File size: 126,016 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 |
{
"paper_id": "I11-1010",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:32:37.568316Z"
},
"title": "Multi-modal Reference Resolution in Situated Dialogue by Integrating Linguistic and Extra-Linguistic Clues",
"authors": [
{
"first": "Ryu",
"middle": [],
"last": "Iida",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tokyo Institute of Technology",
"location": {
"addrLine": "2-12-1 Ohokayama Meguro Tokyo",
"postCode": "W8-73, 152-8552",
"country": "Japan"
}
},
"email": "ryu-i@cl.cs.titech.ac.jp"
},
{
"first": "Masaaki",
"middle": [],
"last": "Yasuhara",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tokyo Institute of Technology",
"location": {
"addrLine": "2-12-1 Ohokayama Meguro Tokyo",
"postCode": "W8-73, 152-8552",
"country": "Japan"
}
},
"email": "yasuhara@cl.cs.titech.ac.jp"
},
{
"first": "Takenobu",
"middle": [],
"last": "Tokunaga",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tokyo Institute of Technology",
"location": {
"addrLine": "2-12-1 Ohokayama Meguro Tokyo",
"postCode": "W8-73, 152-8552",
"country": "Japan"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper focuses on examining the effect of extra-linguistic information, such as eye gaze, integrated with linguistic information on multi-modal reference resolution. In our evaluation, we employ eye gaze information together with other linguistic factors in machine learning, while in prior work such as Kelleher (2006) and Prasov and Chai (2008) the incorporation of eye gaze and linguistic clues was heuristically realised. Conducting our empirical evaluation using a data set extended the REX-J corpus (Spanger et al., 2010) including eye gaze information, we examine which types of clues are useful on these three data sets, which consist largely of pronouns, nonpronouns and both respectively. Our results demonstrate that a dynamically moving visible indicator within the computer display (e.g. a mouse cursor) contributes to reference resolution for pronouns, while eye gaze information is more useful for the resolution of non-pronouns.",
"pdf_parse": {
"paper_id": "I11-1010",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper focuses on examining the effect of extra-linguistic information, such as eye gaze, integrated with linguistic information on multi-modal reference resolution. In our evaluation, we employ eye gaze information together with other linguistic factors in machine learning, while in prior work such as Kelleher (2006) and Prasov and Chai (2008) the incorporation of eye gaze and linguistic clues was heuristically realised. Conducting our empirical evaluation using a data set extended the REX-J corpus (Spanger et al., 2010) including eye gaze information, we examine which types of clues are useful on these three data sets, which consist largely of pronouns, nonpronouns and both respectively. Our results demonstrate that a dynamically moving visible indicator within the computer display (e.g. a mouse cursor) contributes to reference resolution for pronouns, while eye gaze information is more useful for the resolution of non-pronouns.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The task of reference resolution has received much attention because it is important for applications that require interpreting text. In recent work on reference resolution within a text, several machine learning-based approaches have been proposed (McCarthy and Lehnert, 1995; Ge et al., 1998; Soon et al., 2001; Ng and Cardie, 2002; Iida et al., 2003; Yang et al., 2003; Denis and Baldridge, 2008) , each of which mainly exploits linguistic clues motivated by the Centering Theory (Grosz et al., 1995) to model the discourse salience of all candidate antecedents. For instance, Yang et al. (2003) and Iida et al. (2003) presented machine learning-based reference resolution mod-els where a pairwise comparison of candidate antecedents, in line with the basic idea of the Centering Theory, leads to the selection of the candidate with the highest salience for a given context. Denis and Baldridge (2008) extended the model by integrating the set of pairwise comparisons into ranking candidates to directly learn which clues of antecedents are useful.",
"cite_spans": [
{
"start": 249,
"end": 277,
"text": "(McCarthy and Lehnert, 1995;",
"ref_id": "BIBREF20"
},
{
"start": 278,
"end": 294,
"text": "Ge et al., 1998;",
"ref_id": "BIBREF6"
},
{
"start": 295,
"end": 313,
"text": "Soon et al., 2001;",
"ref_id": "BIBREF29"
},
{
"start": 314,
"end": 334,
"text": "Ng and Cardie, 2002;",
"ref_id": "BIBREF23"
},
{
"start": 335,
"end": 353,
"text": "Iida et al., 2003;",
"ref_id": "BIBREF12"
},
{
"start": 354,
"end": 372,
"text": "Yang et al., 2003;",
"ref_id": "BIBREF37"
},
{
"start": 373,
"end": 399,
"text": "Denis and Baldridge, 2008)",
"ref_id": "BIBREF3"
},
{
"start": 483,
"end": 503,
"text": "(Grosz et al., 1995)",
"ref_id": "BIBREF8"
},
{
"start": 580,
"end": 598,
"text": "Yang et al. (2003)",
"ref_id": "BIBREF37"
},
{
"start": 603,
"end": 621,
"text": "Iida et al. (2003)",
"ref_id": "BIBREF12"
},
{
"start": 878,
"end": 904,
"text": "Denis and Baldridge (2008)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Through the empirical evaluations using the data sets provided by the Message Understanding Conference (MUC) 1 and the Automatic Content Extraction (ACE) 2 , which consist of newspaper articles and transcripts of broadcasts, linguistically motivated approaches have achieved better performance than state-of-the-art rule-based reference resolution systems (e.g. Soon et al. (2001) and Ng and Cardie (2002) ).",
"cite_spans": [
{
"start": 362,
"end": 380,
"text": "Soon et al. (2001)",
"ref_id": "BIBREF29"
},
{
"start": 385,
"end": 405,
"text": "Ng and Cardie (2002)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In contrast to this research paradigm (i.e. research focusing on only the linguistic aspect of reference), research in the area of multi-modal interfaces has focused on referring expressions used in multi-modal conversations, in other words, identifying referents of referring expressions in a static scene or a situated world (e.g. objects depicted in a computer display), taking extralinguistic clues into account (Byron, 2005; Prasov and Chai, 2008; Prasov and Chai, 2010; Sch\u00fctte et al., 2010, etc.) . For instance, Kelleher and van Genabith (2004) used the centrality and size of a object in the display to determine its visual salience. Prasov and Chai (2008) and Prasov and Chai (2010) exploited eye fixations to detect users' focus of attention in terms of visual prominence; their research has been motivated by work in the cognitive sciences (Tanenhaus et al., 1995; Tanenhaus et al., 2000; Hanna et al., 2003; Hanna and Tanenhaus, 2004; Hanna and Brennan, 2007; Metzing and Brennan, 2003; Ferreira and Tanenhaus, 2007; Brown-Schmidt et al., 2002) .",
"cite_spans": [
{
"start": 416,
"end": 429,
"text": "(Byron, 2005;",
"ref_id": "BIBREF2"
},
{
"start": 430,
"end": 452,
"text": "Prasov and Chai, 2008;",
"ref_id": "BIBREF24"
},
{
"start": 453,
"end": 475,
"text": "Prasov and Chai, 2010;",
"ref_id": "BIBREF25"
},
{
"start": 476,
"end": 503,
"text": "Sch\u00fctte et al., 2010, etc.)",
"ref_id": null
},
{
"start": 520,
"end": 552,
"text": "Kelleher and van Genabith (2004)",
"ref_id": "BIBREF16"
},
{
"start": 643,
"end": 665,
"text": "Prasov and Chai (2008)",
"ref_id": "BIBREF24"
},
{
"start": 670,
"end": 692,
"text": "Prasov and Chai (2010)",
"ref_id": "BIBREF25"
},
{
"start": 852,
"end": 876,
"text": "(Tanenhaus et al., 1995;",
"ref_id": "BIBREF34"
},
{
"start": 877,
"end": 900,
"text": "Tanenhaus et al., 2000;",
"ref_id": "BIBREF35"
},
{
"start": 901,
"end": 920,
"text": "Hanna et al., 2003;",
"ref_id": "BIBREF11"
},
{
"start": 921,
"end": 947,
"text": "Hanna and Tanenhaus, 2004;",
"ref_id": "BIBREF10"
},
{
"start": 948,
"end": 972,
"text": "Hanna and Brennan, 2007;",
"ref_id": "BIBREF9"
},
{
"start": 973,
"end": 999,
"text": "Metzing and Brennan, 2003;",
"ref_id": "BIBREF21"
},
{
"start": 1000,
"end": 1029,
"text": "Ferreira and Tanenhaus, 2007;",
"ref_id": "BIBREF4"
},
{
"start": 1030,
"end": 1057,
"text": "Brown-Schmidt et al., 2002)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "These previous studies have shown how promising using eye gaze information for multi-modal reference resolution can be. However, they rely on heuristic techniques for determining visual salience. Hence, there is still room for improvement by introducing eye gaze information in a more systematic and principled manner 3 . This paper, therefore, focuses on a multi-modal reference resolution model that integrates eye gaze and linguistic information by using a machine learning technique. Adapting a ranking-based anaphora resolution model, such as was proposed by Denis and Baldridge (2008) , we integrate extra-linguistic information with other linguistic factors for more accurate reference resolution. With the above as a suitable background, this paper focuses on the issue of how to effectively combine linguistic and extra-linguistic factors for multi-modal reference resolution, taking collaborative task dialogues in Japanese as our target data set.",
