File size: 67,291 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
{
    "paper_id": "I11-1022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:09.939856Z"
    },
    "title": "Semantic Role Labeling Without Treebanks?",
    "authors": [
        {
            "first": "Stephen",
            "middle": [
                "A"
            ],
            "last": "Boxwell",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The Ohio State University",
                "location": {}
            },
            "email": "boxwell@ling.ohio-state.edu"
        },
        {
            "first": "Chris",
            "middle": [],
            "last": "Brew",
            "suffix": "",
            "affiliation": {},
            "email": "cbrew@ets.org"
        },
        {
            "first": "Jason",
            "middle": [],
            "last": "Baldridge",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The University of Texas at Austin",
                "location": {}
            },
            "email": "jbaldrid@mail.utexas.edu"
        },
        {
            "first": "Dennis",
            "middle": [],
            "last": "Mehay",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The Ohio State University",
                "location": {}
            },
            "email": "mehay@ling.ohio-state.edu"
        },
        {
            "first": "Sujith",
            "middle": [],
            "last": "Ravi",
            "suffix": "",
            "affiliation": {},
            "email": "sravi@isi.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe a method for training a semantic role labeler for CCG in the absence of gold-standard syntax derivations. Traditionally, semantic role labeling is performed by placing human-annotated semantic roles on gold-standard syntactic parses, identifying patterns in the syntaxsemantics relationship, and then predicting roles on novel syntactic analyses. The gold standard syntactic training data can be eliminated from the process by extracting training instances from semantic roles projected onto a packed parse chart. This process can be used to rapidly develop NLP tools for resource-poor languages of interest.",
    "pdf_parse": {
        "paper_id": "I11-1022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe a method for training a semantic role labeler for CCG in the absence of gold-standard syntax derivations. Traditionally, semantic role labeling is performed by placing human-annotated semantic roles on gold-standard syntactic parses, identifying patterns in the syntaxsemantics relationship, and then predicting roles on novel syntactic analyses. The gold standard syntactic training data can be eliminated from the process by extracting training instances from semantic roles projected onto a packed parse chart. This process can be used to rapidly develop NLP tools for resource-poor languages of interest.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Semantic role labeling is the process of generating sets of semantic roles from syntactic analyses. The process of training a semantic role labeler, however, is costly in resources. First, it requires gold-standard semantic role data, like Propbank (Palmer et al., 2005) . Secondly, it requires a detailed syntactic annotation of the same resource. We are fortunate to have the reasonablysized Penn Treebank (Marcus et al., 1993) and adaptations for formalisms like Tree Adjoining Grammar (Chen and Shanker, 2004) and Combinatory Categorial Grammar (Hockenmaier and Steedman, 2007) alongside the Propbank data, but for other languages, such resources are unlikely to be available. There has been work in generating semantic role labelers using gold-standard trees in the absence of semantic training data (F\u00fcrstenau and Lapata, 2009; Lang and Lapata, 2010) . But what if we had semantic training data, but no syntactic training data? If we could develop and train a semantic role labeler without syntactic training data, we could greatly reduce the cost and development time of NLP tools for languages of interest. One option is to use some automatic means to generate a treebank -instead of creating a corpus of syntax trees by hand, we could use an automatic parser. This, however, leads to a chicken-and-egg problem -we would need a high-quality parse model to choose a single-best analysis for each training sentence, and a parse model needs syntactic training data. No automatic parser can currently generate high quality single-best parses in the absence of a parse model. But a parser can, given word tags and combinatory rules, generate a parse forest -a very large collection of possible analyses -and say little or nothing about their relative merit. In this paper, we extract SRL features from the entire parse forest, effectively training on every possible parse in the training set simultaneously. This can be done efficiently by representing the parse chart as a hypergraph, enabling us to iterate over every constituent in the parse forest without enumerating every individual parse (which would be computationally infeasible). This, combined with the parsing advantages afforded by Combinatory Categorial Grammar (CCG), enables us to train a semantic role labeler without gold-standard trees.",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 270,
                        "text": "(Palmer et al., 2005)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 408,
                        "end": 429,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 489,
                        "end": 513,
                        "text": "(Chen and Shanker, 2004)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 549,
                        "end": 581,
