File size: 124,864 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
{
    "paper_id": "I11-1021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:15.919353Z"
    },
    "title": "Enhancing Active Learning for Semantic Role Labeling via Compressed Dependency Trees",
    "authors": [
        {
            "first": "Chenhua",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Saarland University",
                "location": {
                    "settlement": "Saarbr\u00fccken",
                    "country": "Germany"
                }
            },
            "email": ""
        },
        {
            "first": "Alexis",
            "middle": [],
            "last": "Palmer",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Saarland University",
                "location": {
                    "settlement": "Saarbr\u00fccken",
                    "country": "Germany"
                }
            },
            "email": "apalmer@coli.uni-sb.de"
        },
        {
            "first": "Caroline",
            "middle": [],
            "last": "Sporleder",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Saarland University",
                "location": {
                    "settlement": "Saarbr\u00fccken",
                    "country": "Germany"
                }
            },
            "email": "csporled@coli.uni-sb.de"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper explores new approaches to active learning (AL) for semantic role labeling (SRL), focusing in particular on combining typical informativity-based sampling strategies with a novel measure of representativeness based on compressed dependency trees (CDTs). In essence, the compressed representation encodes the target predicate and the key dependents of the verb complex in the sentence. We first present our method for producing CDTs from the output of an existing dependency parser. The compressed trees are used as features for training a supervised SRL system. Second, we present a study of AL for SRL. We investigate a number of different sample selection strategies, and the best results are achieved by incorporating CDTs for example selection based on both informativity and representativeness. We show that our approach can reduce by up to 50% the amount of training data needed to attain a given level of performance.",
    "pdf_parse": {
        "paper_id": "I11-1021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper explores new approaches to active learning (AL) for semantic role labeling (SRL), focusing in particular on combining typical informativity-based sampling strategies with a novel measure of representativeness based on compressed dependency trees (CDTs). In essence, the compressed representation encodes the target predicate and the key dependents of the verb complex in the sentence. We first present our method for producing CDTs from the output of an existing dependency parser. The compressed trees are used as features for training a supervised SRL system. Second, we present a study of AL for SRL. We investigate a number of different sample selection strategies, and the best results are achieved by incorporating CDTs for example selection based on both informativity and representativeness. We show that our approach can reduce by up to 50% the amount of training data needed to attain a given level of performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The focus of this paper is active learning for semantic role labeling, a little-studied intersection of two rather substantial bodies of work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One aim of active learning (AL) is to reduce the number of labeled training instances required to reach a given performance level using supervised machine learning techniques. This is accomplished by allowing the learner to guide the selection of examples to be annotated and added to the training set; at each iteration the learner queries for the example (or set of examples) that will be most informative to its present state. AL is an attractive idea for natural language processing (NLP) because of its potential to dramatically reduce the need for expensive expert annotation, and it has been successfully applied in various areas of natural language processing (Tang et al., 2002; Settles and Craven, 2008) , including named entity recognition (Shen et al., 2004 ),text classification (Yang et al., 2009) , image retrieval (Zhou, 2006) , partof-speech tagging (Ringger et al., 2007) , morpheme glossing (Baldridge and Palmer, 2009) , and syntactic parsing (Hwa, 2004; Osborne and Baldridge, 2004) .",
                "cite_spans": [
                    {
                        "start": 668,
                        "end": 687,
                        "text": "(Tang et al., 2002;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 688,
                        "end": 713,
                        "text": "Settles and Craven, 2008)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 751,
                        "end": 769,
                        "text": "(Shen et al., 2004",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 792,
                        "end": 811,
                        "text": "(Yang et al., 2009)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 830,
                        "end": 842,
                        "text": "(Zhou, 2006)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 867,
                        "end": 889,
                        "text": "(Ringger et al., 2007)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 910,
                        "end": 938,
                        "text": "(Baldridge and Palmer, 2009)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 963,
                        "end": 974,
                        "text": "(Hwa, 2004;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 975,
                        "end": 1003,
                        "text": "Osborne and Baldridge, 2004)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The problems of scarce annotated data and the expense of annotating new data are at least as relevant for semantic role labeling (SRL) as for the above-mentioned areas of NLP. Existing work on automatic SRL usually explores supervised machine learning approaches to mark the semantic roles of predicates automatically by training classifiers using large annotated corpora. 1 Although such approaches can achieve reasonably good performance, annotating a large corpus is still expensive and time consuming. Moreover, the performance of trained classifiers may degrade remarkably when they are applied to out-of-domain data (Johansson and Nugues, 2008a) . There is very little work on AL for SRL (e.g. Roth and Small (2006) ), although much interesting work has been done with semi-supervised and unsupervised approaches to the problem (Grenager and Manning, 2006; F\u00fcrstenau and Lapata, 2009; Lang and Lapata, 2010; Titov and Klementiev, 2011, among others) .",
                "cite_spans": [
                    {
                        "start": 373,
                        "end": 374,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 622,
                        "end": 651,
                        "text": "(Johansson and Nugues, 2008a)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 700,
                        "end": 721,
                        "text": "Roth and Small (2006)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 834,
                        "end": 862,
                        "text": "(Grenager and Manning, 2006;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 863,
                        "end": 890,
                        "text": "F\u00fcrstenau and Lapata, 2009;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 891,
                        "end": 913,
                        "text": "Lang and Lapata, 2010;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 914,
                        "end": 955,
