File size: 78,157 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 |
{
"paper_id": "I11-1023",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:31:55.593184Z"
},
"title": "Japanese Predicate Argument Structure Analysis Exploiting Argument Position and Type",
"authors": [
{
"first": "Yuta",
"middle": [],
"last": "Hayashibe",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nara Institute of Science and Technology",
"location": {
"postCode": "8916-5, 630-0192",
"settlement": "Takayama",
"region": "Ikoma Nara",
"country": "Japan"
}
},
"email": "yuta-h@is.naist.jp"
},
{
"first": "Mamoru",
"middle": [],
"last": "Komachi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nara Institute of Science and Technology",
"location": {
"postCode": "8916-5, 630-0192",
"settlement": "Takayama",
"region": "Ikoma Nara",
"country": "Japan"
}
},
"email": "komachi@is.naist.jp"
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nara Institute of Science and Technology",
"location": {
"postCode": "8916-5, 630-0192",
"settlement": "Takayama",
"region": "Ikoma Nara",
"country": "Japan"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We propose an approach to Japanese predicate argument structure analysis exploiting argument position and type. In particular, we propose the following two methods. First, in order to use information in the sentences in preceding context of the predicate more effectively, we propose an improved similarity measure between argument positions which is more robust than a previous co-reference-based measure. Second, we propose a flexible selection-and-classification approach which accounts for the minor types of arguments. Experimental results show that our proposed method achieves state-ofthe-art accuracy for Japanese predicate argument structure analysis.",
"pdf_parse": {
"paper_id": "I11-1023",
"_pdf_hash": "",
"abstract": [
{
"text": "We propose an approach to Japanese predicate argument structure analysis exploiting argument position and type. In particular, we propose the following two methods. First, in order to use information in the sentences in preceding context of the predicate more effectively, we propose an improved similarity measure between argument positions which is more robust than a previous co-reference-based measure. Second, we propose a flexible selection-and-classification approach which accounts for the minor types of arguments. Experimental results show that our proposed method achieves state-ofthe-art accuracy for Japanese predicate argument structure analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The goal of predicate-argument structure analysis is to extract semantic relations such as \"who did what to whom\" that hold between a predicate and its arguments constituting a semantic unit of a sentence. It is an important step in many Natural Language Processing applications such as machine translation, summarization and information extraction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Arguments are classified into three categories according to their positions relative to the predicates: intra-sentential arguments (those that have direct syntactic dependency with the predicates), zero intra-sentential arguments (those appearing as zero-pronouns but have their antecedents in the same sentence), and inter-sentential arguments (those appearing as zero-pronouns and their antecedents are not in the same sentence). We call them INTRA D, INTRA Z, and INTER respectively. Furthermore, we call these categories the argument types. While the analysis of INTRA D is comparatively easy, INTRA Z and INTER are more difficult. We consider that there are two reasons for this.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The first reason is the poverty of features for argument identification compared to INTRA D. While for INTRA D we have important clues such as the function word or directly dependency relation, we don't for INTRA Z and INTER.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The second reason is the limited amount of training examples. For example, in a Japanese newswire corpus, INTRA Z and INTER account for 30.5% and 12.4% of all the nominative (ga) cases, and 13.1% and 0.2% of all of the accusative (wo) cases (Iida et al., 2007) .",
"cite_spans": [
{
"start": 241,
"end": 260,
"text": "(Iida et al., 2007)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, in order to solve these problems we propose the following two methods exploiting argument position and type.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "First, we propose an improved similarity measure between argument positions of two predicates that take semantically similar arguments. For example, someone possibly arrested can also surrender him/herself, that is, objects of \"arrest\" and subjects of \"surrender (oneself)\" are occupied by semantically similar nouns. Gerber and Chai (2010) proposed analysis of English nominal predicates with this similarity to take discourse context into account. However, the similarity measure they used has drawbacks: it requires a co-reference resolver and a large number of documents. We improve their similarity measure alleviating these drawbacks by using argument position. We detail previous work on capturing discourse context in Section 2, and our proposal in Section 3.1.",
"cite_spans": [
{
"start": 318,
"end": 340,
"text": "Gerber and Chai (2010)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Second, we propose a selection-andclassification approach. In this approach, in order to compensate for the relative infrequency of examples of INTRA Z and INTER, we select a candidate argument for each argument type independently. After selecting candidates, we use classifiers to choose the correct argument type. This allows us to flexibly design features for each step and we can use pairwise features between the candidate arguments. We detail this in Section 3.2.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The experimental results demonstrated that our proposed method achieved the state-of-the-art of Japanese predicate argument structure analysis. Iida et al. (2003) used Salient Reference List (Nariyama, 2002) based on Centering Theory (Grosz et al., 1995) , which explains the structure of discourse and the transition of topics in order to capture discourse context. The list has the following four ordered slots.",