"cite_spans": [
{
"start": 564,
"end": 590,
"text": "Denis and Baldridge (2008)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This paper is organised as follows. We first explain related work and our stance on multi-modal reference resolution in Section 2; we then present which multi-modal task we chose and how we merge eye gaze information into the predefined multi-modal task in Section 3. Section 4 introduces what types of information are used in the experiments shown in Section 5. We finally conclude this paper and discuss future directions in Section 6.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Within the field of computational linguistics, researchers have focused on developing computational models of reference resolution, taking into account various linguistic factors, such as grammatical, semantic and discourse clues mainly acquired from the relationship between an anaphor and any candidate antecedents (Mitkov, 2002; Lappin and Leass, 1994; Brennan et al., 1987; Strube and Hahn, 1996, etc.) . Research trends for reference resolution have shifted from handcrafted rule-based approaches to corpus-based approaches due to the growing success of machine learning algorithms (e.g. Support Vector Ma- 3 Frampton et al. (2009) employed the incorporation of linguistic and visual features on reference resolution of multiparty dialogues. However, their target was limited to only the expression you in dialogues, while our focus is to investigate the use of the expressions bridging between a dialogue and the real world (e.g. expressions referring to puzzle pieces on a computer display).",
"cite_spans": [
{
"start": 317,
"end": 331,
"text": "(Mitkov, 2002;",
"ref_id": "BIBREF22"
},
{
"start": 332,
"end": 355,
"text": "Lappin and Leass, 1994;",
"ref_id": "BIBREF19"
},
{
"start": 356,
"end": 377,
"text": "Brennan et al., 1987;",
"ref_id": "BIBREF0"
},
{
"start": 378,
"end": 406,
"text": "Strube and Hahn, 1996, etc.)",
"ref_id": null
},
{
"start": 612,
"end": 613,
"text": "3",
"ref_id": null
},
{
"start": 614,
"end": 636,
"text": "Frampton et al. (2009)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "chines (Vapnik, 1998) ). For instance, an approach to coreference resolution proposed by Soon et al. (2001) , in which the problem of reference resolution is decomposed into a set of binary classification problems of whether a pair of markables (e.g. NP) are anaphoric or not, achieved performance comparable to the state-of-the-art rule-based system, even though they used only a limited number of simple features. Researchers' concerns in this area cover a broad range of research topics from modeling the coreferential transitivity of a set of markables, to integrating discourse salience motivated by the Centering Theory (Grosz et al., 1995) . This research area has continued to produce novel reference resolution models over the years, but the target of reference resolution is limited to only written texts or transcripts of speech.",
"cite_spans": [
{
"start": 7,
"end": 21,
"text": "(Vapnik, 1998)",
"ref_id": "BIBREF36"
},
{
"start": 89,
"end": 107,
"text": "Soon et al. (2001)",
"ref_id": "BIBREF29"
},
{
"start": 626,
"end": 646,
"text": "(Grosz et al., 1995)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "In contrast to the above research area, researchers in the multi-modal community also have paid attention to reference resolution because it is also a crucial task for realising interaction between humans and computers. In this area, the evaluation is typically conducted in the situation where a set of objects (i.e. candidate referents) are depicted within a computer display. For instance, Stoia et al. (2008) designed an experiment where two participants controlled an avatar in a virtual world for exploring hidden treasures. In this case, the task of reference resolution is to identify an object shown on the computer display as referred to by a referring expression used by the participants during dialogue. The task becomes more complicated than typical coreference resolution for written texts because a referent is considered as either anaphoric (i.e. it has already appeared in the previous discourse history) or exophoric, (i.e. the reference resolution system needs to search for the referent from the set of objects shown in a computer display).",
"cite_spans": [
{
"start": 393,
"end": 412,
"text": "Stoia et al. (2008)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "In order to capture the characteristics of exophoric cases, extra-linguistic information acquired from participants' eye gaze data and the visual prominence of each object are also exploited together with linguistic information. A series of research by Kelleher and his colleagues (Kelleher and van Genabith, 2004; Kelleher et al., 2005; Kelleher, 2006; Sch\u00fctte et al., 2010) tackled the problem of modeling visual salience of objects in situated dialogue. In their algorithm, the visual salience of each object is estimated based on its centrality within the scene and its size; their hy-pothesis was that the salience is higher if a object is larger and is placed nearer the centre of the computer display. In Kelleher (2006) 's approach to reference resolution, linguistic clues such as ranking rules of candidate referents based on the Centering Theory (Grosz et al., 1995) were introduced in addition to using visual salience, but the integration of both clues was done in a heuristic way.",
"cite_spans": [
{
"start": 299,
"end": 314,
"text": "Genabith, 2004;",
"ref_id": "BIBREF16"
},
{
"start": 315,
"end": 337,
"text": "Kelleher et al., 2005;",
"ref_id": "BIBREF17"
},
{
"start": 338,
"end": 353,
"text": "Kelleher, 2006;",
"ref_id": "BIBREF18"
},
{
"start": 354,
"end": 375,
"text": "Sch\u00fctte et al., 2010)",
"ref_id": "BIBREF28"
},
{
"start": 712,
"end": 727,
"text": "Kelleher (2006)",
"ref_id": "BIBREF18"
},
{
"start": 857,
"end": 877,
"text": "(Grosz et al., 1995)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "In addition to the visual salience assessed from the characteristics of objects in the world, eye gaze has received much attention as a clue for reference resolution. Prasov and Chai (2008) , for example, employed eye gaze on the task of identifying a referent in the situation where objects are placed in a static scene. The time span after a speaker most recently fixates on an object is incorporated into their reference resolution model as well as the information of how recently the object was referred to by a referring expression. Although the results of their evaluation demonstrated that eye gaze significantly contributes to increasing performance, there is still room for improvement by adapting machine learning techniques, because in their work the linguistic and visual attention information was heuristically integrated.",
"cite_spans": [
{
"start": 167,
"end": 189,
"text": "Prasov and Chai (2008)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "In contrast, our previous work employed a machine learning technique to identify the most likely candidate referent, taking into account linguistic features together with cues capturing visual salience found within the situated dialogues contained in the REX-J corpus (Spanger et al., 2010) . We reported that extra-linguistic information contributes to improving performance (especially, in pronominal reference). However, in Iida et al. (2010) eye gaze information was not considered, even though in the area of cognitive science researchers have demonstrated that a speaker's eye fixations are strong clues for identifying a referent of a referring expression (Tanenhaus et al., 1995; Tanenhaus et al., 2000; Hanna et al., 2003; Hanna and Tanenhaus, 2004; Hanna and Brennan, 2007; Metzing and Brennan, 2003; Ferreira and Tanenhaus, 2007; Brown-Schmidt et al., 2002) . Against this background, we investigate the effect of linguistic and extra-linguistic information including eye gaze on multi-modal reference resolution, extending Iida et al. 2010 ",
"cite_spans": [
{
"start": 268,
"end": 290,
"text": "(Spanger et al., 2010)",
"ref_id": "BIBREF30"
},
{
"start": 663,
"end": 687,
"text": "(Tanenhaus et al., 1995;",
"ref_id": "BIBREF34"
},
{
"start": 688,
"end": 711,
"text": "Tanenhaus et al., 2000;",
"ref_id": "BIBREF35"
},
{
"start": 712,
"end": 731,
"text": "Hanna et al., 2003;",
"ref_id": "BIBREF11"
},
{
"start": 732,
"end": 758,
"text": "Hanna and Tanenhaus, 2004;",
