
            {
                "text": "yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after the mouse cursor was over P. T5 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "yes, no whether the time distance is more than 20 sec after the mouse cursor was over P. T6 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "yes, no whether the mouse cursor was never over P in the preceding utterances. T7 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "yes, no whether P is being manipulated at the beginning of uttering R. T8 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "yes, no whether P is the most recently manipulated piece when feature T7 is 'no'. T9 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "yes, no whether the time distance is less than or equal to 10 sec after P was most recently manipulated. T10 : yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after P was most recently manipulated. T11 : yes, no whether the time distance is more than 20 sec after P was most recently manipulated. T12 : yes, no whether P has never been manipulated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "P stands for a piece of the Tangram puzzle (i.e. a candidate referent of a referring expression) and R stands for the target referring expression. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "T4 :",
                "sec_num": null
            },
            {
                "text": "We employed two models as baselines: a model using only discourse history features, and one using only eye gaze features. Because the task setting is the same as the evaluation conducted in , we employ the same feature set, consisting of linguistically motivated features, and also features which capture the task specific extra-linguistic information of each object. We call these two kinds of features the linguistic features and task specific features, respectively. The details of these features are summarised in Table 3. As reported in , the referential behaviour of pronouns is completely different from non-pronouns. For this reason, we separately create two reference resolution models; one called the pronoun model, which identifies a referent of a given pronoun, and another called the nonpronoun model, which is for all other expressions. During the training phase, we use only training instances whose referring expressions are pronouns for creating the pronoun model, and all other training instances for the non-pronoun model. We group these two models together, selecting which Ling, TaskSp and Gaze stand for the models using the linguistic, task specific and eye gaze features respectively. one to use based on the referring expression. In other words, the pronoun model is selected if a referring expression is a pronoun, and the nonpronoun model otherwise. We will hereafter refer to the selectional model which alternatively picks between the pronoun and non-pronoun models as the separated model. We also train a third model using all training instances without distinguishing between pronouns and non-pronouns. This model we will refer to as the combined model. the results show that the model using only the linguistic features (Ling) achieved performance comparable to the one using only the eye gaze features (Gaze). Moreover, the model using only the task specific features (TaskSp) obtained performance significantly better than the others. This is because a mouse cursor is the only shared visual stimulus between the operator and solver. Therefore, it becomes the most important clue for pronouns, while the eye fixations of a speaker are not necessarily shared between them. In contrast to pronouns, the non-pronoun model using only the linguistic features (Ling) outperforms the one using either eye gaze features or the task specific features (Gaze and TaskSp). This may be because one linguistic feature (L6) works more effectively than the other features. As shown later (see Table 6 ), in non-pronoun cases, the feature L6, which is the binary value indicating the compatibility of the attributes between two referring expressions, has the highest feature weight, leading to the best performance out of all three models (Ling, Gaze and TaskSp).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 518,
                        "end": 526,
                        "text": "Table 3.",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 2511,
                        "end": 2518,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental settings",
                "sec_num": "5.1"
            },
            {
                "text": "In addition, combining the linguistic and eye gaze features (Ling+Gaze) on non-pronoun reference resolution contributes to increasing performance. This means that these two features work in a complementary manner when a referring expression cannot be judged on a superficial level whether it refers to a discourse referent or a visually focused referent. From these results, we can see that the clues from utterances of participants are also essential for precise reference resolution, while the previous work focusing on eye fixations tends to concentrate on modeling only eye gaze information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "The accuracy results in Table 5 show the performance of the combined and separated models for different settings of feature selection. Table 5 shows that the two models achieved almost the same performance when the linguistic, eye gaze and task specific features are individually used. However, it also shows that the separated model outperforms the combined model when more than two feature types are utilised. This indicates that separating the models with regard to the type of referring expression does make sense even when we employ eye fixations as a clue for recognising referent objects. It also shows that both the combined and separated models obtained the best performance for each model using all the features. In other words, the three types of features work in a complementary manner on multi-modal reference resolution. We next investigated the significance of each feature for the pronoun and non-pronoun models. We calculate the weight of a feature f shown in Table 6 according to the following formula.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 24,
                        "end": 31,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 135,