"cite_spans": [
{
"start": 144,
"end": 162,
"text": "Iida et al. (2003)",
"ref_id": "BIBREF5"
},
{
"start": 191,
"end": 207,
"text": "(Nariyama, 2002)",
"ref_id": "BIBREF15"
},
{
"start": 234,
"end": 254,
"text": "(Grosz et al., 1995)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "TOPIC (marked by wa-particle)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "> SUBJECT (ga) > INDIRECT OBJECT (ni) > DIRECT OBJECT (wo),",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We check whether each candidate corresponds to any slots from the beginning of a document. If the candidate corresponds to a slot, we (over)write the slot with the candidate. We repeat this until we reach the predicate to analyze. We use the ranks of candidates in the list as a feature. Iida et al. (2003) used a feature (CHAIN LENGTH) that stands for how often each candidate is used as an argument of predicates in preceding context. Imamura et al. (2009) used a similar binary feature (USED) that shows if each candidate is ever used as an argument of predicates or not. However, they did not investigate the effect of these features explicitly in their systems. Therefore we also investigate these in this paper.",
"cite_spans": [
{
"start": 288,
"end": 306,
"text": "Iida et al. (2003)",
"ref_id": "BIBREF5"
},
{
"start": 437,
"end": 458,
"text": "Imamura et al. (2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In the study of implicit arguments 1 for English nominal predicates, Gerber and Chai (2010) used similarity features between an argument position and a co-reference chain, inspired by Chambers and Jurafsky (2008) , who proposed unsupervised learning of narrative event chains using pointwise mutual information (PMI) between syntactic positions. This method stands on the assumption that similar argument positions tend to have the arguments which belong to a common co-reference chain. For instance, co-referring arguments at such argument positions like plead, ARG 0 , admit, ARG 0 , convict, ARG 1 , tend to take semantically similar nouns as the argument positions like sentence, ARG 1 , parole, ARG 1 .",
"cite_spans": [
{
"start": 69,
"end": 91,
"text": "Gerber and Chai (2010)",
"ref_id": "BIBREF2"
},
{
"start": 184,
"end": 212,
"text": "Chambers and Jurafsky (2008)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between an Argument Position and a co-Reference Chain",
"sec_num": "2.3"
},
{
"text": "They first automatically label a subset of the Gigaword corpus (Graff, 2003) with verbal and nominal semantic role labeling. They then identify co-references between arguments using a coreference resolver. They compute PMI as follows.",
"cite_spans": [
{
"start": 63,
"end": 76,
"text": "(Graff, 2003)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between an Argument Position and a co-Reference Chain",
"sec_num": "2.3"
},
{
"text": "Suppose the resulting data has N co-referential pairs of argument positions and M of these pairs comprising E a = P a , A a , E b = P b , A b , and E c = P c , A c . P a , P b , and P c are predicates, and A a , A b , and A c are labels such as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between an Argument Position and a co-Reference Chain",
"sec_num": "2.3"
},
{
"text": "ARG 0 or ARG 1 . pmi(E a , E b ) = log G(E a , E b ) G(E a , * )G(E b , * ) G(E a , E b ) =",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between an Argument Position and a co-Reference Chain",
"sec_num": "2.3"
},
{
"text": "M N With this similarity between argument positions, they defined scores between an argument position and a co-reference chain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between an Argument Position and a co-Reference Chain",
"sec_num": "2.3"
},
{
"text": "Analysis Exploiting Argument Position and Type",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predicate Argument Structure",
"sec_num": "3"
},
{
"text": "Suppose we want to identify the argument of (surrendered) in Example (1). The argument is an antecedent of zero-pronoun \u03c6 of the predicate.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between Argument Positions using Distribution Similarity",
"sec_num": "3.1"
},
{
"text": "(1) police wa-particle hanako wo-particle arrested Police arrested Hanako.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Similarity between Argument Positions using Distribution Similarity",
"sec_num": "3.1"
},
{
"text": "had surrendered that heard I heard that \u03c6 had surrendered.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "I (\u03c6 )",
"sec_num": null
},
{
"text": "With Salient Reference List for \" (surrendered)\", the rank of \" (police)\" is higher than that of \" (Hanako)\" and it is noisy information for analysis. We also cannot distinguish them with argument frequency information, because frequencies of both \" (Hanako)\" and \" (police)\" are 1. Though it is reasonable to use the similarity between an argument position and a co-reference chain, the similarity measure described in Section 2.3 has two problems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "I (\u03c6 )",
"sec_num": null
},
{
"text": "One is the strong dependency on the accuracy of co-reference resolver system. In fact, the accuracy of Japanese co-reference resolvers is not accurate enough to create co-reference chains in good quality. 2 The other problem is the problem that it needs a lot of documents, because the method does not use any non co-referring nouns.",