                        "text": "(Hockenmaier and Steedman, 2007)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 805,
                        "end": 833,
                        "text": "(F\u00fcrstenau and Lapata, 2009;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 834,
                        "end": 856,
                        "text": "Lang and Lapata, 2010)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Combinatory Categorial Grammar (Steedman, 2000) is a grammar formalism that describes words in terms of their combinatory potential. For example, determiners belong to the category NP/N, or \"the category of words that become noun phrases when combined with a noun to the right\". The rightmost category indicates the argument that the category is seeking, the leftmost category indicates the result of combining this category with its argument, and the slash indicates the direction of combination. Categories can be nested within each other: a transitive verb like devoured belongs to the category (S\\NP)/NP, or \"the category that would become a sentence if it could combine with a noun phrase to the right and another noun phrase to the left\". The process of automatically assigning CCG categories to words is called \"supertagging\", and CCG categories are sometimes informally referred to as \"supertags\". An example of how categories combine to make sentences is shown in Figure 1 . CCG has many capabilities that go beyond that of a typical context-free grammar. First, it has a sophisticated internal system of managing syntactic heads and dependencies 1 . These dependencies are used to great effect in CCG-based semantic role labeling systems (Gildea and Hockenmaier, 2003; Boxwell et al., 2009) , as they do not suffer the same data-sparsity effects encountered with treepath features in CFG-based SRL systems. Secondly, CCG permits these dependencies to be passed through intermediary categories in grammatical structures like relative clauses. In Figure  2 , the steak is still in the object relation to devoured, even though the verb is inside a relative clause. Finally and most importantly, these dependencies are represented directly on the CCG categories themselves. This is crucial for the prediction of semantic roles inside a packed parse chart -because the dependency is formed when the two heads combine, it is available to be used as a local feature by the semantic role labeler. This property of CCG and its impact on packed-chart SRL is described extensively in Boxwell et al. (2010) . This ability to predict dependencies (and semantic roles) at parse time figures heavily into the process described here.",
                "cite_spans": [
                    {
                        "start": 31,
                        "end": 47,
                        "text": "(Steedman, 2000)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1248,
                        "end": 1278,
                        "text": "(Gildea and Hockenmaier, 2003;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1279,
                        "end": 1300,
                        "text": "Boxwell et al., 2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 2083,
                        "end": 2104,
                        "text": "Boxwell et al. (2010)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 973,
                        "end": 981,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 1555,
                        "end": 1564,
                        "text": "Figure  2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Combinatory Categorial Grammar",
                "sec_num": "2"
            },
            {
                "text": "The Brutus Semantic Role Labeler (Boxwell et al., 2009) 2 is a semantic role labeling system for CCG.",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 55,
                        "text": "(Boxwell et al., 2009)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "1 A complete explanation of CCG predicate-argument dependencies can be found in the CCGbank user manual (Hockenmaier and Steedman, 2005) 2 Found at http://www.ling.ohio-state.edu/ boxwell/software/brutus.html It is trained using CCGbank and a version of Propbank that has been aligned to the CCGbank in order to account for discrepancies in terminal indexation (Honnibal and Curran, 2007; Boxwell and White, 2008) . The system is organized in a twostage pipeline of maximum entropy models 3 , following the organization of a previous CFG-style approach (Punyakanok et al., 2008) . The first stage is the identification stage, where, for each predicate in the sentence, each word is tagged as either a role or a nonrole (figure 3). The second stage is the classification stage, where the roles are sorted into ARG0, ARG1, and so on (figure 4). The identification model and the classification model share the same features, but they are trained and run separately. For the results presented here, we use a version of Brutus that has been stripped down to only use local features so as to enable us to perform SRL at parse time. Recall from section 1 that we wish to extract training features not from a complete parse tree, but from a packed parse chart. For this reason, global features (those that are inaccessible to a single edge in the parse chart) cannot be used. After removing all global features from the seman-tic role labeler, the local features that remain are as follows:",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 136,
                        "text": "Steedman, 2005)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 361,
                        "end": 388,
                        "text": "(Honnibal and Curran, 2007;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 389,
                        "end": 413,
