File size: 103,301 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
{
    "paper_id": "I11-1025",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:30:49.130316Z"
    },
    "title": "Feature-Rich Log-Linear Lexical Model for Latent Variable PCFG Grammars",
    "authors": [
        {
            "first": "Zhongqiang",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Maryland",
                "location": {
                    "settlement": "College Park"
                }
            },
            "email": "zqhuang@umd.edu"
        },
        {
            "first": "Mary",
            "middle": [],
            "last": "Harper",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Maryland",
                "location": {
                    "settlement": "College Park"
                }
            },
            "email": "mharper@umd.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Context-free grammars with latent annotations (PCFG-LA) have been found to be effective for parsing many languages; however, currently their lexical model may be subject to over-fitting and requires language engineering to handle out-ofvocabulary (OOV) words. Inspired by previous studies that have incorporated rich features into generative models, we propose to use a feature-rich log-linear lexical model to train PCFG-LA grammars that are more robust to rare and OOV words. The proposed lexical model has three advantages: over-fitting is alleviated via regularization, OOV words are modeled using rich features, and lexical features are exploited for grammar induction. Our approach results in significantly more accurate PCFG-LA grammars that are flexible to train for different languages (with test F scores of 90.5, 85.0, and 81.9 on WSJ, CTB6, and ATB, respectively).",
    "pdf_parse": {
        "paper_id": "I11-1025",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Context-free grammars with latent annotations (PCFG-LA) have been found to be effective for parsing many languages; however, currently their lexical model may be subject to over-fitting and requires language engineering to handle out-ofvocabulary (OOV) words. Inspired by previous studies that have incorporated rich features into generative models, we propose to use a feature-rich log-linear lexical model to train PCFG-LA grammars that are more robust to rare and OOV words. The proposed lexical model has three advantages: over-fitting is alleviated via regularization, OOV words are modeled using rich features, and lexical features are exploited for grammar induction. Our approach results in significantly more accurate PCFG-LA grammars that are flexible to train for different languages (with test F scores of 90.5, 85.0, and 81.9 on WSJ, CTB6, and ATB, respectively).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The latent variable approach of (Matsuzaki et al., 2005; Petrov et al., 2006) is capable of learning high accuracy context-free grammars directly from a raw treebank, and has achieved state-of-the-art parsing accuracies on multiple languages, outperforming many other parsers that are engineered for performance in a particular language (Petrov, 2009; Green and Manning, 2010) . However, the lexical model of PCFG-LA grammars (responsible for emitting words from latent POS tags) is not designed to effectively handle OOV words universally. In fact, hand-crafted rules designed for English OOV words were used in the multi-language study of (Petrov, 2009) for non-English languages, leaving room for further improvement for each of the languages studied. Huang and Harper (2009) and Attia et al. (2010) studied the impact of rare and OOV word handling for parsing with PCFG-LA grammars, especially for non-English languages. They both found that language-specific handling of OOV words significantly improves parsing performance. However, hand tailoring of the language-specific module with expert knowledge may produce suboptimal results, and would not be applicable to new languages. Petrov and Klein (2008) presented a discriminatively trained PCFG-LA model that makes use of rich morphological features for handling OOV words and obtained improved performance on some languages; however, this method was considerably less accurate than its strong generative counterpart on English WSJ. Berg-Kirkpatrick et al. (2010) demonstrated that each generation step of a generative process can be modeled as a locally normalized log-linear model so that rich features can be incorporated for learning unsupervised models, e.g., POS induction. Inspired by their work, we propose a log-linear lexical model for generative PCFG-LA grammars. It maintains the advantages of generative models, while providing a principled way to: 1) alleviate over-fitting via regularization, 2) handle OOV words using rich features, and 3) exploit lexical features for grammar induction. The proposed approach produces significant improvements for all of the three studied languages.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 56,
                        "text": "(Matsuzaki et al., 2005;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 57,
                        "end": 77,
                        "text": "Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 337,
                        "end": 351,
                        "text": "(Petrov, 2009;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 352,
                        "end": 376,
                        "text": "Green and Manning, 2010)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 641,
                        "end": 655,
                        "text": "(Petrov, 2009)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 755,
                        "end": 778,
                        "text": "Huang and Harper (2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 783,
                        "end": 802,
                        "text": "Attia et al. (2010)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1186,
                        "end": 1209,
                        "text": "Petrov and Klein (2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1490,
                        "end": 1520,
                        "text": "Berg-Kirkpatrick et al. (2010)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of the paper is structured as follows. We first review PCFG-LA grammars and issues related to the lexical model in Section 2, and then describe the proposed log-linear lexical model and the training methods in Sections 3 and 4, respectively. Experiments are presented in Section 5. Section 6 concludes this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "PCFG grammars with latent annotations (Matsuzaki et al., 2005; Petrov et al., 2006) augment the observed parse trees in the treebank with a latent variable at each tree node. Each latent variable effectively refines an observed category t into a set of latent subcategories {t",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 62,
                        "text": "(Matsuzaki et al., 2005;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 63,
                        "end": 83,