"cite_spans": [
{
"start": 205,
"end": 206,
"text": "2",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "I (\u03c6 )",
"sec_num": null
},
{
"text": "To avoid using an unreliable co-reference resolver, we can suppose the same noun lemmas without pronouns in the same document are coreferences. Pekar 2006called the noun lemmas anchors and they supposed the similarity measure between syntactic positions. For example, there are two anchors: \"Mary\" and \"house\" in the sentences \"Mary bought a house. The house belongs to Mary.\" They extract two groups: { buy(obj:X), belong(subj:X) } and {buy(subj:X), belong(to:X). } Nevertheless, this method also requires many documents because noun lemmas without anchors are not used for the calculation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "I (\u03c6 )",
"sec_num": null
},
{
"text": "In this paper, we propose a more robust similarity measure between argument positions which does not depend on unreliable co-reference annotations by the resolver. (arrest)\" following wo look alike. We can expect that an arrested person is more likely to be a person who has surrendered than an arrestee. We define a novel similarity of two argument positions 2 We implemented the method proposed by Iida et al. (2005a) , and the F-measure was 66%.",
"cite_spans": [
{
"start": 360,
"end": 361,
"text": "2",
"ref_id": null
},
{
"start": 400,
"end": 419,
"text": "Iida et al. (2005a)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "I (\u03c6 )",
"sec_num": null
},
{
"text": "E2 E3 and the accusative ( wo ) case of \" (arrest)\" (E 3 ). We will use these values as features of predicate-argument analysis in the experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "E1",
"sec_num": null
},
{
"text": "Considering Argument Type",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Selection-and-Classification Approach",
"sec_num": "3.2"
},
{
"text": "In previous work, argument analysis was performed with common features regardless its argument type. However, these methods have difficulty in distinguishing the marginal cases where two candidates have different argument types because of the difference of quantity by argument types. Thus we propose the selection-and-classification approach for Japanese predicate argument structure analysis. This approach consists of two steps: the selection step and the classification step. This approach is inspired by two models. The first is the selection-and-classification model (Iida et al., 2005b) for noun phrase anaphora resolution. The model first selects a likely antecedent of the target (possibly) anaphoric expression. Second, the model classifies the target anaphoric ex- The second is the tournament model (Iida et al., 2003) for zero-anaphora resolution. For all the candidate antecedents (virtually all noun phrases appearing in preceding context), the model repeats two-class classification: which candidate in the pair of candidates is likely to be the antecedent for the zero-anaphora. The advantage of the tournament model is that the model can use pairwise features of candidates. Similarly, in the classification step of our approach we select an argument comparing most likely candidates of arguments of each argument type.",
"cite_spans": [
{
"start": 573,
"end": 593,
"text": "(Iida et al., 2005b)",
"ref_id": "BIBREF7"
},
{
"start": 811,
"end": 830,
"text": "(Iida et al., 2003)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Selection-and-Classification Approach",
"sec_num": "3.2"
},
{
"text": "Selection: At the first step, we select three most likely arguments of INTRA D, INTRA Z, and IN-TER for each predicate using any argument identification model. We may use different features for models of different argument types.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Method of Argument Analysis",
"sec_num": null
},
{
"text": "Classification: At the second step, we determine which INTRA D, INTRA Z, and INTER is the correct argument or if there is no explicit argument appearing in the context. This step is composed of three binary classification models illustrated in Figure 1 .",
"cite_spans": [],
"ref_spans": [
{
"start": 244,
"end": 252,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "A Method of Argument Analysis",
"sec_num": null
},
{
"text": "(a) Judge which of INTRA D or INTRA Z is more likely to be an argument of the predicate. (b) Judge which of INTER or the candidate selected at (a) is more likely to be an argument of the predicate. (c) Judge whether the candidate selected at (b) qualifies as an argument of the predicate or not.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Method of Argument Analysis",
"sec_num": null
},
{
"text": "We show the example of analysis of \u03c6 in Example (1). We first select argument candidates of IN-TRA D, INTRA Z, and INTER. Suppose the most likely argument of INTRA D is not selected and \" (I)\" and \" (Hanako)\" are selected as ones of INTRA Z and INTER respectively in the 'selection' step. Because INTRA D is not selected, the classifier selects INTRA Z at (a). Suppose IN-TER is selected at (b) comparing \" \" selected at (a) and \" \". Finally, \" \" is selected as the argument by the classifier of (c).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Method of Argument Analysis",
"sec_num": null
},
{
"text": "Furthermore, though we tried different orders for 'Classification' step in the preliminary experiment, this order was the best.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Method of Argument Analysis",
"sec_num": null
},
{