                        "text": "Boxwell and White, 2008)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 553,
                        "end": 578,
                        "text": "(Punyakanok et al., 2008)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Words. A three-word window surrounding the candidate word.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Predicate. The predicate whose semantic roles the system is looking for.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Predicate Category. The CCG category of the predicate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Result Category Detail. This indicates the feature on the result category of the predicate. Possible values include DCL (for declarative sentences), PSS (for passive sentences), NG (for present-progressive phrases like \"running the race\"), etc. These are read trivially off of the verbal category.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Syntactic Dependency. As with a previous approach in CCG semantic role labeling (Gildea and Hockenmaier, 2003) , this feature shows the exact nature of the syntactic dependency between the predicate and the word we are considering, if any such dependency exists. This feature is represented by the category of the predicate, the argument slot that this word fits into, and whether or not the predicate is the head of the resultant category, represented with a left or right arrow.",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 112,
                        "text": "(Gildea and Hockenmaier, 2003)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Before / After. A binary indicator feature indicating whether the candidate word is before or after the predicate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brutus: A CCG Based Semantic Role Labeler",
                "sec_num": "3"
            },
            {
                "text": "In order to test the performance of our semantic role labeler, we will need automatically generated parses to run the SRL models over. Even though we are able to train SRL models in the absence of syntactic training data, we still need test parses on which to predict roles. So why not use the fast, accurate CCG parser (Clark and Curran, 2004b) used with previous CCG-based SRL systems? It makes sense to use the highest quality parses available. But recall that the reason for this roundabout way of training the semantic role labeler is to enable us to generate SRL models without syntactic training data. If we use an off-the-shelf syntactic parser that was trained on gold-standard training data, we introduce a source of additional training Table 1 : The complete sub-baseline model, which requires no syntactic training data. The substitution combinator is used to model parasitic gaps in English, which are so rare that we make the pragmatic decision to disallow substitution entirely.",
                "cite_spans": [
                    {
                        "start": 320,
                        "end": 345,
                        "text": "(Clark and Curran, 2004b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 747,
                        "end": 754,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Parsing Without Syntactic Training Data",
                "sec_num": "4"
            },
            {
                "text": "data that we wish to exclude. But how will we generate reasonably accurate parses without a trained parse model? Even a simple MLE-style approach requires training data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing Without Syntactic Training Data",
                "sec_num": "4"
            },
            {
                "text": "To satisfy this need, we develop a very simple parse model that penalizes any non-normal-form rule applications, effectively relying on the CCG supertags to identify likely grammatical relations. Specifically, combinators like function composition and type raising are penalized by a fixed amount, while function application is allowed to pass without penalty. The candidate analysis with the lowest penalty is chosen as the single-bestin case of a tie, the most right-branching analysis is chosen. The complete parse model is shown in table 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing Without Syntactic Training Data",
                "sec_num": "4"
            },
            {
                "text": "In the first experiment, we use a parser to create a set of parse forests from the training set. The individual parses are not enumerated -we extract features from every possible syntactic derivation simultaneously by iterating over every edge in the packed chart. Local syntactic features are accessible, as are the gold-standard semantic roles from Propbank. The identifier and classifier models are then trained from these features, instead of from features obtained from gold-standard syntactic derivations. We will call this two-part SRL model the CHART model. We compare this model to the more traditional GOLD model, which uses the same features but is generated from gold standard trees. We test the system using both gold-standard parse trees and single-best auto- matically generated parse trees (generated from gold-standard supertags by the parser from section 4). Interestingly, SRL performance drops only slightly between gold standard test parses and automatically generated parses when using the chartbased SRL model. Table 2 : SRL performance on gold-standard parses and automatic parses from the development set (section 00). The models are defined in section 5.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1034,
                        "end": 1041,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Generating Traditional Identification and Classification Models from the Chart",