"ref_id": "BIBREF10"
},
{
"start": 759,
"end": 783,
"text": "Hanna and Brennan, 2007;",
"ref_id": "BIBREF9"
},
{
"start": 784,
"end": 810,
"text": "Metzing and Brennan, 2003;",
"ref_id": "BIBREF21"
},
{
"start": 811,
"end": 840,
"text": "Ferreira and Tanenhaus, 2007;",
"ref_id": "BIBREF4"
},
{
"start": 841,
"end": 868,
"text": "Brown-Schmidt et al., 2002)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "In our evaluation of automatic reference resolution, we focus on investigating the interaction between linguistic and extra-linguistic clues including eye fixations on multi-modal reference resolution. Therefore, corpora where participants frequently utter both anaphoric and exophoric referring expressions are preferable for our evaluation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "In recent multi-modal problem settings for data collection, researchers have been concerned with more realistic situations, such as dynamically changing scenes rendered in a 3D virtual world (e.g. (Byron, 2005) ). However, if we use data collected from such a scenario, referring expressions will be relatively skewed to exophoric cases because of frequently occurring scene updates. On the other hand, if we adopt the data collected using a static scene, we will have a disadvantage in that the change of visual salience of objects is not observed because the centrality and size of each object is fixed through dialogues.",
"cite_spans": [
{
"start": 197,
"end": 210,
"text": "(Byron, 2005)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "For these reasons, we adopt the same task setting as introduced in the REX-J corpus (Spanger et al., 2010) , which consists of collaborative work (solving Tangram puzzles) by two participants; the setting of this corpus is more suitable for our purposes because of the frequent occurrence of both anaphoric and exophoric referring expressions.",
"cite_spans": [
{
"start": 84,
"end": 106,
"text": "(Spanger et al., 2010)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "For collecting data, we recruited 18 Japanese graduate students, and split them into 9 pairs 4 . All pairs knew each other previously and were of the same gender and approximately the same age. Each pair was instructed to solve four different Tangram puzzles. The goal of the puzzle is to construct a given shape by arranging seven pieces (of different simple shapes) as shown in Figure 1 . The precise positions of every piece and every action that the participants make are recorded by the Tangram simulator in which the pieces on the computer display can be moved, rotated and flipped with simple mouse operations. The piece position and the mouse actions were recorded at intervals of 1/65 msec. The simulator displays two areas: a goal shape area (the left side of Figure 1 ) and a working area (the right side of Figure 1 ) where pieces are shown and can be manipulated.",
"cite_spans": [],
"ref_spans": [
{
"start": 380,
"end": 388,
"text": "Figure 1",
"ref_id": null
},
{
"start": 770,
"end": 778,
"text": "Figure 1",
"ref_id": null
},
{
"start": 819,
"end": 827,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "A different role was assigned to each participant OP-UT (SV-UT) stands for the number of utterances of operators (solvers). The right side of OP-REX (SV-REX) is the frequency of referring expressions uttered by the operators (solvers), whereas the left side stands for the frequency of pronominal expressions uttered by the operators (solvers). ERR-OP (ERR-SV) is the error rate of measuring the operators' (solvers') eye gaze. SD means the standard derivation. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "\u00a1 \u00a2 \u00a3 \u00a4 \u00a5 \u00a2 \u00a6 \u00a7 \u00a2 \u00a8 \u00a7 \u00a2 \u00a9 \u00a1 \u00a8 \u00a2 \u00a8 \u00a7 \u00a2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "Figure 1: Screenshot of the Tangram simulator of a pair: a solver and an operator. Given a certain goal shape, the solver thinks of the necessary arrangement of the pieces and gives instructions to the operator for how to move them. The operator manipulates the pieces with the mouse according to the solver's instructions. During this interaction, frequent uttering of referring expressions is needed to distinguish between the different puzzle pieces. This collaboration is achieved by placing a set of participants side by side, each with their own display showing the work area and the mouse cursor begin manipulated by the operator in real time, and a shield screen set between them to prevent the operator from seeing the goal shape, which is visible only on the solver's screen, and to further restrict their interaction to only speech. We put no constraint on the contents of their dialogues. In addition to the attributes considered in the original REX-J corpus, we also collected eye gaze data synchronized with speech by using the Tobii T60 Eye Tracker, sampling at 60 Hz for recording users' eye gaze with 0.5 degrees in accuracy. Because the tracking results acquired from Tobii contain tracking errors, 5 dialogues in which the tracking results contain more than 40% errors were removed from the data set used in our evaluation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "Annotating referring expressions and their referents were conducted in the same manner as Spanger et al. (2010) , i.e. annotation was conducted using a multimedia annotation tool, ELAN 5 ; an annotator manually detects a referring expression and then selects its referent out of the possible puzzle pieces shown on the computer display. Note that only Tangram pieces were tagged as referents of referring expressions, therefore the expressions referring to abstract entities such as an action and event were not annotated. In the corpus multiple pieces were annotated as a single referent, but such referents were excluded in our evaluation because of their infrequent occurrence. Table 1 summarises the statistics of our new version of the REX-J corpus, consisting of 27 dialogues.",
"cite_spans": [
{
"start": 90,
"end": 111,
"text": "Spanger et al. (2010)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [
{
"start": 681,
"end": 688,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "4 Multi-modal reference resolution",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Collecting eye gaze data in situated dialogues",
"sec_num": "3"
},
{
"text": "To investigate the impact of extra-linguistic information on reference resolution, we conducted an empirical evaluation in which a reference resolution model chooses a referent (i.e. a piece) for a given referring expression from the set of pieces on the computer display. As a basis of our reference resolution model, we adopt an existing model for reference resolution. Recently, machine learning-based approaches to reference resolution (Soon et al., 2001; Ng and Cardie, 2002, etc.) focus on identifying anaphoric relations in texts, and have achieved better performance than hand-crafted rule-based approaches. These models for reference resolution take into account linguistic factors, such as relative salience of candidate antecedents, which have been discussed mainly in Centering Theory (Grosz et al., 1995) by ranking candidate antecedents appearing in the preceding discourse (Iida et al., 2003; Yang et al., 2003; Denis and Baldridge, 2008) . In order to take advantage of existing models, we adopt the ranking-based approach as a basis for our reference resolution model. More precisely, we em-eye gaze features GZ1: [0, 1] the frequency of fixating P in the time period [t \u2212 T, t], normalised by the frequency of the total fixations during the period. GZ2: [0, 1] the length of a fixation on P in the time period [t \u2212 T, t], nomalised by T . GZ3: [0, 1] the length of a fixation on P in the time period [t \u2212 T, t], nomalised by the total length of fixation. GZ4: [0, 1] the frequency of fixating P in the time period uttering a referring expression, normalised by the frequency of the total fixations during the period. GZ5: [0, 1] the length of a fixation on P in the time period uttering a referring expression, nominalised by T . GZ6: [0, 1] the length of a fixation on P in the time period uttering a referring expression, nominalised by the total length of fixation. GZ7: yes,no whether the frequency of fixating P in the time period [t \u2212 T, t] is most frequent. GZ8: yes,no whether the frequency of fixating P in the time period [t \u2212 T, t] is more than 1. GZ9: yes,no whether the fixation time of P in the time period [t \u2212 T, t] is longest out of all pieces. GZ10: yes,no whether there exists the fixation time of P in the time period [t \u2212 T, t]. GZ11: yes,no whether the frequency of fixating P in the time period uttering a referring expression is most frequent. GZ12: yes,no whether the frequency of fixating P in the time period uttering a referring expression is more than 1. GZ13: yes,no whether the fixation time of P in the time period uttering a referring expression is longest out of all pieces. GZ14: yes,no whether there exists the fixation time of P in the time period uttering a referring expression.",