                        "text": "Titov and Klementiev, 2011, among others)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we explore the use of compressed dependency trees (CDTs) as features for supervised semantic role labeling and, most importantly, as a way of measuring how representative an individual instance is of the input data. We then incorporate representativeness as part of the metric used for sample selection in active learning. The compressed dependency trees encode the target predicate and the key dependents of the verb complex in a sentence. As illustrated in Section 3, the structural relationships defined by the compressed dependency trees well encapsulate key features used in automatic SRL.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For a more complete picture of the potential for AL with respect to SRL, we investigate a set of strategies designed to select the most informative training examples. We further develop a more effective approach to select training examples concerning both their informativity and representativeness. We use the compressed dependency trees to measure the similarity of two sentences, and select the training examples with a higher priority which are more informative and representative among the unlabeled sentences in the pool. The experimental results show that our approaches can reduce up to 50% of training examples compared to traditional supervised learning solutions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We begin with a brief description of the semantic role labeling task and our supervised learning model. Section 3 presents our method for compressing dependency tree representations, followed by the active learning model, including definitions of all sampling strategies investigated in this work (Section 4). Experiments and results are presented and discussed in Section 5 and Section 6. We end with related work (Section 7) and brief conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Parsing the semantic argument structure of a sentence involves identification and disambiguation of target predicates as well as identification and labeling of their arguments. Because our focus is on the active learning more so than on the semantic role labeling itself, we address only the argument labeling stage of the process, assuming that predicates and argument spans alike have already been identified and correctly labeled.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling",
                "sec_num": "2"
            },
            {
                "text": "Broadly speaking, there are two different styles of semantic parsing and semantic role labeling (SRL): those based on FrameNet-style analysis (Ruppenhofer et al., 2006) and those using PropBank-style analysis (Palmer et al., 2005) . This work takes the PropBank approach, which considers only verbal predicates and is strongly tied to syntactic structure. In (1), for example, the two arguments of the predicate idolize are labeled as Arg0 and Arg1.",
                "cite_spans": [
                    {
                        "start": 142,
                        "end": 168,
                        "text": "(Ruppenhofer et al., 2006)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 209,
                        "end": 230,
                        "text": "(Palmer et al., 2005)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling",
                "sec_num": "2"
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling",
                "sec_num": "2"
            },
            {
                "text": "[John] Arg0 idolizes [his sister] Arg1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling",
                "sec_num": "2"
            },
            {
                "text": "In this text, we refer to each argument to be labeled, together with its target predicate, as an instance; the sentence in (1) contains two instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling",
                "sec_num": "2"
            },
            {
                "text": "The aim of the current work is not to surpass stateof-the-art performance on semantic role labeling. Therefore, although state-of-the-art semantic role labelers are freely available, we chose to implement our own labeler in order to have more control over the underlying machinery. This allows straightforward access to the predicted probability of outputs, which is crucial for the informativitybased selection strategies in Section 4. In addition, compressed dependency trees (Section 3) serve as features for our labeler as well as guiding sample selection in the active learning experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Learning Model",
                "sec_num": "2.1"
            },
            {
                "text": "In our study, we applied an L1-regularized 2 logistic regression model (Lee et al., 2006) for labeling instances, using the liblinear package (Lin et al., 2007) to build one classifier per label. There are 6 core and 13 non-core argument labels in PropBank annotations. Thus our SRL system is a suite of binary classifiers, and we then use the one-versus-all method (Duda et al., 2001) to assign labels to each instance.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 89,
                        "text": "(Lee et al., 2006)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 142,
                        "end": 160,
                        "text": "(Lin et al., 2007)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 366,
                        "end": 385,
                        "text": "(Duda et al., 2001)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Learning Model",
                "sec_num": "2.1"
            },
            {
                "text": "We used the version of PropBank provided for the CoNLL-2008 SRL shared task (Surdeanu et al., 2008) . A test set of 500 randomly selected sentences was constructed at the outset of the project; this was used only for evaluation of both supervised and active learning models. In all AL experiments, we simulate the oracle by hiding and then uncovering gold-standard labels.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 99,
                        "text": "(Surdeanu et al., 2008)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data and Features",
                "sec_num": "2.2"
            },
            {
                "text": "The CoNLL-2008 data set includes both goldstandard dependency parses and automatic dependency parses from the Malt parser (Nivre and Hall, 2005) . We use a combination of features taken directly from the gold-standard parses, 3 features derived from the Malt parses, and features from the output of the Stanford dependency parser (de Marneffe et al., 2006) . To apply the logistic regression model, the features are represented in a binary fashion. The features are described in Table 1, in three groups separated by double lines. The derived features, including a heuristicallyidentified verb complex and altered dependency labels, are described in more detail in Section 3. We use cross-validation on the training data to select for each individual classifier the subset of features most relevant for that label. In feature selection, features are ranked based on their Fisher score calculated using the training data set (as in Duda et al. (2001) ).",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 144,
                        "text": "(Nivre and Hall, 2005)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 334,
                        "end": 356,
                        "text": "Marneffe et al., 2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 931,
                        "end": 949,
                        "text": "Duda et al. (2001)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data and Features",
                "sec_num": "2.2"
            },
            {
                "text": "Given a sentence, the task of dependency parsing is to identify the head word and its corresponding dependents and to classify their functional relationships according to a set of dependency relations (e.g., subject, modifier). Thus, a dependency tree of a sentence encodes the dependency relation between the head words and their dependents. It has been reported that SRL can benefit from phrase-structure and dependency-based syntactic parsing (Hacioglu, 2004 Pradhan et al., 2005) . At the same time, much of the structural and relational information represented in a dependency tree is not relevant for the SRL task.",
                "cite_spans": [
                    {
                        "start": 446,
                        "end": 461,
                        "text": "(Hacioglu, 2004",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 462,
                        "end": 483,
                        "text": "Pradhan et al., 2005)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "We use a compressed dependency tree (CDT) to encode just the relationships between a target predicate and the key dependents of the verb complex. The new tree is always rooted in the target predicate, which often means resetting the root from an auxiliary or other finite main verb. We generate the CDT from the output of an existing dependency parser through the process described in a simplified form below, using the example sentence in Fig. 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 440,