                        "end": 142,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 977,
                        "end": 984,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "weight(f ) = \u2211 x\u2208SV s w x z x (f )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "where SVs is a set of the support vectors in a ranker induced by the Ranking SVM algorithm, w x is the weight of the support vector x, z x (f ) is the function that returns 1 if f occurs in x, respectively. Table 6 shows the top 10 features with the highest weights of each model. It demonstrates that in the pronoun model the task specific features have the highest weight, while in the non-pronoun model these features are less significant. As shown in Table 4 , pronouns are strongly related to the situation where the mouse cursor is over a piece, which is consistent with the results reported in .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 207,
                        "end": 214,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 455,
                        "end": 462,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "In contrast, the highest features in the nonpronoun model are occupied by the eye gaze features, except for L6. This indicates that in the situation where a speaker mentions pieces realised as non-pronouns, the eye fixations become a good clue for identifying the current focus of the speaker, while the task specific features such as the location of the mouse cursor are less significant. In addition, Table 6 also shows that the discourse feature L6 obtains the highest significance. This means that exploiting the linguistic factors together with eye fixations is essential for more accurate reference resolution.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 403,
                        "end": 410,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "In this paper we focused on investigating the impact of eye fixations on reference resolution compared to using other extra-linguistic information. We conducted an empirical evaluation using referring expressions appearing in collaborative work dialogues from the extended REX-J corpus, synchronised with eye gaze information. We demonstrated that the referents of pronouns are relatively easily identified, as they rely on the visual salience such as is indicated by moving the mouse cursor, and that non-pronouns are strongly related to eye fixations on its referent. In addition, our results also show that combining linguistic, eye gaze and other extra-linguistic factors contribute to increasing the overall performance of identifying all referring expressions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "There are several future directions for making the multi-modal reference resolution more accurate and robust. First, we need to introduce more task dependent information reflecting the characteristics of each multi-modal task. In the Tangram puzzle task, for example, once a piece becomes part of a partially constructed shape, the piece tends to be less salient because a solver typically gives an instruction to move a scattered piece to a partially constructed shape. We expect that introducing such task specific clues into the reference resolution model as features will contribute to improving performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Second, in our evaluation we adopted collaborative work dialogues where two participants solve Tangram puzzles. Since all objects (i.e. puzzle pieces) have nearly the same size, this results in explicitly rejecting the factor that a relatively larger object occupying the computer display has higher prominence over smaller objects, which has been considered by Byron (2005) . In order to take such a factor into account, we need further data collection and then to incorporate additional factors into the current reference resolution model. A third possible direction for future work is to examine the relation between linguistic and inten-tional structures, which are discussed in Grosz and Sidner (1986) . In our problem setting, when a solver instructs an operator how to construct a goal shape, a series of utterances by the solver reflects the solver's intentions. As we already mentioned above, objects which a solver wants an operator to manipulate tend to draw a solver's attention, while the other objects (especially, the objects representing the partially constructed shape) are considered less salient. Exploiting the importance of the speaker's intentions also needs to be considered in future work.",
                "cite_spans": [
                    {
                        "start": 362,
                        "end": 374,
                        "text": "Byron (2005)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 683,
                        "end": 706,
                        "text": "Grosz and Sidner (1986)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "www-nlpir.nist.gov/related projects/muc/ 2 www.itl.nist.gov/iad/mig/tests/ace/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that the first pair was used to adjust the settings of our data collection, so 4 dialogues collected from that pair were not included in the evaluation data set used in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "www.lat-mpi.eu/tools/elan/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "www.cs.cornell.edu/People/tj/svm light/svm rank.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A centering approach to pronouns",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "E"
                        ],
                        "last": "Brennan",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "W"
                        ],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Pollard",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "155--162",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. E. Brennan, M. W. Friedman, and C. Pollard. 1987. A centering approach to pronouns. In Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics (ACL), pages 155-162.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Reference resolution in the wild: On-line circumscription of referential domains in a natural, interactive, problem-solving task",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Brown-Schmidt",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Campana",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 24th annual meeting of the Cognitive Science Society",