"text": "We train each binary classifier in the order of (a), (b), and (c). We create training examples of classifiers with two argument candidates and a predicate as shown in Tables 3 and 4. The following arguments are used for training: (a) the correct argument and the most likely argument selected at the 'Selection' step (b) the correct argument and the most likely argument selected by (a) at the 'Classification' step (c) the correct argument and the most likely argument selected by (b) in the 'Classification' step For instance, \u03c6 in Example (1) is \" (Hanako)\" whose argument type is INTER. Hence CHAIN LENGTH A frequency of being arguments in previous sentences (Iida et al., 2003 ) USED Whether being arguments in former sentences or not (Imamura et al., 2009) ",
"cite_spans": [
{
"start": 663,
"end": 681,
"text": "(Iida et al., 2003",
"ref_id": "BIBREF5"
},
{
"start": 740,
"end": 762,
"text": "(Imamura et al., 2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training Method of Classifiers for the 'Classification' Step",
"sec_num": null
},
{
"text": "Scores between an argument position and co-reference chain calculated with the similarity which Gerber and Chai (2010) used (described in Section 2.3) SIM CS Scores between an argument position and co-reference chain calculated with our proposed similarity Table 5 : Discourse context features used in the experiment we generate two training examples: One is an example of (b) with the label INTER, \" \", and the most likely argument selected by (a) at 'Classification' step. The other one is an example of (c) with the label HAVE-ARG and \"",
"cite_spans": [],
"ref_spans": [
{
"start": 257,
"end": 264,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "SIM COREF",
"sec_num": null
},
{
"text": "\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SIM COREF",
"sec_num": null
},
{
"text": "We evaluate our proposed selection-andclassification approach by comparing it with other models and the discourse context features shown in Table 5 by adding them to the baseline features at Japanese predicate argument structure analysis of nominative case. In the experiment, systems refer only nouns in co-reference chains which are intra-sentential arguments. In addition, we used human annotated data of co-reference and predicate-argument structure to make discourse context features. For SIM COREF and SIM CS, we used maximum, minimum and average scores of similarities.",
"cite_spans": [],
"ref_spans": [
{
"start": 140,
"end": 147,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Evaluation Setting of Predicate Argument Structure Analysis Exploiting Argument Position and Type",
"sec_num": "4"
},
{
"text": "We used two datasets for the calculation of similarities: the Newspapers (NEWS) and the Web texts (WEB).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset for Similarity Calculation",
"sec_num": "4.1"
},
{
"text": "We used about 21,000,000 sentences in Mainichi newspapers published from 1991 to 2003 (excluded 1995). We part-of-speech tagged the data with MeCab 0.98 3 and dependency structure parsed with CaboCha 0.60pre4 4 . Both taggers used the NAIST Japanese Dictionary 0.6.3 5 . We extracted 27,282,277 pairs of a predicate and an argument. 6 We also extracted 111,173,873,092 coreference chains to calculate SIM COREF with the anaphora resolver which is our reimplementation of (Iida et al., 2005a) . These chains include 2,280,417,516,455 nouns. We used 173,778,624 pairs of a predicate and an argument with the case maker ga ,",
"cite_spans": [
{
"start": 333,
"end": 334,
"text": "6",
"ref_id": null
},
{
"start": 471,
"end": 491,
"text": "(Iida et al., 2005a)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "NEWS:",
"sec_num": null
},
{
"text": "wo and ni .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NEWS:",
"sec_num": null
},
{
"text": "We used about 500,000,000 sentences which Kawahara and Kurohashi (2006) collected from the web. They are part-of-speech tagged with JUMAN 7 and dependency structure parsed with KNP 8 . We extracted 1,101,472,855 pairs of a predicate and an argument. 9",
"cite_spans": [
{
"start": 42,
"end": 71,
"text": "Kawahara and Kurohashi (2006)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "WEB:",
"sec_num": null
},
{
"text": "We used NAIST Text Corpus 1.4\u03b2 (Iida et al., 2007) for training and evaluation. It is based on Kyoto Text Corpus 3.0 10 and annotated with predicate-argument structure, event noun structure, and co-reference of nouns about 40,000 sentences of Japanese newspaper text. We excluded 11 articles due to annotation error. We conducted five-fold cross-validation. In the experiments, base phrases and dependency relations are acquired from the Kyoto Text Corpus 3.0 in the same way of related work.",
"cite_spans": [
{
"start": 31,
"end": 50,
"text": "(Iida et al., 2007)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training and Evaluation Dataset",
"sec_num": "4.2"
},
{
"text": "In order to identify the most likely argument candidate of each INTRA D, INTRA Z, and INTER, we used the tournament model. We emphasize that our proposed approach can use any argument identification model to identify the most likely candidate of an argument.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Model in the 'Selection' Step",
"sec_num": "4.3"
},
{
"text": "As baseline features, we employed features proposed by Iida et al. (2005a Iida et al. ( , 2007a and Imamura et al. (2009) in addition to a novel one 'PRED DEP POS' shown in Table 6 .",
"cite_spans": [
{
"start": 55,
"end": 73,
"text": "Iida et al. (2005a",
"ref_id": "BIBREF6"
},
{
"start": 74,
"end": 95,
"text": "Iida et al. ( , 2007a",
"ref_id": null
},
{
"start": 100,
"end": 121,
"text": "Imamura et al. (2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 173,
"end": 180,
"text": "Table 6",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Baseline Features and Classifier",
"sec_num": "4.4"
},
{
"text": "We used Support Vector Machine (Cortes and Vapnik, 1995) a linear kernel. We used the implementation of LIBLINEAR 1.7 11 with its default parameters.",
"cite_spans": [
{
"start": 31,
"end": 56,
"text": "(Cortes and Vapnik, 1995)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Baseline Features and Classifier",
"sec_num": "4.4"
},
{