                        "end": 446,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "1. Fix target predicate (e.g. set) as root of CDT. 2. Identify the verb chain to which the target predicate belongs; this group of tokens will now be treated as the verb complex. The verb chain is produced by collecting elements connected by relevant dependency relations (VC, IM, CONJ), stopping when a ROOT node, a subordinate clause (SUB), or a verbal OBJ node is encountered. 3. Collect direct dependents of each word in the new verb complex; set these as dependents of the target predicate in the CDT, transferring the dependency relation to the target predicate. (e.g. date is a dependent of have). 4. Negation, modal verbs, and other main verbs in the verb complex also become dependents of the root predicate in the CDT. In some cases of 'new' dependency relations introduced by the tree compression process, we use output from the Stanford parser to complement the dependency relations found in the gold-standard data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "5. Heuristically determine voice of clause and alter some CDT dependency labels(e.g. SBJ PASSIVE becomes OBJ*); these are the asterisk-marked relations in Table. 1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 155,
                        "end": 161,
                        "text": "Table.",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "For example, in (2):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "(2) At the same time, the government did not want to appear to favor GM by allowing a minority stake that might preclude a full bid by Ford.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "the verb complex is {did, n't, want, appear, fa-vor}. The subject phrase the government, originally a dependent of did, becomes a dependent of the new three-verb predicate {want, appear, fa-vor}; the negation word n't is a dependent of the target predicate want.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Tree Compression",
                "sec_num": "3"
            },
            {
                "text": "This section provides some background on the active learning process, as well as detailing the various sampling strategies we investigate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Active Learning",
                "sec_num": "4"
            },
            {
                "text": "In this study we apply a standard active learning model (Settles, 2010; Lewis and Gale, 1994) to the task of semantic role labeling. Algorithm 1 illustrates this model as we use it. 4",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 71,
                        "text": "(Settles, 2010;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 72,
                        "end": 93,
                        "text": "Lewis and Gale, 1994)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Algorithm 1 Active learning for SRL.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "1: Randomly select initial seed of labeled instances; 2: Add initial seed to the training data; 3: Apply logistic regression model to train system of classifiers, one for each label; 4: while number of instances in training data is less than X do 5:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Randomly select pool of Y unlabeled sentences; 6: Select a sentence or sentences from the unlabeled pool according to a given selection strategy; 7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Ask oracle to label the selected unlabeled sentence; 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Add instances from selected sentence to training data; 9: Re-train system using the updated training data; 10:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Use system to label test data, record accuracy; 11: end while Much recent work in AL has to do with Step 6 of Algorithm 1, designing and refining selection strategies. The main selection criterion used to date has been informativity, measuring how much a training example can help to reduce the uncertainty of a statistical model. A less-frequently considered criterion, especially in AL for NLP, is representativeness, or how well a training example represents the overall input patterns of the unlabeled data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "While some results from AL are robust across different datasets and even different tasks, it is clear that there is no single approach to AL that is suitable for all situations (Tomanek and Olsson, 2009) . Because there is very little previous work on AL for the task of semantic role labeling, we do not assume previous solutions but rather investigate a number of different strategies.",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 203,
                        "text": "(Tomanek and Olsson, 2009)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The basic model",
                "sec_num": "4.1"
            },
            {
                "text": "Informativity is exploited in our approaches in terms of uncertainty, which is measured based on how confidently the system labels instances and, by extension, sentences. The lower the confidence on labeling a particular sentence, the more uncertainty is assigned to the sentence. At each iteration, then, we select from the unlabeled pool the single sentence with the greatest uncertainty. We compare 4 different scoring functions for measuring the system's certainty (CER) regarding an unlabeled sentence. These are presented below as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "INF1-INF4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "Let s represent an unlabeled sentence with instances i = 1 to n. Given a set of binary classifiers, one each for labels y = 1 to m, let p i,y be the probability of i being labeled as y. Finally, P is a pool of unlabeled sentences. At each iteration, we select the single s \u2208 P with the lowest value for CER.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "RAND: Random selection. Random selection (randomly select an unlabeled sentence s \u2208 P ) serves as a strong baseline in active learning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "INF1: Average uncertainty. After labeling each instance in a sentence with the most-likely predicted label, we calculate uncertainty for the sentence as the average of the classifiers' confidence in assigning the predicted labels. Let T op ",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 239,
                        "text": "Let T op",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "(i) = p i,y k , where \u2200h = k, p i,y k > p i,y h ; CER(s) = ( n j=1 T op(i j ))/n. INF2:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "Average uncertainty variance. Our second informativity-based strategy evaluates the uncertainty of the labeling for an instance using the variance of the confidence for each instance. A smaller variance implies that it is more difficult for the system to differentiate between possible label assignments for the instance. We then calculate sentence uncertainty as the average variance for all instances. Let AV G",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "(i) = ( m k=1 p i,y k )/m, V AR(i) = m k=1 (p i,y k \u2212 AV G(i)) 2 /(m \u2212 1); CER(s) = n j=1 V AR(i j )/n. INF3: Average top-2 Margin.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "The intuition behind this approach is that the top 2 most confident labels are likely to be more informative than other labels. Therefore, we only select the two most likely labels to calculate uncertainty. 5 ",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 208,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "Let M argin(i) = p i,y k 1 \u2212 p i,y k 2 , where p i,y k 1 > p i,y k 2 \u2227 \u2200h = k 1 , k 2 , p i,y k 2 > p i,k h ; CER(s) = ( n j=1 M argin(i j ))/n. INF4: Most top-2 Margin Instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "Finally, we further extend the approach of INF3 by selecting the sentence which has the greatest number of instances with a small margin between the top 2 labels (which means that the sentence is more uncertain than other sentences). Let Q be a set of instances with the top-2 margin less than a small threshold (i.e., M argin(i) \u2264 0.1). CER(s) is defined as the inverse of the number of instances of s that are in Q (i.e. 1/# qualifying instances). Ties are resolved by random selection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Informativity",
                "sec_num": "4.2"
            },
            {
                "text": "A disadvantage of selecting examples based only on informativity is the tendency of the learner to query outliers (Settles, 2010) . It has therefore been proposed (Dredze and Crammer, 2008; Settles and Craven, 2008) to temper such selection strategies with a notion of relevance or representativeness. Ours is the first work to use such a combined strategy for SRL. We measure the representativeness of unlabeled sentences based on sentence similarity, taking two different approaches: cosine similarity, and a measure based on CDTs.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 129,
                        "text": "(Settles, 2010)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 163,
                        "end": 189,
                        "text": "(Dredze and Crammer, 2008;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 190,