"cite_spans": [
{
"start": 440,
"end": 459,
"text": "(Soon et al., 2001;",
"ref_id": "BIBREF29"
},
{
"start": 460,
"end": 486,
"text": "Ng and Cardie, 2002, etc.)",
"ref_id": null
},
{
"start": 797,
"end": 817,
"text": "(Grosz et al., 1995)",
"ref_id": "BIBREF8"
},
{
"start": 888,
"end": 907,
"text": "(Iida et al., 2003;",
"ref_id": "BIBREF12"
},
{
"start": 908,
"end": 926,
"text": "Yang et al., 2003;",
"ref_id": "BIBREF37"
},
{
"start": 927,
"end": 953,
"text": "Denis and Baldridge, 2008)",
"ref_id": "BIBREF3"
},
{
"start": 1131,
"end": 1134,
"text": "[0,",
"ref_id": null
},
{
"start": 1135,
"end": 1137,
"text": "1]",
"ref_id": null
},
{
"start": 1272,
"end": 1275,
"text": "[0,",
"ref_id": null
},
{
"start": 1276,
"end": 1278,
"text": "1]",
"ref_id": null
},
{
"start": 1362,
"end": 1365,
"text": "[0,",
"ref_id": null
},
{
"start": 1366,
"end": 1368,
"text": "1]",
"ref_id": null
},
{
"start": 1478,
"end": 1481,
"text": "[0,",
"ref_id": null
},
{
"start": 1482,
"end": 1484,
"text": "1]",
"ref_id": null
},
{
"start": 1640,
"end": 1643,
"text": "[0,",
"ref_id": null
},
{
"start": 1644,
"end": 1646,
"text": "1]",
"ref_id": null
},
{
"start": 1753,
"end": 1756,
"text": "[0,",
"ref_id": null
},
{
"start": 1757,
"end": 1759,
"text": "1]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Base models",
"sec_num": "4.1"
},
{
"text": "t is the onset time of a referring expression. P denotes a piece, T is a fixed time window (1500ms). Yang et al. (2003) ). In Denis and Baldridge (2008) 's ranking-based model, the most likely candidate antecedent is decided by simultaneously ranking all candidate antecedents. To induce a ranker used in the ranking process, we adopt the Ranking SVM algorithm (Joachims, 2002) 6 , which learns a weight vector to rank candidates for a given partial ranking of each referent, while the original work by Denis and Baldridge (2008) uses Maximum Entropy to create their ranking-based model. Each training instance is created from the set of all referents for each referring expression. To define the partial ranking of referents, we simply rank referents of a given referring expression as first place and any other referents as second place.",
"cite_spans": [
{
"start": 101,
"end": 119,
"text": "Yang et al. (2003)",
"ref_id": "BIBREF37"
},
{
"start": 126,
"end": 152,
"text": "Denis and Baldridge (2008)",
"ref_id": "BIBREF3"
},
{
"start": 361,
"end": 377,
"text": "(Joachims, 2002)",
"ref_id": "BIBREF14"
},
{
"start": 503,
"end": 529,
"text": "Denis and Baldridge (2008)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Base models",
"sec_num": "4.1"
},
{
"text": "As we mentioned in Section 2, a speaker's eye gaze contributes to disambiguating referents appearing in the speaker's utterances because the speaker tends to see the target object before it is referred to by a referring expression (Spivey et al., 2002) . Several aspects must be considered in order to integrate a speaker's eye gaze data. First, because the eye gaze data includes saccades, the inhibition factor of perceptual sensitivity, we extract only eye fixations as discussed in Richardson et al. (2007) . For separating saccades and eye fixations, we employ Dispersion-threshold identification (Salvucci and Anderson, 2001) , detecting fixations by using the concentration of eye gaze based on the fact the fixations are relatively slower than saccades. Second, because of the errors in measuring eye gaze by the eye tracker, the fixation data needs to be interpolated by the surrounding data. More specifically, if the error interval is less than 100 msec and the difference of the centers of two fixations is smaller then 16 pixels, these fixations are concatenated according to the work by Richardson et al. (2007) .",
"cite_spans": [
{
"start": 231,
"end": 252,
"text": "(Spivey et al., 2002)",
"ref_id": "BIBREF31"
},
{
"start": 486,
"end": 510,
"text": "Richardson et al. (2007)",
"ref_id": "BIBREF26"
},
{
"start": 602,
"end": 631,
"text": "(Salvucci and Anderson, 2001)",
"ref_id": "BIBREF27"
},
{
"start": 1101,
"end": 1125,
"text": "Richardson et al. (2007)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Eye gaze features",
"sec_num": "4.2"
},
{
"text": "The clues exploited in this paper are based on the fact that the direction of eye gaze directly reflects the focus of attention (Richardson et al., 2007; Just and Carpenter, 1976) , i.e. when one utters a referring expression, he potentially focuses on the object involved by fixating his eyes on it. Therefore, we use the eye fixations as clues for identifying the pieces focused on using the following criteria: the nearest piece to the eye fixation point is more likely a target of focus over all other pieces. To reflect this, we introduce the feature set shown in Table 2 . We henceforth call these features the eye gaze features. Note that the parameter T is set to 1,500 ms based on the previous work done by Prasov and Chai (2010) .",
"cite_spans": [
{
"start": 128,
"end": 153,
"text": "(Richardson et al., 2007;",
"ref_id": "BIBREF26"
},
{
"start": 154,
"end": 179,
"text": "Just and Carpenter, 1976)",
"ref_id": "BIBREF15"
},
{
"start": 716,
"end": 738,
"text": "Prasov and Chai (2010)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [
{
"start": 569,
"end": 576,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Eye gaze features",
"sec_num": "4.2"
},
{
"text": "In order to investigate the effect of extra-linguistic information with or without linguistic factors, we conducted empirical evaluations using the updated version of the REX-J corpus explained in (a) Linguistic features L1 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether P is referred to by the most recent referring expression. L2 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the time distance to the last mention of P is less than or equal to 10 sec. L3 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the time distance to the last mention of P is more than 10 sec and less than or equal to 20 sec. L4 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the time distance to the last mention of P is more than 20 sec. L5 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether P has never been referred to by any mentions in the preceding utterances. L6 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no, N/A whether the attributes of P are compatible with the attributes of R. L7 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether R is followed by the case marker 'o (accusative)'. L8 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether R is followed by the case marker 'ni (dative)'. L9 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether R is a pronoun and the most recent reference to P is not a pronoun. L10 : yes, no whether R is not a pronoun and was most recently referred to by a pronoun. (b) Task specific features T1 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the mouse cursor was over P at the beginning of uttering R. T2 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether P is the last piece that the mouse cursor was over when feature T1 is 'no'. T3 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the time distance is less than or equal to 10 sec after the mouse cursor was over P.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "5"
},
{
"text": "yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after the mouse cursor was over P. T5 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "yes, no whether the time distance is more than 20 sec after the mouse cursor was over P. T6 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "yes, no whether the mouse cursor was never over P in the preceding utterances. T7 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "yes, no whether P is being manipulated at the beginning of uttering R. T8 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "yes, no whether P is the most recently manipulated piece when feature T7 is 'no'. T9 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "yes, no whether the time distance is less than or equal to 10 sec after P was most recently manipulated. T10 : yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after P was most recently manipulated. T11 : yes, no whether the time distance is more than 20 sec after P was most recently manipulated. T12 : yes, no whether P has never been manipulated.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "P stands for a piece of the Tangram puzzle (i.e. a candidate referent of a referring expression) and R stands for the target referring expression. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "T4 :",