                "volume": "",
                "issue": "",
                "pages": "148--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Brown-Schmidt, E. Campana, and M. K. Tanenhaus. 2002. Reference resolution in the wild: On-line cir- cumscription of referential domains in a natural, in- teractive, problem-solving task. In Proceedings of the 24th annual meeting of the Cognitive Science So- ciety, pages 148-153.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Utilizing visual attention for crossmodal coreference interpretation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "K"
                        ],
                        "last": "Byron",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Fifth International and Interdisciplinary Conference on Modeling and Using Context",
                "volume": "",
                "issue": "",
                "pages": "83--96",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. K. Byron. 2005. Utilizing visual attention for cross- modal coreference interpretation. In In Proceedings of Fifth International and Interdisciplinary Confer- ence on Modeling and Using Context, pages 83-96.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Specialized models and ranking for coreference resolution",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Denis",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "660--669",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Denis and J. Baldridge. 2008. Specialized models and ranking for coreference resolution. In Proceed- ings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 660-669.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Introduction to the special issue on language-vision interactions",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Journal of Memory and Language",
                "volume": "57",
                "issue": "",
                "pages": "455--459",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Ferreira and M. K. Tanenhaus. 2007. Introduction to the special issue on language-vision interactions. Journal of Memory and Language, 57:455-459.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Who is \"you\"? combining linguistic and gaze features to resolve secondperson references in dialogue",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Frampton",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Fern\u00e1ndez",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ehlen",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Christoudias",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Darrell",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th Conference of the European Chapter",
                "volume": "",
                "issue": "",
                "pages": "273--281",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Frampton, R. Fern\u00e1ndez, P. Ehlen, M. Christoudias, T. Darrell, and S. Peters. 2009. Who is \"you\"? com- bining linguistic and gaze features to resolve second- person references in dialogue. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 273-281.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A statistical approach to anaphora resolution",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hale",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of the 6th Workshop on Very Large Corpora",
                "volume": "",
                "issue": "",
                "pages": "161--170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Ge, J. Hale, and E. Charniak. 1998. A statistical ap- proach to anaphora resolution. In Proceedings of the 6th Workshop on Very Large Corpora, pages 161- 170.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Attention, intentions, and the structure of discourse",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Barbara",
                        "suffix": ""
                    },
                    {
                        "first": "Candace",
                        "middle": [
                            "L"
                        ],
                        "last": "Grosz",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sidner",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "Computational Linguistics",
                "volume": "12",
                "issue": "3",
                "pages": "175--204",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barbara J. Grosz and Candace L. Sidner. 1986. Atten- tion, intentions, and the structure of discourse. Com- putational Linguistics, 12(3):175-204.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Centering: A framework for modeling the local coherence of discourse",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "J"
                        ],
                        "last": "Grosz",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Weinstein",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Computational Linguistics",
                "volume": "21",
                "issue": "2",
                "pages": "203--226",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. J. Grosz, A. K. Joshi, and S. Weinstein. 1995. Centering: A framework for modeling the local co- herence of discourse. Computational Linguistics, 21(2):203-226.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Speakers' eye gaze disambiguates referring expressions early during face-to-face conversation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "E"
                        ],
                        "last": "Hanna",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "E"
                        ],
                        "last": "Brennan",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Journal of Memory and Language",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. E. Hanna and S. E. Brennan. 2007. Speakers' eye gaze disambiguates referring expressions early dur- ing face-to-face conversation. Journal of Memory and Language, 57.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Pragmatic effects on reference resolution in a collaborative task: evidence from eye movements",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "E"
                        ],
                        "last": "Hanna",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Cognitive Science",
                "volume": "28",
                "issue": "",