                        "end": 215,
                        "text": "Settles and Craven, 2008)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "COS: Cosine Similarity. Given two sentences s and s , let i 1 , i 2 , . . . , i m , and i 1 , i 2 ,. . . ,i n be their instances, respectively. The similarity of the two sentences, denoted as similarity(s, s ), is defined as m j=1 n k=1 sim(i j , i k ), where sim(i j , i k ) is the similarity between the instances i j and i k , defined as the cosine of the two feature vectors. 6 For purposes of comparison, we use the same formulation of COS as Settles and Craven (2008) .",
                "cite_spans": [
                    {
                        "start": 448,
                        "end": 473,
                        "text": "Settles and Craven (2008)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "Given a pool P of unlabeled sentences, for every unlabeled sentence s \u2208 P , the representativeness of the sentence, denoted as rep(s), is measured as the sum of the similarity between the sentence and all the other sentences in the pool, that is, rep(s) = sim(s, s ), where s \u2208 P \u2227 s = s.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "COS evaluates the similarity of two sentences based on the cosine of their instances. This may not be accurate enough because the instances include more information than the relationships between the target predicate and the key dependents of the verb complex in the sentence. Therefore, we exploit the compressed dependency trees as a metric to evaluate the similarity between two sentences, as illustrated below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "CDT: Compressed Dependency Trees. For target predicate p, let (p, r i , a i ) be the edges of the CDT rooted in p, where a i is an argument and r i is the dependency relationship between p and a i . We call two edges similar if all of p, r, and a meet their respective similarity criteria. Two predicates are considered to be similar if they have the same value for the PREDICATE PROPERTIES feature as defined in Table 1 (e.g. both are transitive verbs). Two relations are considered to be similar if they have the same dependency relation label (e.g. SBJ, TMP, MOD, etc.). Finally, two arguments are considered to be similar if they share the same coarsegrained part-of-speech tag.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 413,
                        "end": 420,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "Given a pool P of unlabeled sentences, for every unlabeled sentence s \u2208 P , the representativeness of the sentence, denoted as rep(s), is defined as n similar , representing the number of edges in the pool that are similar to the edges of the CDT for s. Intuitively, the larger the number of similar CDT edges in the unlabeled pool, the more representative the sentence is overall of the input data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representativeness",
                "sec_num": "4.3"
            },
            {
                "text": "The final step in our model is to define a selection strategy that incorporates both selection criteria. We define the priority of selecting a sentence as priority(s) = \u03b1 \u00d7 rep(s) \u2212 (1 \u2212 \u03b1) \u00d7 CER(s). Given a pool P , we select the single s \u2208 P with the highest value for priority(s). This approach is very similar to the information density (ID) approach of Settles and Craven (2008) ; the key difference is in the balance between the two criteria.",
                "cite_spans": [
                    {
                        "start": 358,
                        "end": 383,
                        "text": "Settles and Craven (2008)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Informativity and Representativeness",
                "sec_num": "4.4"
            },
            {
                "text": "Ours is a linear combination; ID instead multiplies informativity by a weighted measure of rep- ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Informativity and Representativeness",
                "sec_num": "4.4"
            },
            {
                "text": "To evaluate our approach to AL for SRL, we investigate three different questions. First, which informativity strategy is most appropriate for the task? Second, which representativeness measure works best? And third, how shall we weight the trade-off between the two selection criteria?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "All of our active learning experiments share some characteristics. First, we randomly select a seed of 50 instances from the labeled training data. The seed set, as well as the test data, are kept consistent across all experimental conditions. In each iteration of the training-selection cycle (see Algorithm 1), a new unlabeled pool (n=500) is selected, and from that pool a single example is labeled by the oracle and added to the training set. We stop once 500 examples have been labeled.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "To evaluate the effectiveness of each strategy, we tested the classifier in each interaction, and measured the accuracy of the predicted labels. The accuracy measure is defined as the number of correct labelings divided by the total number of labelings in the test data. Results are presented as the average over 20 runs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "To investigate the influence of representativeness, we run the same experiment with all cross-combinations of {INF1,INF2,INF3,INF4} and {COS,CDT}. For weighting the two criteria, we use both information density (ID) as defined in Settles and Craven (2008) and our priority metric (Section 4.4) with \u03b1 set at 0.3, 0.5, and 0.7.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 255,
                        "text": "Settles and Craven (2008)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "In this section, we analyze and discuss the experimental results. The gains achieved by AL can be measured in a number of different ways; first, we plot number of labeled training examples against system accuracy (Figure 2 and Figure 3) . The figures presented here stop at 500 training examples, with averaged accuracies in the range of 80%. For comparison, the fully-supervised system when trained on 20000 instances performed at 89.71%. Second, we calculate the percent reduction in error of each strategy compared to the random selection baseline (Table 2) , following Melville and Mooney (2004) . Because most gains from AL happen early in the learning curve, we consider performance at two different points. Fig. 2a shows the expected result that the four informativity-based strategies outperform the random selection baseline. INF3 performs best early in the learning curve, but is overtaken by INF2 at the end of our curve. To reach the accuracy achieved by the four informativity strategies at the halfway point (250 training instances), RAND needs 100-150 additional instances. Fig. 2b shows the result of combining the informativity (INF3) and representativeness (both COS and CDT). As illustrated in Section 6.1, INF3 outperforms the other informativity-based strategies. However, we see that Fig. 2b shows combining CDT with INF3 achieves a better performance than using INF3 only (\u03b1 = 0.3); representativeness improves performance, outperforming RAND by approximately 250 training instances. For INF3, COS is a less effective measure of representativeness. This may be because the feature vectors for the training instances share too much information, including stop words and a large number of 0-valued features, to make them easily differentiated. As a result, the most representative sentence selected using COS may not reflect the real simi- larity of the sentences. In CDT, we choose only the structural relation between the predicate and its arguments to measure the similarity between sentences. As a result, the sentences selected using CDT are more representative than that of using COS, as confirmed by the result in Fig. 2b . We also applied the solution of combining informativity and representativeness (4.3) to other informativity-based strategies. However, the advantage the combined solution for other strategies is less obvious than for INF3. For example, Fig. 2c shows the result of combining INF2 (\u03b1 = 0.3) with both COS and CDT. The result shows that the combined solution with CDT performs slightly better than using INF2 only when the number of training instances is less than 200. However, when the number of instances is larger than 350, the solution of using INF2 only achieves a higher accuracy than the combined solution. This may be due to a conflict between the two selection criteria. In any event, there is clearly a trade-off between informativity and representativeness, and results are influenced by the details of the manner of combining the two.",