                "sec_num": "5"
            },
            {
                "text": "Manual inspection of the results reveals that the CHART model frequently fails to identify modifier roles, contributing to the very low recall score. This was traced to a consistent weakening of the adjunct dependency feature, resulting largely from the ambiguous attachment of auxiliary verbs. Consider a simple sentence Jon will visit tomorrow. Syntactically, there are two possible attachments for tomorrow. It can be attached low, to visit (figure 5), or it can be attached high, to will visit (figure 6). The former will result in a dependency between visit and tomorrow, while the latter will result in a dependency between will and tomorrow. Now, imagine training over this sentence's chart. For both analyses, we notice that a role should be placed on tomorrow. In one case, there is a dependency between visit and tomorrow, and in one case there is not. Our simple parsing model does not necessarily do a good job of discriminating in favor of the analysis that we want, so the SRL components may see both options with nearly equal weight. Empirically, the identification model learns that the dependency feature is not a good predictor of modifier roles. This is in- Figure 6 : An erroneous analysis for Jon will visit tomorrow. There is no syntactic dependency between tomorrow and visit.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1177,
                        "end": 1185,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Generating Traditional Identification and Classification Models from the Chart",
                "sec_num": "5"
            },
            {
                "text": "correct -in fact, the presence of a syntactic dependency between a predicate and a target word is almost always a dead giveaway to the presence of a semantic role. In our effort to downplay the role of syntax we may have set up a situation in which a sophisticated machine-learning based argument identifier does exactly the wrong thing. It could be that a less sophisticated argument identifier will be better suited to the task that our system requires.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Generating Traditional Identification and Classification Models from the Chart",
                "sec_num": "5"
            },
            {
                "text": "The CHART identification model performs poorly because it does not recognize syntactic dependencies as good predictors of semantic roles. Suppose that instead of using that identification model, we used a simple heuristic: if there is a syntactic dependency between a word and the predicate, then label that word with a semantic role -otherwise, do not. This simple identification \"model\" requires no training -it simply relies on the pattern that semantic role bearing units tend to be joined to their predicates by syntactic dependencies. We will refer to this as the chart-dependency model, or C-DEP. In addition to this model, we propose another model that similarly identifies roles with dependencies, but enumerates certain exceptional dependencies that do not predict semantic roles (like those originating from auxiliary verbs like to and has) according to the Propbank guidelines. We will refer to this as the improved chartdependency model, or C-DEP+ 4 . In both cases, the classification model is identical to that of the CHART model. Tables 4 and 5 show the effect of using the two chart-dependency identification models compared to the GOLD and CHART models from section 5. Performance using the C-DEP and C-DEP+ models greatly improves on the disappointing recall of the CHART model, while retaining the favorable property of eschewing gold-standard syntactic training data. Instead of systematically weakening the most predictive identification feature available, the simple identification models use only that feature. This results in a major improvement in recall at the cost of an acceptable drop in precision. In the experiments described in sections 5 and 6, we used four different training methods to generate semantic role labeling models, which are then tested on gold standard syntactic parses and parses that were automatically generated from gold-standard supertags. But much of the challenge of parsing in CCG comes down to the choice of supertags -choosing the correct supertag for a preposition, for example, makes the difference between attaching the prepositional phrase high or low. But surely using gold-standard supertags gives us an unfair advantage; in realworld applications, these supertags would have to be predicted. We could use an off-the-shelf CCG supertagger (Clark and Curran, 2004a) , but this would open us to the same chicken-and-egg problem already encountered with automatic parsers -the C&C supertagger is trained on gold-standard syntactic data. Doing without a supertagger and using every possible supertag in a tag dictionary is computationally infeasible; most words have at least two or three possible tags; the most ambiguous word has 133 supertags (as). Therefore, we have no choice but to investigate ways to get supertags that do not rely on goldstandard syntactic annotation. We use a weakly supervised approach to supertagging that augments an HMM with an oracle CCG tag dictionary and a set of broad grammar-informed constraints (Baldridge, 2008; Ravi et al., 2010) . The tag dictionary provides only a simple mapping from word to supertag -it does not use any kind of cutoff, nor does it give a prior probability on individual supertags. Using an HMM that has been initialized with grammar-based transition probabilities, combined with a two-stage integer programming strategy, this approach can