"sec_num": null
},
{
"text": "We employed two models as baselines: a model using only discourse history features, and one using only eye gaze features. Because the task setting is the same as the evaluation conducted in , we employ the same feature set, consisting of linguistically motivated features, and also features which capture the task specific extra-linguistic information of each object. We call these two kinds of features the linguistic features and task specific features, respectively. The details of these features are summarised in Table 3. As reported in , the referential behaviour of pronouns is completely different from non-pronouns. For this reason, we separately create two reference resolution models; one called the pronoun model, which identifies a referent of a given pronoun, and another called the nonpronoun model, which is for all other expressions. During the training phase, we use only training instances whose referring expressions are pronouns for creating the pronoun model, and all other training instances for the non-pronoun model. We group these two models together, selecting which Ling, TaskSp and Gaze stand for the models using the linguistic, task specific and eye gaze features respectively. one to use based on the referring expression. In other words, the pronoun model is selected if a referring expression is a pronoun, and the nonpronoun model otherwise. We will hereafter refer to the selectional model which alternatively picks between the pronoun and non-pronoun models as the separated model. We also train a third model using all training instances without distinguishing between pronouns and non-pronouns. This model we will refer to as the combined model. the results show that the model using only the linguistic features (Ling) achieved performance comparable to the one using only the eye gaze features (Gaze). Moreover, the model using only the task specific features (TaskSp) obtained performance significantly better than the others. This is because a mouse cursor is the only shared visual stimulus between the operator and solver. Therefore, it becomes the most important clue for pronouns, while the eye fixations of a speaker are not necessarily shared between them. In contrast to pronouns, the non-pronoun model using only the linguistic features (Ling) outperforms the one using either eye gaze features or the task specific features (Gaze and TaskSp). This may be because one linguistic feature (L6) works more effectively than the other features. As shown later (see Table 6 ), in non-pronoun cases, the feature L6, which is the binary value indicating the compatibility of the attributes between two referring expressions, has the highest feature weight, leading to the best performance out of all three models (Ling, Gaze and TaskSp).",
"cite_spans": [],
"ref_spans": [
{
"start": 518,
"end": 526,
"text": "Table 3.",
"ref_id": "TABREF3"
},
{
"start": 2511,
"end": 2518,
"text": "Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Experimental settings",
"sec_num": "5.1"
},
{
"text": "In addition, combining the linguistic and eye gaze features (Ling+Gaze) on non-pronoun reference resolution contributes to increasing performance. This means that these two features work in a complementary manner when a referring expression cannot be judged on a superficial level whether it refers to a discourse referent or a visually focused referent. From these results, we can see that the clues from utterances of participants are also essential for precise reference resolution, while the previous work focusing on eye fixations tends to concentrate on modeling only eye gaze information.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "The accuracy results in Table 5 show the performance of the combined and separated models for different settings of feature selection. Table 5 shows that the two models achieved almost the same performance when the linguistic, eye gaze and task specific features are individually used. However, it also shows that the separated model outperforms the combined model when more than two feature types are utilised. This indicates that separating the models with regard to the type of referring expression does make sense even when we employ eye fixations as a clue for recognising referent objects. It also shows that both the combined and separated models obtained the best performance for each model using all the features. In other words, the three types of features work in a complementary manner on multi-modal reference resolution. We next investigated the significance of each feature for the pronoun and non-pronoun models. We calculate the weight of a feature f shown in Table 6 according to the following formula.",
"cite_spans": [],
"ref_spans": [
{
"start": 24,
"end": 31,
"text": "Table 5",
"ref_id": "TABREF7"
},
{
"start": 135,
"end": 142,
"text": "Table 5",
"ref_id": "TABREF7"
},
{
"start": 977,
"end": 984,
"text": "Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "weight(f ) = \u2211 x\u2208SV s w x z x (f )",
"eq_num": "(1)"
}
],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "where SVs is a set of the support vectors in a ranker induced by the Ranking SVM algorithm, w x is the weight of the support vector x, z x (f ) is the function that returns 1 if f occurs in x, respectively. Table 6 shows the top 10 features with the highest weights of each model. It demonstrates that in the pronoun model the task specific features have the highest weight, while in the non-pronoun model these features are less significant. As shown in Table 4 , pronouns are strongly related to the situation where the mouse cursor is over a piece, which is consistent with the results reported in .",
"cite_spans": [],
"ref_spans": [
{
"start": 207,
"end": 214,
"text": "Table 6",
"ref_id": "TABREF9"
},
{
"start": 455,
"end": 462,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "In contrast, the highest features in the nonpronoun model are occupied by the eye gaze features, except for L6. This indicates that in the situation where a speaker mentions pieces realised as non-pronouns, the eye fixations become a good clue for identifying the current focus of the speaker, while the task specific features such as the location of the mouse cursor are less significant. In addition, Table 6 also shows that the discourse feature L6 obtains the highest significance. This means that exploiting the linguistic factors together with eye fixations is essential for more accurate reference resolution.",
"cite_spans": [],
"ref_spans": [
{
"start": 403,
"end": 410,
"text": "Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "In this paper we focused on investigating the impact of eye fixations on reference resolution compared to using other extra-linguistic information. We conducted an empirical evaluation using referring expressions appearing in collaborative work dialogues from the extended REX-J corpus, synchronised with eye gaze information. We demonstrated that the referents of pronouns are relatively easily identified, as they rely on the visual salience such as is indicated by moving the mouse cursor, and that non-pronouns are strongly related to eye fixations on its referent. In addition, our results also show that combining linguistic, eye gaze and other extra-linguistic factors contribute to increasing the overall performance of identifying all referring expressions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "There are several future directions for making the multi-modal reference resolution more accurate and robust. First, we need to introduce more task dependent information reflecting the characteristics of each multi-modal task. In the Tangram puzzle task, for example, once a piece becomes part of a partially constructed shape, the piece tends to be less salient because a solver typically gives an instruction to move a scattered piece to a partially constructed shape. We expect that introducing such task specific clues into the reference resolution model as features will contribute to improving performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "Second, in our evaluation we adopted collaborative work dialogues where two participants solve Tangram puzzles. Since all objects (i.e. puzzle pieces) have nearly the same size, this results in explicitly rejecting the factor that a relatively larger object occupying the computer display has higher prominence over smaller objects, which has been considered by Byron (2005) . In order to take such a factor into account, we need further data collection and then to incorporate additional factors into the current reference resolution model. A third possible direction for future work is to examine the relation between linguistic and inten-tional structures, which are discussed in Grosz and Sidner (1986) . In our problem setting, when a solver instructs an operator how to construct a goal shape, a series of utterances by the solver reflects the solver's intentions. As we already mentioned above, objects which a solver wants an operator to manipulate tend to draw a solver's attention, while the other objects (especially, the objects representing the partially constructed shape) are considered less salient. Exploiting the importance of the speaker's intentions also needs to be considered in future work.",