                "pages": "105--115",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. E. Hanna and M. K. Tanenhaus. 2004. Pragmatic ef- fects on reference resolution in a collaborative task: evidence from eye movements. Cognitive Science, 28:105-115.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The effects of common ground and perspective on domains of referential interpretation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "E"
                        ],
                        "last": "Hanna",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Trueswell",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Memory and Language",
                "volume": "49",
                "issue": "1",
                "pages": "43--61",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. E. Hanna, M. K. Tanenhaus, and J. C. Trueswell. 2003. The effects of common ground and perspec- tive on domains of referential interpretation. Jour- nal of Memory and Language, 49(1):43-61.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Incorporating contextual cues in trainable models for coreference resolution",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Iida",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Inui",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Takamura",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 10th EACL Workshop on The Computational Treatment of Anaphora",
                "volume": "",
                "issue": "",
                "pages": "23--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Iida, K. Inui, H. Takamura, and Y. Matsumoto. 2003. Incorporating contextual cues in trainable models for coreference resolution. In Proceedings of the 10th EACL Workshop on The Computational Treatment of Anaphora, pages 23-30.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Incorporating extra-linguistic information into reference resolution in collaborative task dialogue",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Iida",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kobayashi",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Tokunaga",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceeding of the 48st Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "1259--1267",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Iida, S. Kobayashi, and T. Tokunaga. 2010. In- corporating extra-linguistic information into refer- ence resolution in collaborative task dialogue. In Proceeding of the 48st Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 1259-1267.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Optimizing search engines using clickthrough data",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD)",
                "volume": "",
                "issue": "",
                "pages": "133--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of the ACM Con- ference on Knowledge Discovery and Data Mining (KDD), pages 133-142.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Eye fixations and cognitive processes",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Just",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "A"
                        ],
                        "last": "Carpenter",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "Cognitive Psychology",
                "volume": "8",
                "issue": "",
                "pages": "441--480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Just and P. A. Carpenter. 1976. Eye fixations and cognitive processes. Cognitive Psychology, 8:441- 480.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Visual salience and reference resolution in simulated 3-d environments",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kelleher",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Artificial Intelligence Review",
                "volume": "21",
                "issue": "3",
                "pages": "253--267",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Kelleher and J. van Genabith. 2004. Visual salience and reference resolution in simulated 3-d environ- ments. Artificial Intelligence Review, 21(3):253- 267.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Dynamically structuring updating and interrelating representations of visual and linguistic discourse",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kelleher",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Costello",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Artificial Intelligence",
                "volume": "167",
                "issue": "",
                "pages": "62--102",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Kelleher, F. Costello, and J. van Genabith. 2005. Dy- namically structuring updating and interrelating rep- resentations of visual and linguistic discourse. Arti- ficial Intelligence, 167:62-102.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Attention driven reference resolution in multimodal contexts",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Kelleher",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Artificial Intelligence Review",
                "volume": "25",
                "issue": "",
                "pages": "21--35",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. D. Kelleher. 2006. Attention driven reference reso- lution in multimodal contexts. Artificial Intelligence Review, 25:21-35.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "An algorithm for pronominal anaphora resolution",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lappin",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "J"
                        ],
                        "last": "Leass",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Linguistics",
                "volume": "20",
                "issue": "4",
                "pages": "535--561",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Lappin and H. J. Leass. 1994. An algorithm for pronominal anaphora resolution. Computational Linguistics, 20(4):535-561.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Using decision trees for coreference resolution",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "F"
                        ],
                        "last": "Mccarthy",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "G"
                        ],