achieve single-best accuracy of 64.3% on ambiguous supertags. These supertags are then used to generate parse forests, which are used to train the CHART, C-DEP, and C-DEP+ models. Notice that, although most of the tag sequences do not produce spanning analyses, we can still produce a packed chart and generate SRL training features. We also train a secondary discriminative supertagger using the induced tags that are the output of the tag-dictionary-based HMM supertagger for the training set, and use this supertagger with the parser from section 4 to generate single-best parses to test the SRL models on. It is necessary to train a secondary supertagger over the induced tags because the induced tags by themseleves are unlikely to produce a spanning analysis. The induced supertags from the HMM are only given for the most probable sequence from the HMM; using the beta-best tag predictions of the secondary supertagger produces acceptable coverage. This supertagger is a simple Maxent tagger conditioned on a 5-word window surrounding the target word and trained using a gaussian prior of 5. SRL performance over automatic parses generated with these predicted supertags is not as strong as with gold standard supertags, but is reasonable considering the absence of syntactic training data. Results for the development set are shown in table 6, and results for the test set are shown in table 7.",
                "cite_spans": [
                    {
                        "start": 2303,
                        "end": 2328,
                        "text": "(Clark and Curran, 2004a)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 2992,
                        "end": 3009,
                        "text": "(Baldridge, 2008;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 3010,
                        "end": 3028,
                        "text": "Ravi et al., 2010)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1046,
                        "end": 1060,
                        "text": "Tables 4 and 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Improving Argument Identification with a Simpler Model",
                "sec_num": "6"
            },
            {
                "text": "Auto Parse Train P R F P R F CHART 83.0 69.4 75.6 64.1 60.0 61.9 C-DEP 72.5 78.1 75.1 65.5 60.5 62.9 C-DEP+ 77.9 77.8 77.9 68.8 60.2 64.2 Table 6 : SRL performance on the development set (section 00) comparing automatic parses generated using gold-standard supertags and automatically induced supertags.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 138,
                        "end": 145,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Gold Supertags Auto Supertags Auto Parse",
                "sec_num": null
            },
            {
                "text": "Auto Manual inspection of the induced supertag data reveals some unusual predictions of supertags. For example, it is difficult to think of a valid category for the determiner the besides NP/N. The word the almost always has the category NP/N in CCGbank. CCGbank does assign other categories for the, though most, if not all, of them are errors. Table 8 shows the token frequencies of select cate-gories for the from the training set of CCGbank. Even though there are 46 possible categories in all, only one of them is really worth considering (18 of the categories appear only once). The automatic method for inducing supertags from the tag dictionary, however, frequently predicts categories for the that are extremely rare in the English CCGbank. This is because the tag dictionary is generated with no cutoff and provides no prior probability across tags -each tag in the dictionary is given equal consideration by the Markov Model, which ranks them according to how well they interact with their neighbors. For this reason, we revisit our earlier decision to generate a tag dictionary with no cutoff. Instead, we generate a tag dictionary of categories that make up at least 10% of the word tokens. For example, suppose the word direct appears in the corpus 100 times. For a category to be listed for the word direct in the tag dictionary, it must appear as the category for direct no fewer than 10 times. This can effectively eliminate a large number of very rare categories that overwhelm the HMM. It also more closely simulates a hand-written tag dictionary for closed-class words, or a tag dictionary that was generated automatically from a traditional part-of-speech dictionary. Using a tag dictionary with a 10% cutoff greatly improves performance on semantc role labeling, coming to within 7% accuracy of using gold-standard supertags. The results for the development set are shown in table 9, and the results for the test set are shown in table 10. We have shown that simple and easy syntactic processing is still beneficial for SRL.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 346,
                        "end": 353,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Gold Supertags",
                "sec_num": null
            },
            {
                "text": "NP/N 47255 N/N 99 ((S\\NP)\\(S\\NP))/NP 78 . . . . . . (S/S)/(S/S) 1 (S[adj]\\NP)/N 1 (N\\N)/N 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Category Frequency",
                "sec_num": null
            },
            {
                "text": "Auto Supertags Auto Parse Auto Parse  Train  P  R  F  P  R  F  CHART 83.0 69.4 75.6 67.5 66.3 66.9 C-DEP 72.5 78.1 75.1 69.3 69.5 69.4 C-DEP+ 77.9 77.8 77.9 74.0 69.2 71.5 Table 9 : SRL performance on the development set (section 00) using cutoff of 10% on tag dictionary.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 68,
                        "text": "Auto Parse  Train  P  R  F  P  R  F  CHART",