"cite_spans": [
{
"start": 362,
"end": 374,
"text": "Byron (2005)",
"ref_id": "BIBREF2"
},
{
"start": 683,
"end": 706,
"text": "Grosz and Sidner (1986)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "www-nlpir.nist.gov/related projects/muc/ 2 www.itl.nist.gov/iad/mig/tests/ace/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Note that the first pair was used to adjust the settings of our data collection, so 4 dialogues collected from that pair were not included in the evaluation data set used in Section 5.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "www.lat-mpi.eu/tools/elan/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "www.cs.cornell.edu/People/tj/svm light/svm rank.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A centering approach to pronouns",
"authors": [
{
"first": "S",
"middle": [
"E"
],
"last": "Brennan",
"suffix": ""
},
{
"first": "M",
"middle": [
"W"
],
"last": "Friedman",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Pollard",
"suffix": ""
}
],
"year": 1987,
"venue": "Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "155--162",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. E. Brennan, M. W. Friedman, and C. Pollard. 1987. A centering approach to pronouns. In Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics (ACL), pages 155-162.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Reference resolution in the wild: On-line circumscription of referential domains in a natural, interactive, problem-solving task",
"authors": [
{
"first": "S",
"middle": [],
"last": "Brown-Schmidt",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Campana",
"suffix": ""
},
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 24th annual meeting of the Cognitive Science Society",
"volume": "",
"issue": "",
"pages": "148--153",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Brown-Schmidt, E. Campana, and M. K. Tanenhaus. 2002. Reference resolution in the wild: On-line cir- cumscription of referential domains in a natural, in- teractive, problem-solving task. In Proceedings of the 24th annual meeting of the Cognitive Science So- ciety, pages 148-153.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Utilizing visual attention for crossmodal coreference interpretation",
"authors": [
{
"first": "D",
"middle": [
"K"
],
"last": "Byron",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of Fifth International and Interdisciplinary Conference on Modeling and Using Context",
"volume": "",
"issue": "",
"pages": "83--96",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. K. Byron. 2005. Utilizing visual attention for cross- modal coreference interpretation. In In Proceedings of Fifth International and Interdisciplinary Confer- ence on Modeling and Using Context, pages 83-96.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Specialized models and ranking for coreference resolution",
"authors": [
{
"first": "P",
"middle": [],
"last": "Denis",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Baldridge",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "660--669",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Denis and J. Baldridge. 2008. Specialized models and ranking for coreference resolution. In Proceed- ings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 660-669.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Introduction to the special issue on language-vision interactions",
"authors": [
{
"first": "F",
"middle": [],
"last": "Ferreira",
"suffix": ""
},
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
}
],
"year": 2007,
"venue": "Journal of Memory and Language",
"volume": "57",
"issue": "",
"pages": "455--459",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. Ferreira and M. K. Tanenhaus. 2007. Introduction to the special issue on language-vision interactions. Journal of Memory and Language, 57:455-459.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Who is \"you\"? combining linguistic and gaze features to resolve secondperson references in dialogue",
"authors": [
{
"first": "M",
"middle": [],
"last": "Frampton",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Fern\u00e1ndez",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Ehlen",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Christoudias",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Darrell",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Peters",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 12th Conference of the European Chapter",
"volume": "",
"issue": "",
"pages": "273--281",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Frampton, R. Fern\u00e1ndez, P. Ehlen, M. Christoudias, T. Darrell, and S. Peters. 2009. Who is \"you\"? com- bining linguistic and gaze features to resolve second- person references in dialogue. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 273-281.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A statistical approach to anaphora resolution",
"authors": [
{
"first": "N",
"middle": [],
"last": "Ge",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Hale",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Charniak",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of the 6th Workshop on Very Large Corpora",
"volume": "",
"issue": "",
"pages": "161--170",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Ge, J. Hale, and E. Charniak. 1998. A statistical ap- proach to anaphora resolution. In Proceedings of the 6th Workshop on Very Large Corpora, pages 161- 170.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Attention, intentions, and the structure of discourse",
"authors": [
{
"first": "J",
"middle": [],
"last": "Barbara",
"suffix": ""
},
{
"first": "Candace",
"middle": [
"L"
],
"last": "Grosz",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sidner",
"suffix": ""
}
],
"year": 1986,
"venue": "Computational Linguistics",
"volume": "12",
"issue": "3",
"pages": "175--204",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Barbara J. Grosz and Candace L. Sidner. 1986. Atten- tion, intentions, and the structure of discourse. Com- putational Linguistics, 12(3):175-204.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Centering: A framework for modeling the local coherence of discourse",
"authors": [
{
"first": "B",
"middle": [
"J"
],
"last": "Grosz",
"suffix": ""
},
{
"first": "A",
"middle": [
"K"
],
"last": "Joshi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Weinstein",
"suffix": ""
}
],
"year": 1995,
"venue": "Computational Linguistics",
"volume": "21",
"issue": "2",
"pages": "203--226",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. J. Grosz, A. K. Joshi, and S. Weinstein. 1995. Centering: A framework for modeling the local co- herence of discourse. Computational Linguistics, 21(2):203-226.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Speakers' eye gaze disambiguates referring expressions early during face-to-face conversation",
"authors": [
{
"first": "J",
"middle": [
"E"
],
"last": "Hanna",
"suffix": ""
},
{
"first": "S",
"middle": [
"E"
],
"last": "Brennan",
"suffix": ""
}
],
"year": 2007,
"venue": "Journal of Memory and Language",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. E. Hanna and S. E. Brennan. 2007. Speakers' eye gaze disambiguates referring expressions early dur- ing face-to-face conversation. Journal of Memory and Language, 57.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Pragmatic effects on reference resolution in a collaborative task: evidence from eye movements",
"authors": [
{
"first": "J",
"middle": [
"E"
],
"last": "Hanna",
"suffix": ""
},
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
}
],
"year": 2004,
"venue": "Cognitive Science",
"volume": "28",
"issue": "",
"pages": "105--115",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. E. Hanna and M. K. Tanenhaus. 2004. Pragmatic ef- fects on reference resolution in a collaborative task: evidence from eye movements. Cognitive Science, 28:105-115.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "The effects of common ground and perspective on domains of referential interpretation",
"authors": [
{
"first": "J",
"middle": [
"E"
],
"last": "Hanna",
"suffix": ""
},
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
},
{
"first": "J",
"middle": [