                "cite_spans": [
                    {
                        "start": 573,
                        "end": 599,
                        "text": "Melville and Mooney (2004)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 213,
                        "end": 236,
                        "text": "(Figure 2 and Figure 3)",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 551,
                        "end": 560,
                        "text": "(Table 2)",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 714,
                        "end": 721,
                        "text": "Fig. 2a",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1089,
                        "end": 1096,
                        "text": "Fig. 2b",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1306,
                        "end": 1313,
                        "text": "Fig. 2b",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 2142,
                        "end": 2149,
                        "text": "Fig. 2b",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 2388,
                        "end": 2395,
                        "text": "Fig. 2c",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "6"
            },
            {
                "text": "The results of other INF/REP combinations are presented in Table 2 , in terms of their reduction in error compared to random selection.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 59,
                        "end": 66,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Informativity plus Representativeness",
                "sec_num": "6.2"
            },
            {
                "text": "Finally, we set \u03b1 with different values (i.e., 0.3, 0.5 and 0.7) to investigate how the trade-off between informativity and representativeness may affect the SRL performance. We also compare our solution to the information density solution proposed by et al. (Settles and Craven, 2008 ) (denoted as ID) multiplies the informativity and representativeness instead of summing them. Here we display only the results of INF2 and INF4 combining with CDT in Fig. 3 . Other combinations share a similar pattern with these results and their error reduction percentage can be found in Table. 2. Fig. 3a and Fig. 3b compare the two representativity measures for INF3, as the best overall result was achieved by INF3 in combination with CDT. We see that parameter tuning seems to be more influential for the CDT measure than for the COS measure. Fig. 3c shows how parameter tuning affects INF2; \u03b1 = 0.3 has a higher accuracy than that of 0.5 and 0.7. We can observe that when \u03b1 = 0.3, our solution (INF2) has a better performance than that of ID. However, regarding the combination of INF4 and CDT, ID performs better (no graph; see 2. Note that the INF4 selects the sentences which has greatest number of instances with a small margin. Then representativeness of the sentences within the margin was calculated. In other word, the combination was done step by step not in parallel as the other combination. Therefore, the combination of INF4 and CDT accounts for informativity prior to representativeness; this may be why ID is more successful.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 284,
                        "text": "(Settles and Craven, 2008",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 452,
                        "end": 458,
                        "text": "Fig. 3",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 576,
                        "end": 582,
                        "text": "Table.",
                        "ref_id": null
                    },
                    {
                        "start": 586,
                        "end": 593,
                        "text": "Fig. 3a",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 598,
                        "end": 605,
                        "text": "Fig. 3b",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 835,
                        "end": 842,
                        "text": "Fig. 3c",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Weighting the two criteria",
                "sec_num": "6.3"
            },
            {
                "text": "In general, the balance and trade-offs between the two criteria deserve further investigation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Weighting the two criteria",
                "sec_num": "6.3"
            },
            {
                "text": "Much research efforts have been devoted to statistical machine learning methodologies for SRL (Bjkelund et al., 2009; Gildea and Jurafsky, 2002; Shi et al., 2009; Johansson and Nugues, 2008a; Lang and Lapata, 2010; Pradhan et al., 2008; F\u00fcrstenau and Lapata, 2009; Titov and Klementiev, 2011, among others) . For example, Johansson et al. (Johansson and Nugues, 2008a) applied logistic regression with L2 norm to dependency-based SRL. Similarly, we also use logistic regression to train the classifier with a probabilistic explanation. However, we use L1 normed logistic regression due to its desirable property that can result in few nonzero feature weights. This allows us to select the most important features from an otherwise very large feature set.",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 117,
                        "text": "(Bjkelund et al., 2009;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 118,
                        "end": 144,
                        "text": "Gildea and Jurafsky, 2002;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 145,
                        "end": 162,
                        "text": "Shi et al., 2009;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 163,
                        "end": 191,
                        "text": "Johansson and Nugues, 2008a;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 192,
                        "end": 214,
                        "text": "Lang and Lapata, 2010;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 215,
                        "end": 236,
                        "text": "Pradhan et al., 2008;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 237,
                        "end": 264,
                        "text": "F\u00fcrstenau and Lapata, 2009;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 265,
                        "end": 306,
                        "text": "Titov and Klementiev, 2011, among others)",
                        "ref_id": null
                    },
                    {
                        "start": 339,
                        "end": 368,
                        "text": "(Johansson and Nugues, 2008a)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7"
            },
            {
                "text": "Roth et al. (Roth and Small, 2006) proposed a margin based active learning framework for structured output and experiment on SRL task. They defined structured output by constraining the relations among class labels, e.g., one predicate only has one of the labels. The classification problem is defined via constraints among output labels. The most uncertain instances are selected to satisfy predefined constraints. Rather than a structured relation between output labels, our work exploits the structure of the sentences themselves via compressed dependency trees.",
                "cite_spans": [
                    {
                        "start": 12,
                        "end": 34,
                        "text": "(Roth and Small, 2006)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7"
            },
            {
                "text": "In the area of sentence similarity measurement, most current work focuses on semantic similarity (Haghighi et al., 2005; Tang et al., 2002; Shen and Lapata, 2007) . We define similarity between sentences in terms of the nodes and edges in the dependency tree instead of semantic/lexical similarity of the sentences. We are interested in the structure of a sentence and how it is constructed due to the need of SRL tasks. Wang and Neumann (2007) use a similar sort of compressed dependency tree comprised of keywords and collapsed dependency relations to calculate the semantic similarity of sentences for the textual entailment task. Under their approach, dependency relations themselves are collapsed; we keep the specific dependency relations and collapse the trees, aiming for structural rather than semantic similarity.",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 120,
                        "text": "(Haghighi et al., 2005;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 121,
                        "end": 139,
                        "text": "Tang et al., 2002;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 140,
                        "end": 162,