                        "ref_id": null
                    },
                    {
                        "start": 172,
                        "end": 179,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Gold Supertags",
                "sec_num": null
            },
            {
                "text": "Auto Table 10 : SRL performance on the test set (section 23) using cutoff of 10% on tag dictionary and the same models as table 9.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 13,
                        "text": "Table 10",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Gold Supertags",
                "sec_num": null
            },
            {
                "text": "For completeness, we briefly explore another option, even simpler than this: we trained SRL models that relied on no syntactic features at all. Specifically, we included the word, predicate, and before/after features (described in detail in section 3). Unsurprisingly, the performance was unacceptably low (P=.73, R-.31, F=.44), most of that coming from successful identification of the predicate itself. This method makes the identifier exceptionally timid, and on the rare occasion that a word is identified as a role-bearing unit, it is often assigned roles corresponding to every predicate in the sentence. We conclude that it is necessary to include syntactic features, but that these can be rough and ready.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gold Supertags",
                "sec_num": null
            },
            {
                "text": "In the three experiments presented, we demonstrated that an effective SRL model can be trained without a corpus of parse trees. This can be achieved by using a simple baseline parser to generate a parse forest for a large amount of unannotated newspaper text, then extracting training instances from all possible syntactic analyses simultaneously. This approach is most effective when we have some syntactic knowledge of the sentence in the form of supertags, but is still effective when only a tagging dictionary is available. In the future, we hope to expand this work into other languages. Armed only with a Propbanklike corpus of semantic roles and a tag dictionary, we can train a surprisingly effective semantic role lableler. To this end, we hope to further investigate issues surrounding the generation of supertagsparticularly, minimally supervised approaches to generating CCG tag dictionaries. Recall that performance actually improved when very rare categories were excluded from the tag dictionary; one option to achieve similar results is to annotate by hand, say, the 200 most common words (almost certainly syntactically interesting closed class words), then using these to guide the generation of a comprehensive tag dictionary, or perhaps by bootstrapping from traditional part-of-speech tags. It would also be beneficial to investigate alternate methods of inducing tags from the tag dictionary that produce n-best tag predictions, as this would improve coverage over the training set. Another avenue of future research could be the generation of semantic predictions without committing single-best test sentences. Recall that in order to test the semantic role labeler, we needed to generate parse trees for the target sentences. Because we assume that gold-standard syntactic training data is not available, we use a subbaseline model that requires no training data. But is it really necessary to choose a single best parse at all? Because the version of Brutus used here can extract features from inside the chart, it can also predict semantic roles at parse time (Boxwell et al., 2010) . We could therefore predict all possible roles in the chart and explore ways of identifying likely rolesets, using a mechanism for the enforcement of global constraints, such as the integer linear programming solution of Punyakanok et al (2008) .",
                "cite_spans": [
                    {
                        "start": 2086,
                        "end": 2108,
                        "text": "(Boxwell et al., 2010)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 2331,
                        "end": 2354,
                        "text": "Punyakanok et al (2008)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "8"
            },
            {
                "text": "We use the Zhang Le maxent toolkit, available at http://homepages.inf.ed.ac.uk/s0450736/ maxent_toolkit.html, using the BFGS training method, trained to 500 iterations with gaussian priors of 1 and 5, for the identification and classification steps, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The C-DEP+ model ignores all dependencies originating from the following categories: (s[to]\\np)/(s[b]\\np), (s[dcl]\\np)/(s[pt]\\np), (s[dcl]\\np)/(s[pss]\\np), (s[b]\\np)/(s[pss]\\np), and (s[dcl]\\np)/(s[ng]\\np).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Weakly supervised supertagging with grammar-informed initialization",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 22nd International Conference on Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "57--64",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Baldridge. 2008. Weakly supervised supertagging with grammar-informed initialization. In Proceed- ings of the 22nd International Conference on Com- putational Linguistics-Volume 1, pages 57-64. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Projecting Propbank Roles onto the CCGbank",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stephen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Boxwell",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "White",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Sixth International Language Resources and Evaluation Conference (LREC-08)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen A. Boxwell and Michael White. 2008. Pro- jecting Propbank Roles onto the CCGbank. In Proceedings of the Sixth International Language Resources and Evaluation Conference (LREC-08), Marrakech, Morocco.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Brutus: A semantic role labeling system incorporating CCG, CFG, and Dependency features",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stephen",