"text": "We evaluate our selection-and-classification approach by comparing our baseline model with two previous approaches TA and IM.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Targets for Comparison of Predicate Argument Analysis Model",
"sec_num": "4.5"
},
{
"text": "TA: Taira et al. (2008) used decision lists where features were sorted by their weights learned from Support Vector Machine. They simultaneously solved the argument of event nouns in the same lists.",
"cite_spans": [
{
"start": 4,
"end": 23,
"text": "Taira et al. (2008)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Targets for Comparison of Predicate Argument Analysis Model",
"sec_num": "4.5"
},
{
"text": "IM: Imamura et al. (2009) used discriminative models based on maximum entropy. They added the special noun phrase NULL, which expresses that the predicate does not have any argument.",
"cite_spans": [
{
"start": 4,
"end": 25,
"text": "Imamura et al. (2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Targets for Comparison of Predicate Argument Analysis Model",
"sec_num": "4.5"
},
{
"text": "Because previous work use different features and machine learning methods and experiment on different setting from ours, we also compare with a baseline model BL in order to analyze the effect 11 http://www.csie.ntu.edu.tw/ \u223c cjlin/liblinear/ of dividing a model considering argument type. BL: This model has a single step in 'classification' step. In other words, 'selection' step in this model selects the most likely argument from all noun phrases preceding the predicate. Table 7 presents the result of the experiments. According to the bottom row in Table 7 , we achieved the state-of-the-art of Japanese predicate argument structure analysis by combining all discourse context features (+A+B+C+D+E).",
"cite_spans": [],
"ref_spans": [
{
"start": 476,
"end": 483,
"text": "Table 7",
"ref_id": null
},
{
"start": 555,
"end": 562,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Targets for Comparison of Predicate Argument Analysis Model",
"sec_num": "4.5"
},
{
"text": "We investigate our result from five different standpoints.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "5"
},
{
"text": "We analyze the effect of our proposed selectionand-classification approach by comparing the first row of Table 7 . SC is superior to BL in all types. This shows that dividing a model considering argument type improves the performance. Table 7 : Comparison of predicate argument structure analysis of nominative case: P , R, and F 1 indicate Precision, Recall, and F-measure(\u03b2 = 1), respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 105,
"end": 112,
"text": "Table 7",
"ref_id": null
},
{
"start": 235,
"end": 242,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Effect of the Selection-and-Classification Approach",
"sec_num": "5.1"
},
{
"text": "By comparing SC and TA, and SC+USED and IM 12 , the result of our proposed method is competitive or superior to others. Additionally, recall is higher in any type; therefore we consider there is still much room for improvement by replacing the argument identification model in the selectional step with other models.",
"cite_spans": [
{
"start": 13,
"end": 23,
"text": "SC and TA,",
"ref_id": null
},
{
"start": 24,
"end": 45,
"text": "and SC+USED and IM 12",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparison between previous work",
"sec_num": "5.2"
},
{
"text": "On comparing +A (CHAIN LENGTH), +B (USED), and +C (SIM COREF NEWS) or +D (SIM CS NEWS) in Table 7 , similarity-based features are superior or competitive to frequencybased feature.",
"cite_spans": [],
"ref_spans": [
{
"start": 90,
"end": 97,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Effect of Similarity Metrics",
"sec_num": "5.3"
},
{
"text": "(2) . . . The number of marriages increases 10,000 to 40,000 couples annually . . . . . .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Effect of Similarity Metrics",
"sec_num": "5.3"
},
{
"text": ". . .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Effect of Similarity Metrics",
"sec_num": "5.3"
},
{
"text": "The flu that has been going around and triggered . . . ,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Effect of Similarity Metrics",
"sec_num": "5.3"
},
{
"text": "For instance, the argument of \" (be going around)\" in Example (2) is \" (flu)\" of INTER and is not an argument of previous arguments. Though the topic changes between two sentences, A and B cannot take it into account this and output \" (Marriages)\" which is an argument of \" (increase)\" because the frequencybased feature is active. In contrast, C and D handle this because the similarity between the nominative case of \" \" and \" \" is low. On comparing +C (SIM COREF NEWS) and +D (SIM CS NEWS) in Table 7 , our proposed similarity metrics work better than the coreference-based metrics in INTRA D or INTRA Z by a large margin. This result shows the robustness of our metrics compared to the co-reference based similarity between argument positions.",
"cite_spans": [],
"ref_spans": [
{
"start": 496,
"end": 503,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Effect of Similarity Metrics",
"sec_num": "5.3"
},
{
"text": "On comparing +D (SIM CS NEWS) and +E (SIM CS WEB) in Table 7 respectively, the similarity measure using the newswire texts works better for INTRA D and one using the web texts works better for INTRA Z and INTER.",
"cite_spans": [],
"ref_spans": [
{
"start": 53,
"end": 60,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Effect of In and Out-of-domain Data",
"sec_num": "5.4"
},
{
"text": "Additionally, the result of +D+E shows that combining proposed similarities calculated from different sources work complementary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Effect of In and Out-of-domain Data",
"sec_num": "5.4"
},
{