                        "text": "Shen and Lapata, 2007)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 421,
                        "end": 444,
                        "text": "Wang and Neumann (2007)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7"
            },
            {
                "text": "In addition, Filippova et al. (Filippova and Strube, 2008) proposed to compress a sentence using dependency trees and take the importance of words as weight. They found compressed dependency tree can better ensure the grammaticality of the sentences to preserve the same lexical meaning as much as possible. In our work, we are more interested in the explicit dependency relation of predicate-argument pairs. Our goal is to apply compressed dependency tree to extract explicit relation between predicate and argument as precise as possible for SRL purpose. Therefore, we construct the compressed tree by identifying predicate-argument units and then re-linking them if there exist dependency relation among them. Consequently, most of the nodes in our compressed tree are predicates and arguments.",
                "cite_spans": [
                    {
                        "start": 30,
                        "end": 58,
                        "text": "(Filippova and Strube, 2008)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7"
            },
            {
                "text": "This paper investigates the use of active learning for semantic role labeling. To improve the learning accuracy and reduce the size of training set, compressed dependency trees are exploited as features. Strategies to select informative unlabeled sentences are proposed. Moreover, the compressed dependency trees are also utilized as a criterion to measure the representativeness of unlabeled sentences. A solution to select unlabeled sentences combining both informativeness and representativeness is developed. The experimental results show that our solution can save up to 50% on a small training data set compared to the supervised learning solution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8"
            },
            {
                "text": "Possibilities for future work include exploring the use of constraints on label outputs, implementation of entropy-based informativity metrics, and perhaps combining COS andCDT for measuring representativeness. Another potentially promising direction is to employ multi-kernel based methods as a structure-oriented similarity measurement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8"
            },
            {
                "text": "For recent work on SRL, see, among others:(Das et al., 2010;Haji\u010d et al., 2009;Surdeanu et al., 2008;Carreras and M\u00e0rquez, 2005;Baker et al., 2007).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that logistic regression is used together with a regularized term to avoid the overfitting problem by penalizing the complexity of the trained model. Generally, the regularized term is defined as a function of the learned parameters over the weights. The L1 regularization, also called lasso penalty, is used to penalize both large and small weights.3 In ongoing work, we replace gold-standard parses with more realistic automatic parses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Recall that each sentence contains one or more instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that in the binary classification case, INF3 is equivalent toINF1. 6 Features are extracted from CDTs rather than full sentences, reducing to some extent the appearance of noisy information (e.g. stop words). Whether this can be further reduced by a modified implementation of COS is a question for future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Our thanks to the anonymous reviewers for their valuable commentary and suggestions, and to Ivan Titov for invaluable, insightful discussions and feedback. This research has been funded by the German Research Foundation (DFG) under the MMCI Cluster of Excellence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "SemEval-2007 task 19: Frame semantic structure extraction",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Baker",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ellsworth",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of SemEval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Baker, M. Ellsworth, K. Erk. 2007. SemEval-2007 task 19: Frame semantic structure extraction. In Proc. of SemEval-2007.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "How well does active learning actually work? time-based evaluation of cost-reduction strategies for language documentation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Baldridge, A. Palmer. 2009. How well does ac- tive learning actually work? time-based evaluation of cost-reduction strategies for language documen- tation. In Proc. of EMNLP 2009.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Multilingual Semantic Role Labeling",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Bjkelund",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hafdell",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nugues",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "43--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Bjkelund, L. Hafdell, P. Nugues, 2009. Multilingual Semantic Role Labeling, 43-48. 2009.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Introduction to the CoNLL-2005 shared task: Semantic role labeling",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of CoNLL-2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Carreras, L. M\u00e0rquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In Proc. of CoNLL-2005.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Probabilistic frame-semantic parsing",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc. of NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Das, N. Schneider, D. Chen, N. A. Smith. 2010. Probabilistic frame-semantic parsing. In Proc. of NAACL-HLT 2010.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Generating typed dependency parses from phrase structure parses",
                "authors": [
                    {
                        "first": "M.-C",
                        "middle": [],
                        "last": "De Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Maccartney",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.-C. de Marneffe, B. MacCartney, C. D. Manning. 2006. Generating typed dependency parses from phrase structure parses. In Proc. of LREC 2006.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Active learning with confidence",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Dredze, K. Crammer. 2008. Active learning with confidence. In Proc. of ACL 2008.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Pattern classification",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Duda",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Hart",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Stork",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Duda, P. Hart, D. Stork. 2001. Pattern classifica- tion, volume 2. Wiley.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Dependency tree based sentence compression",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Filippova",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of INLG",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Filippova, M. Strube. 2008. Dependency tree based sentence compression. In Proc. of INLG 2008.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Semi-supervised semantic role labeling",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "F\u00fcrstenau",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. F\u00fcrstenau, M. Lapata. 2009. Semi-supervised se- mantic role labeling. In Proc. of EACL 2009.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Automatic labeling of semantic roles",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Gildea, D. Jurafsky. 2002. Automatic labeling of semantic roles. Computational Linguistics, 28.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Unsupervised discovery of a statistical verb lexicon",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Grenager",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grenager, C. Manning. 2006. Unsupervised discov- ery of a statistical verb lexicon. In Proc. of EMNLP 2006.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Semantic role labeling using dependency trees",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Hacioglu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of COLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Hacioglu. 2004. Semantic role labeling using de- pendency trees. In Proc. of COLING 2004.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Robust textual inference via graph matching",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "D"
                        ],