                        "suffix": ""
                    },
                    {
                        "first": "Dennis",
                        "middle": [
                            "N"
                        ],
                        "last": "Boxwell",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Mehay",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brew",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. ACL-09",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen A. Boxwell, Dennis N. Mehay, and Chris Brew. 2009. Brutus: A semantic role labeling sys- tem incorporating CCG, CFG, and Dependency fea- tures. In Proc. ACL-09.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "What a parser can learn from a semantic role labeler and vice versa",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stephen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Boxwell",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Dennis",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Mehay",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brew",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "736--744",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen A Boxwell, Dennis N Mehay, and Chris Brew. 2010. What a parser can learn from a semantic role labeler and vice versa. In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan- guage Processing, pages 736-744, Cambridge, MA, October. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automated extraction of TAGs from the Penn Treebank",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Shanker",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "New developments in parsing technology",
                "volume": "",
                "issue": "",
                "pages": "73--89",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Chen and V. Shanker. 2004. Automated extraction of TAGs from the Penn Treebank. New developments in parsing technology, pages 73-89.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The importance of supertagging for wide-coverage CCG parsing",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING",
                "volume": "4",
                "issue": "",
                "pages": "282--288",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Clark and J.R. Curran. 2004a. The importance of supertagging for wide-coverage CCG parsing. In Proceedings of COLING, volume 4, pages 282-288.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Parsing the WSJ using CCG and Log-Linear Models",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. ACL-04",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Clark and James R. Curran. 2004b. Parsing the WSJ using CCG and Log-Linear Models. In Proc. ACL-04.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Semi-supervised semantic role labeling",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "F\u00fcrstenau",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "220--228",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. F\u00fcrstenau and M. Lapata. 2009. Semi-supervised semantic role labeling. In Proceedings of the 12th Conference of the European Chapter of the Associa- tion for Computational Linguistics, pages 220-228. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Identifying semantic roles using Combinatory Categorial Grammar",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. EMNLP-03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Gildea and Julia Hockenmaier. 2003. Identi- fying semantic roles using Combinatory Categorial Grammar. In Proc. EMNLP-03.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "CCGbank manual",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Hockenmaier and M. Steedman. 2005. CCGbank manual. Technical report, MS-CIS-05-09, Univer- sity of Pennsylvania.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank",
                "authors": [
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Computational Linguistics",
                "volume": "33",
                "issue": "3",
                "pages": "355--396",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julia Hockenmaier and Mark Steedman. 2007. CCG- bank: A Corpus of CCG Derivations and Depen- dency Structures Extracted from the Penn Treebank. Computational Linguistics, 33(3):355-396.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improving the complement/adjunct distinction in CCGbank",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics (PACLING-07)",
                "volume": "",
                "issue": "",
                "pages": "210--217",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Honnibal and J.R. Curran. 2007. Improv- ing the complement/adjunct distinction in CCG- bank. In Proceedings of the 10th Conference of the Pacific Association for Computational Linguis- tics (PACLING-07), pages 210-217. Citeseer.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Unsupervised induction of semantic roles",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lang",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "939--947",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Lang and M. Lapata. 2010. Unsupervised induc- tion of semantic roles. In Human Language Tech- nologies: The 2010 Annual Conference of the North American Chapter of the Association for Computa- tional Linguistics, pages 939-947. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Building a Large Annotated Corpus of English: The Penn Treebank",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "313--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Building a Large Annotated Corpus of En- glish: The Penn Treebank. Computational Linguis- tics, 19(2):313-330.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The Proposition Bank: An Annotated Corpus of Semantic Roles",