"text": "Removing features one by one from ALL (Adding all of A to E), we inquire about features which have strong effect on ALL. Table 7 shows that the F-measures of INTRA D and INTRA Z fall by a large margin, by removing D and E respectively. Though the F-measure of INTER degrades by removing C, it makes little difference to other argument types. This shows it is our proposed similarity that mainly contributes to the improvement of the F-measure of the overall system.",
"cite_spans": [],
"ref_spans": [
{
"start": 121,
"end": 128,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Ablation Features",
"sec_num": "5.5"
},
{
"text": "We analyze errors where our proposed similarity does not work well.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6"
},
{
"text": "In short, this is equivalent to INTER.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://mecab.sourceforge.net/ 4 http://chasen.org/ \u223c taku/software/cabocha/ 5 http://sourceforge.jp/projects/naist-jdic/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We compare SC+USED and IM, because IM used the USED feature.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We thank Daisuke Kawahara and Sadao Kurohashi for providing the web texts and Joseph Irwin for his comments on the earlier draft.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
},
{
"text": "In NAIST Text Corpus, the copula \" \"(In English, \"be\") is annotated as a predicate.(3). . . . . . The price of apartments is going down.. . . \u03c6 \u03c6 of last year was 5.8 times higher than that of this year.However, the behavior of copula is different from other predicates, thus it is difficult to resolve them with the same model. To solve this problem, the model of copula should be separated.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Copula",
"sec_num": "6.1"
},
{
"text": "In this experiment, we regarded the predicate of \" (do) + noun\" such as \" (do arrest)\" as a single predicate. On the other hand, we regarded the predicate of \" (do) + particle + noun\" such as \" \" in Example (4) as \" (do).\". . . \u03c6 should not relegate promotion of decentralization . . . However, verbs like \"do\" in such examples do not play central roles, whereas the noun such as \" (relegation)\" carries the main meaning of the event. This phenomenon is called \"light verb construction\" (Miyamoto, 1999) .\" \" is the nominalized form of the verb \" (relegate).\" Thus we need to calculate similarity with \" \" instead of \" \". When the predicate is a light verb, we have to use the original verb to calculate the similarity.",
"cite_spans": [
{
"start": 487,
"end": 503,
"text": "(Miyamoto, 1999)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Light Verb Construction",
"sec_num": "6.2"
},
{
"text": "A predicate may have several senses and hence have several argument distributions. For example, \"\" has two senses at least: to pack and to bring to a conclusion. \" \" in Example (5) means the latter.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predicate Sense Ambiguity",
"sec_num": "6.3"
},
{
"text": "They emphasized that \u03c6 should be brought to an conclusion as soon as possible.The distributions of arguments of such ambiguous verbs tend to have a mixture of several distributions of arguments. Therefore this makes it hard to calculate the similarity of an argument position and a co-reference chain. Additionally, it is even more difficult when the predicate is more essential verb such as \" (have)\" and \" (take).\" This suggests the close relationship between the word sense disambiguation and the predicate argument structure analysis. In fact, Meza-Ruiz and Riedel (2009) showed that the joint model for semantic role labeling and word sense disambiguation performs better than a pipeline system.Since NAIST Text Corpus is not annotated with verb senses, we are annotating the sense of verbs to allow similar analysis.",
"cite_spans": [
{
"start": 548,
"end": 575,
"text": "Meza-Ruiz and Riedel (2009)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "(5) \u03c6",
"sec_num": null
},
{
"text": "We improved Japanese predicate argument structure analysis exploiting argument position and type. In particular, we proposed two methods: the improved similarity measure between argument positions and the selection-and-classification approach considering argument type.Experimental results show that our proposed method achieved state-of-the art accuracy for the Japanese predicate argument structure analysis. Proposed similarity between argument positions exploiting case maker is more robust than previous co-reference-based method that makes use of an unreliable automatic co-reference resolver. Furthermore, we proposed flexible approach which accounts for the minor types of arguments.Future work includes four topics: (1) to distinguish copula from other predicates; (2) to combine internal argument to take semantic argument into consideration if the verb is in light verb construction; (3) to perform word sense disambiguation before calculating similarity; (4) to conduct experiments not only on nominative case but also on other cases .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Unsupervised Learning of Narrative Event Chains",
"authors": [
{
"first": "Nathanael",
"middle": [],
"last": "Chambers",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of Annual Meeting of the Association for Computational Linguistics-08 with the Human Language Technology Conference",
"volume": "",
"issue": "",
"pages": "789--797",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nathanael Chambers and Dan Jurafsky. 2008. Un- supervised Learning of Narrative Event Chains. In Proceedings of Annual Meeting of the Association for Computational Linguistics-08 with the Human Language Technology Conference, pages 789-797.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Support-Vector Networks",
"authors": [
{
"first": "Corinna",
"middle": [],
"last": "Cortes",
"suffix": ""
},
{
"first": "Vladimir",
"middle": [],