                        "last": "Haghighi",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. D. Haghighi, A. Y. Ng, C. D. Manning. 2005. Ro- bust textual inference via graph matching. In Proc. of HLT 2005.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The CoNLL 2009 shared task: Syntactic and semantic dependencies in multiple languages",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ciaramita",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Mart\u00ed",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Meyers",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Pad\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "\u0160t\u011bp\u00e1nek",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Stra\u0148\u00e1k",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Haji\u010d, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Mart\u00ed, L. M\u00e0rquez, A. Meyers, J. Nivre, S. Pad\u00f3, J.\u0160t\u011bp\u00e1nek, P. Stra\u0148\u00e1k, M. Surdeanu, N. Xue, Y. Zhang. 2009. The CoNLL 2009 shared task: Syntactic and semantic dependencies in multi- ple languages. In Proceedings of CoNLL 2009.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Sample selection for statistical parsing",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Hwa",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computational Linguistics",
                "volume": "30",
                "issue": "3",
                "pages": "253--276",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Hwa. 2004. Sample selection for statistical parsing. Computational Linguistics, 30(3):253-276.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Dependency-based semantic role labeling of propbank",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nugues",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Johansson, P. Nugues. 2008a. Dependency-based semantic role labeling of propbank. In Proc. of EMNLP 2008.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The effect of syntactic representation on semantic role labeling",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nugues",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of COLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Johansson, P. Nugues. 2008b. The effect of syntac- tic representation on semantic role labeling. In Proc. of COLING 2008.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Unsupervised induction of semantic roles",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lang",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc. of HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Lang, M. Lapata. 2010. Unsupervised induction of semantic roles. In Proc. of HLT 2010.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Efficient L1 regularized logistic regression",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Abbeel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the Ntl. Conf. on AI",
                "volume": "21",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Lee, H. Lee, P. Abbeel, A. Ng. 2006. Efficient L1 regularized logistic regression. In Proc. of the Ntl. Conf. on AI, volume 21.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A sequential algorithm for training text classifiers",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "A"
                        ],
                        "last": "Gale",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Proc. of SIGIR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. D. Lewis, W. A. Gale. 1994. A sequential algorithm for training text classifiers. In Proc. of SIGIR 1994.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Trust region newton methods for large-scale logistic regression",
                "authors": [
                    {
                        "first": "C.-J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Weng",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "S"
                        ],
                        "last": "Keerthi",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-J. Lin, R. C. Weng, S. S. Keerthi. 2007. Trust region newton methods for large-scale logistic regression. In Proc. of ICML 2007.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Diverse ensembles for active learning",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Melville",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "J"
                        ],
                        "last": "Mooney",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Melville, R. J. Mooney. 2004. Diverse ensembles for active learning. In Proc. of ICML 2004.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Maltparser: A languageindependent system for data-driven dependency parsing",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the TLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Nivre, J. Hall. 2005. Maltparser: A language- independent system for data-driven dependency parsing. In Proc. of the TLT 2005.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Ensemble-based active learning for parse selection",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Osborne",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Osborne, J. Baldridge. 2004. Ensemble-based ac- tive learning for parse selection. In Proc. of HLT- NAACL 2004.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "The Proposition Bank: An Annotated Corpus of Semantic Roles",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kingsbury",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "1",
                "pages": "71--105",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Palmer, D. Gildea, P. Kingsbury. 2005. The Propo- sition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71-105.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Semantic role labeling using different syntactic views",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Hacioglu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "H"
                        ],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Pradhan, W. Ward, K. Hacioglu, J. H. Martin, D. Ju- rafsky. 2005. Semantic role labeling using different syntactic views. In Proc. of ACL 2005.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Towards robust semantic role labeling",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "S"
                        ],
                        "last": "Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "H"
                        ],
                        "last": "Martin",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Linguistics",
                "volume": "34",
                "issue": "",
                "pages": "289--310",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. S. Pradhan, W. Ward, J. H. Martin. 2008. Towards robust semantic role labeling. Computational Lin- guistics, 34:289-310.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Active learning for part-of-speech tagging: Accelerating corpus annotation",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Ringger",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Mcclanahan",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Haertel",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Busby",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Carmen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Carroll",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lonsdale",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of the Linguistic Annotation Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Ringger, P. McClanahan, R. Haertel, G. Busby, M. Carmen, J. Carroll, D. Lonsdale. 2007. Ac- tive learning for part-of-speech tagging: Accelerat- ing corpus annotation. In Proc. of the Linguistic An- notation Workshop.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Active learning with perceptron for structured output",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Small",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "ICML Workshop on Learning in Structured Output Spaces",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Roth, K. Small. 2006. Active learning with percep- tron for structured output. In ICML Workshop on Learning in Structured Output Spaces.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "FrameNet II: Extended Theory and Practice",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Ruppenhofer",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ellsworth",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "R L"
                        ],
                        "last": "Petruck",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "R"