"C"
],
"last": "Trueswell",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of Memory and Language",
"volume": "49",
"issue": "1",
"pages": "43--61",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. E. Hanna, M. K. Tanenhaus, and J. C. Trueswell. 2003. The effects of common ground and perspec- tive on domains of referential interpretation. Jour- nal of Memory and Language, 49(1):43-61.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Incorporating contextual cues in trainable models for coreference resolution",
"authors": [
{
"first": "R",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Takamura",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 10th EACL Workshop on The Computational Treatment of Anaphora",
"volume": "",
"issue": "",
"pages": "23--30",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Iida, K. Inui, H. Takamura, and Y. Matsumoto. 2003. Incorporating contextual cues in trainable models for coreference resolution. In Proceedings of the 10th EACL Workshop on The Computational Treatment of Anaphora, pages 23-30.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Incorporating extra-linguistic information into reference resolution in collaborative task dialogue",
"authors": [
{
"first": "R",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Kobayashi",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Tokunaga",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceeding of the 48st Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "1259--1267",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Iida, S. Kobayashi, and T. Tokunaga. 2010. In- corporating extra-linguistic information into refer- ence resolution in collaborative task dialogue. In Proceeding of the 48st Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 1259-1267.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Optimizing search engines using clickthrough data",
"authors": [
{
"first": "T",
"middle": [],
"last": "Joachims",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD)",
"volume": "",
"issue": "",
"pages": "133--142",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of the ACM Con- ference on Knowledge Discovery and Data Mining (KDD), pages 133-142.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Eye fixations and cognitive processes",
"authors": [
{
"first": "M",
"middle": [],
"last": "Just",
"suffix": ""
},
{
"first": "P",
"middle": [
"A"
],
"last": "Carpenter",
"suffix": ""
}
],
"year": 1976,
"venue": "Cognitive Psychology",
"volume": "8",
"issue": "",
"pages": "441--480",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Just and P. A. Carpenter. 1976. Eye fixations and cognitive processes. Cognitive Psychology, 8:441- 480.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Visual salience and reference resolution in simulated 3-d environments",
"authors": [
{
"first": "J",
"middle": [],
"last": "Kelleher",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Van Genabith",
"suffix": ""
}
],
"year": 2004,
"venue": "Artificial Intelligence Review",
"volume": "21",
"issue": "3",
"pages": "253--267",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Kelleher and J. van Genabith. 2004. Visual salience and reference resolution in simulated 3-d environ- ments. Artificial Intelligence Review, 21(3):253- 267.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Dynamically structuring updating and interrelating representations of visual and linguistic discourse",
"authors": [
{
"first": "J",
"middle": [],
"last": "Kelleher",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Costello",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Van Genabith",
"suffix": ""
}
],
"year": 2005,
"venue": "Artificial Intelligence",
"volume": "167",
"issue": "",
"pages": "62--102",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Kelleher, F. Costello, and J. van Genabith. 2005. Dy- namically structuring updating and interrelating rep- resentations of visual and linguistic discourse. Arti- ficial Intelligence, 167:62-102.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Attention driven reference resolution in multimodal contexts",
"authors": [
{
"first": "J",
"middle": [
"D"
],
"last": "Kelleher",
"suffix": ""
}
],
"year": 2006,
"venue": "Artificial Intelligence Review",
"volume": "25",
"issue": "",
"pages": "21--35",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. D. Kelleher. 2006. Attention driven reference reso- lution in multimodal contexts. Artificial Intelligence Review, 25:21-35.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "An algorithm for pronominal anaphora resolution",
"authors": [
{
"first": "S",
"middle": [],
"last": "Lappin",
"suffix": ""
},
{
"first": "H",
"middle": [
"J"
],
"last": "Leass",
"suffix": ""
}
],
"year": 1994,
"venue": "Computational Linguistics",
"volume": "20",
"issue": "4",
"pages": "535--561",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Lappin and H. J. Leass. 1994. An algorithm for pronominal anaphora resolution. Computational Linguistics, 20(4):535-561.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Using decision trees for coreference resolution",
"authors": [
{
"first": "J",
"middle": [
"F"
],
"last": "Mccarthy",
"suffix": ""
},
{
"first": "W",
"middle": [
"G"
],
"last": "Lehnert",
"suffix": ""
}
],
"year": 1995,
"venue": "Proceedings of the 14th International Joint Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "1050--1055",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. F. McCarthy and W. G. Lehnert. 1995. Using deci- sion trees for coreference resolution. In Proceedings of the 14th International Joint Conference on Artifi- cial Intelligence, pages 1050-1055.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "When conceptual pacts are broken: Partner-specific effects on the comprehension of referring expressions",
"authors": [
{
"first": "C",
"middle": [],
"last": "Metzing",
"suffix": ""
},
{
"first": "S",
"middle": [
"E"
],
"last": "Brennan",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of Memory and Language",
"volume": "49",
"issue": "",
"pages": "201--213",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. Metzing and S. E. Brennan. 2003. When concep- tual pacts are broken: Partner-specific effects on the comprehension of referring expressions. Journal of Memory and Language, 49:201-213.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Anaphora Resolution. Studies in Language and Linguistics",
"authors": [
{
"first": "R",
"middle": [],
"last": "Mitkov",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Mitkov. 2002. Anaphora Resolution. Studies in Language and Linguistics. Pearson Education.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Improving machine learning approaches to coreference resolution",
"authors": [
{
"first": "V",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Cardie",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "104--111",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. Ng and C. Cardie. 2002. Improving machine learn- ing approaches to coreference resolution. In Pro- ceedings of the 40th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 104-111.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "What's in a gaze? the role off eye-gaze in reference resolution in multimodal conversational interface",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Prasov",
"suffix": ""
},
{
"first": "J",
"middle": [
"Y"
],
"last": "Chai",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 13th international conference on Intelligent user interfaces",
"volume": "",
"issue": "",
"pages": "20--29",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Prasov and J. Y. Chai. 2008. What's in a gaze? the role off eye-gaze in reference resolution in mul- timodal conversational interface. In In Proceedings of the 13th international conference on Intelligent user interfaces, pages 20-29.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Fusing eye gaze with speech recognition hypotheses to resolve exophoric references in situated dialogue",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Prasov",
"suffix": ""
},
{
"first": "J",
"middle": [
"Y"
],
"last": "Chai",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "471--481",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Prasov and J. Y. Chai. 2010. Fusing eye gaze with speech recognition hypotheses to resolve exophoric references in situated dialogue. In Proceedings of the 2010 Conference on Empirical Methods in Nat- ural Language Processing, pages 471-481.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Eye movements in language and cognition: A brief introduction, methods in cognitive linguistics",
"authors": [
{
"first": "D",
"middle": [
"C"
],
"last": "Richardson",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Dale",
"suffix": ""
},
{
"first": "M",
"middle": [