"last": "Vapnik",
"suffix": ""
}
],
"year": 1995,
"venue": "Machine learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Corinna Cortes and Vladimir Vapnik. 1995. Support- Vector Networks. Machine learning.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Beyond NomBank: A Study of Implicit Arguments for Nominal Predicates",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Gerber",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Joyce",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Chai",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1583--1592",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matthew Gerber and Joyce Y. Chai. 2010. Beyond NomBank: A Study of Implicit Arguments for Nom- inal Predicates. In Proceedings of the 48th Annual Meeting of the Association for Computational Lin- guistics, pages 1583-1592. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Centering: A Framework for Modeling the Local Coherence of Discourse",
"authors": [
{
"first": "Barbara",
"middle": [
"J"
],
"last": "Grosz",
"suffix": ""
},
{
"first": "Aravind",
"middle": [
"K"
],
"last": "Joshi",
"suffix": ""
},
{
"first": "Scott",
"middle": [],
"last": "Weinstein",
"suffix": ""
}
],
"year": 1995,
"venue": "Computational Linguistics",
"volume": "21",
"issue": "2",
"pages": "203--225",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Barbara J. Grosz, Aravind K. Joshi, and Scott Wein- stein. 1995. Centering: A Framework for Modeling the Local Coherence of Discourse. Computational Linguistics, 21(2):203-225.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Incorporating Contextual Cues in Trainable Models for Coreference Resolution",
"authors": [
{
"first": "Ryu",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Hiroya",
"middle": [],
"last": "Takamura",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 10th EACL Workshop on the Computational Treatment of Anaphora",
"volume": "",
"issue": "",
"pages": "23--30",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryu Iida, Kentaro Inui, Hiroya Takamura, and Yuji Matsumoto. 2003. Incorporating Contextual Cues in Trainable Models for Coreference Resolution. In Proceedings of the 10th EACL Workshop on the Computational Treatment of Anaphora, pages 23- 30.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Anaphora Resolution by Antecedent Identification Followed by Anaphoricity Determination",
"authors": [
{
"first": "Ryu",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2005,
"venue": "ACM Transactions on Asian Language Information Processing",
"volume": "4",
"issue": "4",
"pages": "417--434",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2005a. Anaphora Resolution by Antecedent Identification Followed by Anaphoricity Determination. ACM Transactions on Asian Language Information Pro- cessing, 4(4):417-434.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "On the Issue of Combining Anaphoricity Determination and Antecedent Identification in Anaphora Resolution",
"authors": [
{
"first": "Ryu",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2005,
"venue": "International Conference on Natural Language Processing and Knowledge Engineering",
"volume": "",
"issue": "",
"pages": "244--249",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2005b. On the Issue of Combining Anaphoricity Determi- nation and Antecedent Identification in Anaphora Resolution. In International Conference on Natural Language Processing and Knowledge Engineering, pages 244-249.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Annotating a Japanese Text Corpus with Predicate-Argument and Coreference Relations",
"authors": [
{
"first": "Ryu",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "Mamoru",
"middle": [],
"last": "Komachi",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Linguistic Annotation Workshop",
"volume": "",
"issue": "",
"pages": "132--139",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryu Iida, Mamoru Komachi, Kentaro Inui, and Yuji Matsumoto. 2007. Annotating a Japanese Text Cor- pus with Predicate-Argument and Coreference Re- lations. In Proceedings of the Linguistic Annotation Workshop, pages 132-139. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Nihongo Goi Taikei :A Japanese Lexicon",
"authors": [
{
"first": "Satoru",
"middle": [],
"last": "Ikehara",
"suffix": ""
},
{
"first": "Masahiro",
"middle": [],
"last": "Miyazaki",
"suffix": ""
},
{
"first": "Satoshi",
"middle": [],
"last": "Shirai",
"suffix": ""
},
{
"first": "Akio",
"middle": [],
"last": "Yokoo",
"suffix": ""
},
{
"first": "Hiromi",
"middle": [],
"last": "Nakaiwa",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Ogura",
"suffix": ""
}
],
"year": 1997,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Satoru Ikehara, Masahiro Miyazaki, Satoshi Shirai, Akio Yokoo, Hiromi Nakaiwa, and Kentaro Ogura. 1997. Nihongo Goi Taikei :A Japanese Lexicon. Iwanami Shoten.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Discriminative Approach to Predicate-Argument Structure Analysis with Zero-Anaphora Resolution",
"authors": [
{
"first": "Kenji",
"middle": [],
"last": "Imamura",
"suffix": ""
},
{
"first": "Kuniko",
"middle": [],
"last": "Saito",
"suffix": ""
},
{
"first": "Tomoko",
"middle": [],
"last": "Izumi",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing",
"volume": "",
"issue": "",
"pages": "85--88",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kenji Imamura, Kuniko Saito, and Tomoko Izumi. 2009. Discriminative Approach to Predicate- Argument Structure Analysis with Zero-Anaphora Resolution. In Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Pro- cessing, pages 85-88.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Case Frame Compilation from the Web using High-Performance Computing",
"authors": [],
"year": null,