                "authors": [
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Kingsbury",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "1",
                "pages": "71--106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An Annotated Cor- pus of Semantic Roles. Computational Linguistics, 31(1):71-106.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The Importance of Syntactic Parsing and Inference in Semantic Role Labeling",
                "authors": [
                    {
                        "first": "Vasin",
                        "middle": [],
                        "last": "Punyakanok",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    },
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Tau",
                        "suffix": ""
                    },
                    {
                        "first": "Yih",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Linguistics",
                "volume": "34",
                "issue": "2",
                "pages": "257--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008. The Importance of Syntactic Parsing and Inference in Semantic Role Labeling. Computational Linguis- tics, 34(2):257-287.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Minimized models and grammar-informed initialization for supertagging with highly ambiguous lexicons",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ravi",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "495--503",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Ravi, J. Baldridge, and K. Knight. 2010. Minimized models and grammar-informed initialization for su- pertagging with highly ambiguous lexicons. In Pro- ceedings of the 48th Annual Meeting of the Associa- tion for Computational Linguistics, pages 495-503. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The Syntactic Process",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Steedman. 2000. The Syntactic Process. MIT Press.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "An example of CCG's treatment of relative clauses. The syntactic dependency between devoured and steak is the same as it was in figure 1.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "text": "In the second stage of the semantic role labeling process, the classifier model sorts the roles into ARG0, ARG1, etc.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF2": {
                "html": null,
                "content": "<table><tr><td>SAID:</td><td/><td/><td>LOVE:</td><td/><td>SAID:</td><td>LOVE:</td></tr><tr><td colspan=\"2\">Robin</td><td>said</td><td>John</td><td/><td>loves</td><td>Mary</td></tr><tr><td>np</td><td/><td>(s[dcl]\\np)/s[dcl]</td><td>np</td><td colspan=\"2\">(s[dcl]\\np)/np</td><td>np</td></tr><tr><td/><td/><td/><td/><td/><td>s[dcl]\\np</td><td>&gt;</td></tr><tr><td/><td/><td/><td/><td/><td>s[dcl]</td><td>&lt;</td></tr><tr><td/><td/><td/><td colspan=\"2\">s[dcl]\\np</td><td>&gt;</td></tr><tr><td/><td/><td/><td>s[dcl]</td><td/><td>&lt;</td></tr><tr><td>Figure 3: SAID:ARG0</td><td/><td colspan=\"3\">LOVE:ARG0</td><td>SAID:ARG1</td><td>LOVE:ARG1</td></tr><tr><td>Robin</td><td/><td>said</td><td>John</td><td/><td>loves</td><td>Mary</td></tr><tr><td>np</td><td colspan=\"2\">(s[dcl]\\np)/s[dcl]</td><td>np</td><td/><td>(s[dcl]\\np)/np</td><td>np</td></tr><tr><td/><td/><td/><td/><td/><td>s[dcl]\\np</td><td>&gt;</td></tr><tr><td/><td/><td/><td/><td/><td>s[dcl]</td><td>&lt;</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "In the first stage of the semantic role labeling process, candidate semantic roles are chosen by the identifier model. We have not yet decided which role (ARG0, ARG1, etc) each word plays, only that there is a role there."
            },
            "TABREF3": {
                "html": null,
                "content": "<table><tr><td/><td/><td>Gold Parse</td><td/><td/><td>Auto Parse</td><td/></tr><tr><td>Train</td><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>GOLD</td><td colspan=\"6\">88.4 85.7 87.0 84.8 80.4 82.5</td></tr><tr><td colspan=\"7\">CHART 83.5 70.8 76.6 83.0 69.4 75.6</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "shows the results for the development set, and table 3 shows the results for the test set."
            },
            "TABREF5": {
                "html": null,
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "SRL performance on the test set (section 23) using the same models as table 2."
            },
            "TABREF8": {
                "html": null,
                "content": "<table><tr><td>7 Experiment 3: Generating an SRL Model Without Gold-Standard Supertags</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "SRL performance on the test set (section 23), using the same models as in table 4."
            },
            "TABREF10": {
                "html": null,
                "content": "<table><tr><td>the from sections 02-21 of the CCGbank (there</td></tr><tr><td>are 46 in all). Some categories, like NP/N, are ex-</td></tr><tr><td>tremely common, whereas others, like (N\\N)/N,</td></tr><tr><td>appear only once.</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "The frequencies of select categories for"
            }
        }
    }
}