"J"
],
"last": "Spivey",
"suffix": ""
}
],
"year": 2007,
"venue": "Methods in Cognitive Linguistics",
"volume": "",
"issue": "",
"pages": "323--344",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. C. Richardson, R. Dale, and M. J. Spivey. 2007. Eye movements in language and cognition: A brief introduction, methods in cognitive linguistics. In M. Gonzalez-Marquez, I. Mittelberg, S. Coulson, and M. J. Spivey, editors, Methods in Cognitive Lin- guistics, pages 323-344. John Benjamins.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Automated eye-movement protocol analysis",
"authors": [
{
"first": "D",
"middle": [
"D"
],
"last": "Salvucci",
"suffix": ""
},
{
"first": "J",
"middle": [
"R"
],
"last": "Anderson",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "16",
"issue": "",
"pages": "39--86",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. D. Salvucci and J. R. Anderson. 2001. Automated eye-movement protocol analysis. Human-Computer Interaction, 16:39-86.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Visual salience and reference resolution in situated dialogues: A corpus-based evaluation",
"authors": [
{
"first": "N",
"middle": [],
"last": "Sch\u00fctte",
"suffix": ""
},
{
"first": "J",
"middle": [
"D"
],
"last": "Kelleher",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Mac Namee",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the AAAI Symposium on Dialog with Robots",
"volume": "",
"issue": "",
"pages": "11--13",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Sch\u00fctte, J. D. Kelleher, and B. Mac Namee. 2010. Visual salience and reference resolution in situated dialogues: A corpus-based evaluation. In In Pro- ceedings of the AAAI Symposium on Dialog with Robots, Arlington, Virginia, USA. 11th -13th Nov 2010.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "A machine learning approach to coreference resolution of noun phrases",
"authors": [
{
"first": "W",
"middle": [
"M"
],
"last": "Soon",
"suffix": ""
},
{
"first": "H",
"middle": [
"T"
],
"last": "Ng",
"suffix": ""
},
{
"first": "D",
"middle": [
"C Y"
],
"last": "Lim",
"suffix": ""
}
],
"year": 2001,
"venue": "Computational Linguistics",
"volume": "27",
"issue": "4",
"pages": "521--544",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. M. Soon, H. T. Ng, and D. C. Y. Lim. 2001. A machine learning approach to coreference resolu- tion of noun phrases. Computational Linguistics, 27(4):521-544.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "REX-J: Japanese referring expression corpus of situated dialogs",
"authors": [
{
"first": "P",
"middle": [],
"last": "Spanger",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Yasuhara",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Tokunaga",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Terai",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Kuriyama",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Spanger, M. Yasuhara, R. Iida, T. Tokunaga, A. Terai, and N. Kuriyama. 2010. REX-J: Japanese referring expression corpus of situated dialogs. Lan- guage Resources & Evaluation.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Eye movements and spoken language comprehension: Effects of visual context on syntactic ambiguity resolution",
"authors": [
{
"first": "M",
"middle": [
"J"
],
"last": "Spivey",
"suffix": ""
},
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
},
{
"first": "K",
"middle": [
"M"
],
"last": "Eberhard",
"suffix": ""
},
{
"first": "J",
"middle": [
"C"
],
"last": "Sedivy",
"suffix": ""
}
],
"year": 2002,
"venue": "Cognitive Psychology",
"volume": "45",
"issue": "4",
"pages": "447--481",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. J. Spivey, M. K. Tanenhaus, K. M. Eberhard, and J. C. Sedivy. 2002. Eye movements and spoken lan- guage comprehension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychol- ogy, 45(4):447-481.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Scare: A situated corpus with annotated referring expressions",
"authors": [
{
"first": "L",
"middle": [],
"last": "Stoia",
"suffix": ""
},
{
"first": "D",
"middle": [
"M"
],
"last": "Shockley",
"suffix": ""
},
{
"first": "D",
"middle": [
"K"
],
"last": "Byron",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Fosler-Lussier",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Stoia, D. M. Shockley, D. K. Byron, and E. Fosler- Lussier. 2008. Scare: A situated corpus with an- notated referring expressions. In Proceedings of the Sixth International Conference on Language Re- sources and Evaluation (LREC 2008).",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Functional centering",
"authors": [
{
"first": "M",
"middle": [],
"last": "Strube",
"suffix": ""
},
{
"first": "U",
"middle": [],
"last": "Hahn",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceeding of the 34st Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "270--277",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Strube and U. Hahn. 1996. Functional centering. In Proceeding of the 34st Annual Meeting of the Association for Computational Linguistics (ACL), pages 270-277.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Integration of visual and linguistic information in spoken language comprehension",
"authors": [
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
},
{
"first": "M",
"middle": [
"J"
],
"last": "Spivey-Knowlton",
"suffix": ""
},
{
"first": "K",
"middle": [
"M"
],
"last": "Eberhard",
"suffix": ""
},
{
"first": "J",
"middle": [
"C"
],
"last": "Sedivy",
"suffix": ""
}
],
"year": 1995,
"venue": "Science",
"volume": "268",
"issue": "5217",
"pages": "1632--1634",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eber- hard, and J. C. Sedivy. 1995. Integration of visual and linguistic information in spoken language com- prehension. Science, 268(5217):1632-1634.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Eye movements and lexical access in spoken-language comprehension: Evaluating a linking hypothesis between fixations and linguistic processing",
"authors": [
{
"first": "M",
"middle": [
"K"
],
"last": "Tanenhaus",
"suffix": ""
},
{
"first": "J",
"middle": [
"S"
],
"last": "Magnuson",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Dahan",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Chambers",
"suffix": ""
}
],
"year": 2000,
"venue": "Journal of Psycholinguistic Research",
"volume": "29",
"issue": "6",
"pages": "557--580",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. K. Tanenhaus, J. S. Magnuson, D. Dahan, and C. Chambers. 2000. Eye movements and lexical ac- cess in spoken-language comprehension: Evaluating a linking hypothesis between fixations and linguistic processing. Journal of Psycholinguistic Research, 29(6):557-580.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing Communications, and control",
"authors": [
{
"first": "V",
"middle": [
"N"
],
"last": "Vapnik",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. N. Vapnik. 1998. Statistical Learning Theory. Adaptive and Learning Systems for Signal Process- ing Communications, and control. John Wiley & Sons.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Coreference resolution using competition learning approach",
"authors": [
{
"first": "X",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "C",
"middle": [
"L"
],
"last": "Tan",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "176--183",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "X. Yang, G. Zhou, J. Su, and C. L. Tan. 2003. Coreference resolution using competition learning approach. In Proceedings of the 41st Annual Meet- ing of the Association for Computational Linguistics (ACL), pages 176-183.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"text": "'s reference resolution model.",
"type_str": "figure"
},
"TABREF1": {
"text": "Referring expressions in the extended REX-J corpus",
"content": "<table/>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF2": {
"text": "",
"content": "<table><tr><td>: Eye gaze features</td></tr></table>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF3": {
"text": "",
"content": "<table><tr><td>: Feature set</td></tr></table>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF5": {
"text": "",
"content": "<table/>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF6": {
"text": "",
"content": "<table><tr><td>shows the accuracy results of our empiri-</td></tr><tr><td>cal evaluation separately evaluating pronouns and</td></tr><tr><td>non-pronouns. In reference resolution of pronouns</td></tr></table>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF7": {
"text": "Overall results (accuracy)",
"content": "<table/>",
"num": null,
"type_str": "table",
"html": null
},
"TABREF9": {
"text": "10 highest weights of the features in each model",
"content": "<table/>",
"num": null,
"type_str": "table",
"html": null
}
}
}
} |