                        ],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Scheffczyk",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R. Johnson, J. Scheffczyk. 2006. FrameNet II: Ex- tended Theory and Practice.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "An analysis of active learning strategies for sequence labeling tasks",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Settles",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Craven",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Settles, M. Craven. 2008. An analysis of active learning strategies for sequence labeling tasks. In Proc. of EMNLP 2008.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Active learning literature survey",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Settles",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Settles. 2010. Active learning literature survey. Technical Report Computer Sciences Technical Re- port 1648, University of Wisconsin-Madison, 2010.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Using semantic roles to improve question answering",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of EMNLP-2007",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shen, M. Lapata. 2007. Using semantic roles to improve question answering. In Proc. of EMNLP- 2007.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Multi-criteria-based active learning for named entity recognition",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "C.-L",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Shen, J. Zhang, J. Su, G. Zhou, C.-L. Tan. 2004. Multi-criteria-based active learning for named entity recognition. In Proc. of ACL 2004.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Semantic role labeling based on dependency tree with multifeatures",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of IJCBS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Shi, G. Zhou, P. Qian, X. Li. 2009. Semantic role labeling based on dependency tree with multi- features. In Proc. of IJCBS 2009.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "The CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Meyers",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. of CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Surdeanu, R. Johansson, A. Meyers, L. M\u00e0rquez, J. Nivre. 2008. The CoNLL 2008 shared task on joint parsing of syntactic and semantic dependen- cies. In Proc. of CoNLL 2008.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Active learning for statistical natural language parsing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Tang, X. Luo, S. Roukos. 2002. Active learning for statistical natural language parsing. In Proc. of ACL 2002.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "A bayesian model for unsupervised semantic parsing",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Klementiev",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Titov, A. Klementiev. 2011. A bayesian model for unsupervised semantic parsing. In Proc. of ACL 2011.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "A Web Survey on the Use of Active learning to support annotation of text data",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Tomanek",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Olsson",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of AL-NLP workshop, NAACL HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Tomanek, F. Olsson. 2009. A Web Survey on the Use of Active learning to support annotation of text data. In Proc. of AL-NLP workshop, NAACL HLT 2009.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Recognizing textual entailment using sentence similarity based on dependency tree skeletons",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of RTE",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Wang, G. Neumann. 2007. Recognizing textual en- tailment using sentence similarity based on depen- dency tree skeletons. In Proc. of RTE 2007.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Effective multi-label active learning for text classification",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "J.-T",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of KDD",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Yang, J.-T. Sun, T. Wang, Z. Chen. 2009. Effective multi-label active learning for text classification. In Proc. of KDD 2009.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Learning with unlabeled data and its application to image retrieval",
                "authors": [
                    {
                        "first": "Z.-H",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of PRICAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Z.-H. Zhou. 2006. Learning with unlabeled data and its application to image retrieval. In Proc. of PRICAI 2006.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Producing compressed dependency tree 2008b;",
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "text": "Combining informativity and representativeness.resentativeness.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "text": "Trade-off between informativity and representativeness.",
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "content": "<table><tr><td>FEATURE TYPE</td><td>EXPLANATION/EXAMPLE</td></tr><tr><td>Part of Speech</td><td>JJR, JJS, LS, CD, etc.</td></tr><tr><td>Head word</td><td>Head words of predicate and argument</td></tr><tr><td>isNEG</td><td>Instance includes NOT or NEVER</td></tr><tr><td>Argument position</td><td>Before or after predicate</td></tr><tr><td>Argument chunk position</td><td>Beginning or end of corresponding chunk</td></tr><tr><td>Lemma of argument</td><td>Lemma of argument whose dependency role is PRD or DIR</td></tr><tr><td>Lemma context</td><td>Two words before and after argument</td></tr><tr><td>Cue words</td><td>DIR ('up', 'toward', 'forward', 'along') REC ('self' as suffix) PRD ('as', 'as if') CAU ('because', 'why', 'as a result of')</td></tr><tr><td>Voice of predicate</td><td>Active or passive</td></tr><tr><td>Dependency relation of predicate and argument</td><td>LOC, TMP, etc. 1) Sbj*, obj* are defined as: Sbj* \u2190 Obj Passive Sbj* \u2190 LGS passive Sbj* \u2190 Active vt sbj</td></tr><tr><td>Predicate Properties</td><td>Obj* \u2190 Sbj Passive Obj* \u2190 Sbj VI (intransitive verb) Obj* \u2190 Obj Active VT = 1; transitive VI = 2; intransitive TO IM=3; begins with 'to' V Adj = 4; verb followed by adjective words (e.g. 'sounds good', 'looks pretty') PV = 5; phrasal verb (e.g. 'pick up')</td></tr><tr><td>Verb Complex</td><td>e.g. \"has not been set\" in figure 1</td></tr><tr><td>Acomp</td><td>adjectival complement</td></tr><tr><td>Advmod</td><td>adverbial modifier</td></tr><tr><td>Infmod</td><td>infinitival modifier</td></tr><tr><td>Rcmod</td><td>relative clause modifier</td></tr><tr><td>Rel</td><td>relative (word introducing an rcmod)</td></tr><tr><td>Xsbj</td><td>controlling subject</td></tr><tr><td>Iobj</td><td>indirect object</td></tr><tr><td>Advcl</td><td>adverbial clause modifier</td></tr><tr><td>Prep to,Prep in, Prep for, Prep with</td><td/></tr></table>",
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Three feature groups: CoNLL basic, CoNLL derived, and from additional parser"
            },
            "TABREF1": {
                "content": "<table><tr><td/><td/><td>NMOD</td><td>NMOD</td><td>SBJ ROOT</td><td>ADV</td><td>VC</td><td>P</td><td>VC</td></tr><tr><td>Index</td><td>1</td><td>2</td><td>3</td><td>4</td><td/><td>5</td><td>6</td><td>7</td><td>8</td></tr><tr><td/><td/><td/><td/><td/><td/><td colspan=\"2\">Transfer</td><td/></tr><tr><td/><td/><td/><td/><td/><td colspan=\"2\">SBJ</td><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>ADV</td><td>P</td></tr><tr><td/><td/><td/><td colspan=\"2\">date</td><td colspan=\"2\">not</td><td/><td colspan=\"2\">set .</td></tr><tr><td/><td/><td/><td>3</td><td/><td/><td>5</td><td/><td colspan=\"2\">7 8</td></tr><tr><td/><td/><td/><td/><td/><td/><td colspan=\"4\">Alternation if applicable</td></tr><tr><td colspan=\"5\">Compressed Dependency Tree</td><td colspan=\"2\">OBJ*</td><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>ADV</td><td>P</td></tr><tr><td/><td/><td/><td colspan=\"2\">date</td><td colspan=\"2\">not</td><td/><td colspan=\"2\">set .</td></tr><tr><td/><td/><td/><td>3</td><td/><td/><td>5</td><td/><td>7</td><td>8</td></tr></table>",
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "; Johansson and Nugues,A record date has not been set ."
            },
            "TABREF4": {
                "content": "<table><tr><td>NOREP</td><td>COS</td><td>CDT</td><td>COS-ID</td><td>CDT-ID</td></tr><tr><td colspan=\"5\">INF1 6.56 / 5.18 3.68 / -0.86 2.60 / -0.74 7.43 / 6.45 6.44 / 6.60</td></tr><tr><td colspan=\"2\">INF2 5.12 / 8.31 5.51 / 5.37</td><td colspan=\"3\">7.74 / 8.19 7.21 / 5.67 3.49 / 2.24</td></tr><tr><td colspan=\"2\">INF3 5.07 / 5.54 6.13 / 5.52</td><td colspan=\"3\">8.15 / 9.54 5.94 / 5.72 5.65 / 7.18</td></tr><tr><td colspan=\"5\">INF4 7.37 / 5.79 1.41 / 2.01 -0.01 / -5.08 2.29 / 2.85 3.31 / 3.29</td></tr></table>",
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Percentage error reduction overRAND(200 / 500 examples)"
            }
        }
    }
}