                        "last": "Lehnert",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Proceedings of the 14th International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "1050--1055",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. F. McCarthy and W. G. Lehnert. 1995. Using deci- sion trees for coreference resolution. In Proceedings of the 14th International Joint Conference on Artifi- cial Intelligence, pages 1050-1055.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "When conceptual pacts are broken: Partner-specific effects on the comprehension of referring expressions",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Metzing",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "E"
                        ],
                        "last": "Brennan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Memory and Language",
                "volume": "49",
                "issue": "",
                "pages": "201--213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Metzing and S. E. Brennan. 2003. When concep- tual pacts are broken: Partner-specific effects on the comprehension of referring expressions. Journal of Memory and Language, 49:201-213.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Anaphora Resolution. Studies in Language and Linguistics",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Mitkov. 2002. Anaphora Resolution. Studies in Language and Linguistics. Pearson Education.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Improving machine learning approaches to coreference resolution",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "104--111",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Ng and C. Cardie. 2002. Improving machine learn- ing approaches to coreference resolution. In Pro- ceedings of the 40th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 104-111.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "What's in a gaze? the role off eye-gaze in reference resolution in multimodal conversational interface",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Prasov",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "Y"
                        ],
                        "last": "Chai",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 13th international conference on Intelligent user interfaces",
                "volume": "",
                "issue": "",
                "pages": "20--29",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Z. Prasov and J. Y. Chai. 2008. What's in a gaze? the role off eye-gaze in reference resolution in mul- timodal conversational interface. In In Proceedings of the 13th international conference on Intelligent user interfaces, pages 20-29.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Fusing eye gaze with speech recognition hypotheses to resolve exophoric references in situated dialogue",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Prasov",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "Y"
                        ],
                        "last": "Chai",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "471--481",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Z. Prasov and J. Y. Chai. 2010. Fusing eye gaze with speech recognition hypotheses to resolve exophoric references in situated dialogue. In Proceedings of the 2010 Conference on Empirical Methods in Nat- ural Language Processing, pages 471-481.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Eye movements in language and cognition: A brief introduction, methods in cognitive linguistics",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Spivey",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Methods in Cognitive Linguistics",
                "volume": "",
                "issue": "",
                "pages": "323--344",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. C. Richardson, R. Dale, and M. J. Spivey. 2007. Eye movements in language and cognition: A brief introduction, methods in cognitive linguistics. In M. Gonzalez-Marquez, I. Mittelberg, S. Coulson, and M. J. Spivey, editors, Methods in Cognitive Lin- guistics, pages 323-344. John Benjamins.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Automated eye-movement protocol analysis",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Salvucci",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Anderson",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "16",
                "issue": "",
                "pages": "39--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. D. Salvucci and J. R. Anderson. 2001. Automated eye-movement protocol analysis. Human-Computer Interaction, 16:39-86.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Visual salience and reference resolution in situated dialogues: A corpus-based evaluation",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Sch\u00fctte",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Kelleher",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Mac Namee",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the AAAI Symposium on Dialog with Robots",
                "volume": "",
                "issue": "",
                "pages": "11--13",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Sch\u00fctte, J. D. Kelleher, and B. Mac Namee. 2010. Visual salience and reference resolution in situated dialogues: A corpus-based evaluation. In In Pro- ceedings of the AAAI Symposium on Dialog with Robots, Arlington, Virginia, USA. 11th -13th Nov 2010.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "A machine learning approach to coreference resolution of noun phrases",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "M"
                        ],
                        "last": "Soon",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "T"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "C Y"
                        ],
                        "last": "Lim",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Computational Linguistics",
                "volume": "27",
                "issue": "4",
                "pages": "521--544",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. M. Soon, H. T. Ng, and D. C. Y. Lim. 2001. A machine learning approach to coreference resolu- tion of noun phrases. Computational Linguistics, 27(4):521-544.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "REX-J: Japanese referring expression corpus of situated dialogs",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Spanger",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Yasuhara",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Iida",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Tokunaga",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Terai",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Kuriyama",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Spanger, M. Yasuhara, R. Iida, T. Tokunaga, A. Terai, and N. Kuriyama. 2010. REX-J: Japanese referring expression corpus of situated dialogs. Lan- guage Resources & Evaluation.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Eye movements and spoken language comprehension: Effects of visual context on syntactic ambiguity resolution",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Spivey",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "M"