"venue": "Proceedings of the 5th International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "1344--1347",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Case Frame Compilation from the Web using High- Performance Computing. In Proceedings of the 5th International Conference on Language Resources and Evaluation, pages 1344-1347.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Jointly identifying predicates, arguments and senses using markov logic",
"authors": [
{
"first": "Ivan",
"middle": [],
"last": "Meza",
"suffix": ""
},
{
"first": "-",
"middle": [],
"last": "Ruiz",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "155--163",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ivan Meza-Ruiz and Sebastian Riedel. 2009. Jointly identifying predicates, arguments and senses us- ing markov logic. In Proceedings of Human Lan- guage Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 155-163.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "The Light Verb Construction in Japanese: the role of the verbal noun",
"authors": [
{
"first": "Tadao",
"middle": [],
"last": "Miyamoto",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tadao Miyamoto. 1999. The Light Verb Construction in Japanese: the role of the verbal noun. John Ben- jamins Publishing Company.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Grammar for Ellipsis Resolution in Japanese",
"authors": [
{
"first": "Sigeko",
"middle": [],
"last": "Nariyama",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 9th International Conference on Theoretical and Methodological Issues in Machine Translation",
"volume": "",
"issue": "",
"pages": "135--145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sigeko Nariyama. 2002. Grammar for Ellipsis Resolu- tion in Japanese. In Proceedings of the 9th Interna- tional Conference on Theoretical and Methodologi- cal Issues in Machine Translation, pages 135-145.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Acquisition of Verb Entailment from Text",
"authors": [
{
"first": "",
"middle": [],
"last": "Viktor Pekar",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics",
"volume": "",
"issue": "",
"pages": "49--56",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Viktor Pekar. 2006. Acquisition of Verb Entailment from Text. In Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Com- putational Linguistics, pages 49-56. Association for Computational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A Japanese Predicate Argument Structure Analysis Using Decision Lists",
"authors": [
{
"first": "Hirotoshi",
"middle": [],
"last": "Taira",
"suffix": ""
},
{
"first": "Sanae",
"middle": [],
"last": "Fujita",
"suffix": ""
},
{
"first": "Masaaki",
"middle": [],
"last": "Nagata",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "523--532",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hirotoshi Taira, Sanae Fujita, and Masaaki Nagata. 2008. A Japanese Predicate Argument Structure Analysis Using Decision Lists. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 523-532.",
"links": null
}
},
"ref_entries": {
"TABREF2": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table><tr><td>shows the list of nouns that have direct</td></tr><tr><td>dependency arcs in syntactic dependency struc-tures along with case markers ga (nominative case), wo (accusative case) and ni (dative case) ex-</td></tr><tr><td>tracted from the WEB corpus described in Section</td></tr><tr><td>4. According to Table 1, the distributions of nouns of \" (surrender)\" following ga and \"</td></tr></table>",
"text": ""
},
"TABREF3": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table><tr><td>inative (</td><td>ga</td><td>) case of \"</td><td>(surrender)\" (E 1 )</td></tr></table>",
"text": "An example of similarities between argument positions calculated with WEB corpus.encoding such information as Jensen-Shannon divergence between argument distributions of argument positions. A sample of the calculated similarities is shown inTable 2. This table illustrates the most similar argument positions are the nom-"
},
"TABREF5": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table><tr><td>Italic texts</td></tr><tr><td>in (b) and (c) refer most likely argument which (a)</td></tr><tr><td>and (b) selected respectively. Non-italic texts refer</td></tr><tr><td>to the correct argument.</td></tr></table>",
"text": "Examples made for training."
},
"TABREF6": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table/>",
"text": "Examples made for training with humanannotated data. Generated examples depend on the argument type."
},
"TABREF8": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table/>",
"text": "Baseline features of classifiers in the 'Selection' step and the 'Classification' step."
},
"TABREF9": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table><tr><td>Section</td><td>INTRA D</td><td>INTRA Z</td><td>INTER</td></tr><tr><td colspan=\"4\">P -85.2 5.3, 5.4 27 R F1 P R F1 P R F1 5.1 BL : 5.2 TA : Taira et al. 2008 -75.53 --30.15 --23.45 IM : Imamura et al. 2009 88.8 87.0 58.8 43.4 50.0 47.5 7.6 13.1 5.4 SC+D+E 89.70 91.55 90.62 65.08 61.37 63.17 24.86 21.57 23.08 5.5 ALL (SC+A+B+C+E+D) 89.93 91.70 90.81 67.39 62.18 64.68 25.86 22.93 24.30 ALL-A 90.44 91.34 90.89 68.12 61.95 64.89 25.72 23.77 24.69 ALL-B 90.48 91.48 90.98 66.83 62.06 64.35 25.48 22.71 24.01 ALL-C 89.30 91.65 90.46 65.19 61.92 63.50 25.71 22.22 23.83 ALL-D 87.65 90.48 89.04 66.14 61.21 63.57 26.03 22.85 24.32 ALL-E 89.66 90.73 90.19 62.47 59.04 60.71 25.56 22.49 23.92</td></tr></table>",
"text": "Our baseline 84.06 50.74 63.24 27.02 56.13 36.46 16.44 13.70 14.89 SC : Our proposed method 80.71 85.35 82.96 47.57 45.74 46.64 23.79 15.93 19.07 SC+A (CHAIN LENGTH) 85.39 88.79 87.05 51.64 52.22 51.93 25.31 18.63 21.44 SC+B (USED) 85.59 88.44 86.99 54.40 53.32 53.86 26.09 21.27 23.43 SC+C (SIM COREF NEWS) 86.82 88.90 87.85 54.07 52.89 53.47 25.83 20.08 22.58 SC+D (SIM CS NEWS) 88.42 91.10 89.74 59.05 58.12 58.58 24.81 19.91 22.08 SC+E (SIM CS WEB) 87.00 90.44 88.69 64.76 60.27 62.43 25.63 21.32 23."
}
}
}
} |