                        ],
                        "last": "Eberhard",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Sedivy",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Cognitive Psychology",
                "volume": "45",
                "issue": "4",
                "pages": "447--481",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. J. Spivey, M. K. Tanenhaus, K. M. Eberhard, and J. C. Sedivy. 2002. Eye movements and spoken lan- guage comprehension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychol- ogy, 45(4):447-481.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Scare: A situated corpus with annotated referring expressions",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Stoia",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "M"
                        ],
                        "last": "Shockley",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "K"
                        ],
                        "last": "Byron",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Fosler-Lussier",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Stoia, D. M. Shockley, D. K. Byron, and E. Fosler- Lussier. 2008. Scare: A situated corpus with an- notated referring expressions. In Proceedings of the Sixth International Conference on Language Re- sources and Evaluation (LREC 2008).",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Functional centering",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceeding of the 34st Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "270--277",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Strube and U. Hahn. 1996. Functional centering. In Proceeding of the 34st Annual Meeting of the Association for Computational Linguistics (ACL), pages 270-277.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Integration of visual and linguistic information in spoken language comprehension",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Spivey-Knowlton",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "M"
                        ],
                        "last": "Eberhard",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Sedivy",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Science",
                "volume": "268",
                "issue": "5217",
                "pages": "1632--1634",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eber- hard, and J. C. Sedivy. 1995. Integration of visual and linguistic information in spoken language com- prehension. Science, 268(5217):1632-1634.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Eye movements and lexical access in spoken-language comprehension: Evaluating a linking hypothesis between fixations and linguistic processing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "K"
                        ],
                        "last": "Tanenhaus",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Magnuson",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Dahan",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Journal of Psycholinguistic Research",
                "volume": "29",
                "issue": "6",
                "pages": "557--580",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. K. Tanenhaus, J. S. Magnuson, D. Dahan, and C. Chambers. 2000. Eye movements and lexical ac- cess in spoken-language comprehension: Evaluating a linking hypothesis between fixations and linguistic processing. Journal of Psycholinguistic Research, 29(6):557-580.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing Communications, and control",
                "authors": [
                    {
                        "first": "V",
                        "middle": [
                            "N"
                        ],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. N. Vapnik. 1998. Statistical Learning Theory. Adaptive and Learning Systems for Signal Process- ing Communications, and control. John Wiley & Sons.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Coreference resolution using competition learning approach",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "L"
                        ],
                        "last": "Tan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "176--183",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Yang, G. Zhou, J. Su, and C. L. Tan. 2003. Coreference resolution using competition learning approach. In Proceedings of the 41st Annual Meet- ing of the Association for Computational Linguistics (ACL), pages 176-183.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "'s reference resolution model.",
                "type_str": "figure"
            },
            "TABREF1": {
                "text": "Referring expressions in the extended REX-J corpus",
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF2": {
                "text": "",
                "content": "<table><tr><td>: Eye gaze features</td></tr></table>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF3": {
                "text": "",
                "content": "<table><tr><td>: Feature set</td></tr></table>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF5": {
                "text": "",
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF6": {
                "text": "",
                "content": "<table><tr><td>shows the accuracy results of our empiri-</td></tr><tr><td>cal evaluation separately evaluating pronouns and</td></tr><tr><td>non-pronouns. In reference resolution of pronouns</td></tr></table>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF7": {
                "text": "Overall results (accuracy)",
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF9": {
                "text": "10 highest weights of the features in each model",
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "html": null
            }
        }
    }
}