                        "text": "Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "x |x = 1, \u2022 \u2022 \u2022 , |t|},",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "where |t| denotes the number of latent tags split from t. Each syntactic category in the original tree in Figure 1 (a) is split into multiple latent subcategories, and that parse tree is decomposed into many derivation trees whose non-terminals are latent categories; Figure 1 (b) depicts one such derivation tree, where each grammar rule expands a latent non-terminal category into a sequence of latent non-terminals and/or terminal words, e.g., VP-4\u2192VBD-5 NP-6. The objective of PCFG-LA training is to induce a grammar with latent variables that maximizes the probability of the training trees. Given a PCFG-LA grammar with model parameter \u03b8, R denotes the set of grammar rules, D(T ) the set of derivation trees for parse tree T , and R(T ) and R(D) the sets of rules comprising T and D, respectively. The probability of T under the grammar is computed as:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 106,
                        "end": 114,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 268,
                        "end": 276,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "P \u03b8 (T ) = D\u2208D(T ) P \u03b8 (D) = D\u2208D(T ) r\u2208R(D) P \u03b8 (r)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "An EM-algorithm is used to optimize \u03b8 based on the training likelihood. The E-step computes the expected count e r of rule r over the training set T under the current model parameter \u03b8 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "e r \u2190 T \u2208T r \u2208R(T ) \u03b4(r , r)P \u03b8 (r |T ) (1) where \u03b4(\u2022, \u2022)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "is an indicator function that returns 1 if the two operands are identical and 0 otherwise, and P \u03b8 (r |T ) is the posterior probability of having (latent) rule r in parse tree T . The M-step aims to maximize the intermediate objective:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "l(\u03b8) = r\u2208R e r log P \u03b8 (r)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "which results in the following update formula for lexical rule probability \u03b8 tx\u2192w = P \u03b8 (w|t x ):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03b8 (w|t x ) = e tx,w w e tx,w",
                        "eq_num": "(3)"
                    }
                ],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "where e tx,w denotes the expected count of lexical rule r=t x \u2192w. The phrasal rule probabilities are updated similarly. In order to allocate the grammar complexity to where it is most needed, Petrov et al. (2006) developed a simple split-and-merge procedure. In every split-merge (SM) round, each latent category is first split into two, and the model is reestimated using several rounds of EM iterations. A likelihood criterion is then used to merge back the least useful splits. The result is that categories, such as NP and VB, that occur frequently in different syntactic environments, are split more heavily than categories such as UH (interjection). This approach also creates a hierarchy of latent categories that enables efficient coarse-to-fine parsing (Petrov and Klein, 2007) .",
                "cite_spans": [
                    {
                        "start": 192,
                        "end": 212,
                        "text": "Petrov et al. (2006)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 762,
                        "end": 786,
                        "text": "(Petrov and Klein, 2007)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "We next discuss two important issues related to the lexical model of PCFG-LA grammars: overfitting and OOV word handling.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PCFG-LA Grammar",
                "sec_num": "2"
            },
            {
                "text": "As the number of latent annotations increases, a PCFG-LA grammar has an increasing power to fit the training data through EM training, leading to over-fitting. In order to counteract this behavior, Petrov et al. (2006) introduced a linear smoothing method to smooth lexical emission probabilities:",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 218,
                        "text": "Petrov et al. (2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "P = 1 |t| x P \u03b8 (w|t x ) P \u03b8 (w|t x ) \u2190 P + (1 \u2212 )P \u03b8 (w|t x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "A similar smoothing method was used for phrasal rules. While the above method has been found to be effective, Huang and Harper (2009) observed that rare words suffer more from over-fitting than frequent words and suggested tying rare words together when estimating their emission probabilities. Using their approach, all words with a frequency less than a threshold \u03c4 are mapped to symbol rare 1 , and their emission probability P \u03b8 (w|t x ) is set in proportion to their co-occurrences with the surface POS tag:",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 133,
                        "text": "Huang and Harper (2009)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "P \u03b8 (w|t x ) = c t,w w :c \u2022,w <\u03c4 c t,w P \u03b8 (rare|t x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "1 \u03c4 is tuned on the development set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "where c \u2022,w and c t,w are the observed counts of words and word/tag pairs, respectively, and P \u03b8 (rare|t x ) is a free parameter estimated by the EM algorithm. This constraint greatly reduces the number of free parameters and was found to significantly improve parsing accuracies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Over-fitting",
                "sec_num": "2.1"
            },
            {
                "text": "Since the lexical model can only generate words observed in the training data, a separate module is needed to handle OOV words that can appear in novel test sentences. A simple approach might be to estimate the emission probability of an OOV word w based on how likely it is that t x generates a rare word in the training data:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03b8 (w|t x ) = P \u03b8 (rare|t x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "We call this type of approach the simple method 2 . A better approach would exploit the word formation process for the language being modeled. As with other generative English parsers, the PCFG-LA parser implementation of (Petrov et al., 2006) classifies OOV words into a set of OOV signatures based on the presence of features such as capital letters, digits, dashes, as well as a list of indicative suffixes (e.g., -ing, -ion, -er), and estimates the emission probability of an OOV word w given a latent tag t x as:",
                "cite_spans": [
                    {
                        "start": 222,
                        "end": 243,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03b8 (w|t x ) \u221d P \u03b8 (s|t x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "where s is the OOV signature for w and P \u03b8 (s|t x ) is computed by e tx,s /e tx,\u2022 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "While this approach performs well for English, the same OOV word handling module would not be adequate for other languages since they have different word formation processes, which should be exploited for better disambiguation of OOV words. For example, Huang and Harper (2009) improved Chinese parsing performance by estimating the emission probability of an OOV word using the geometric average of the emission probabilities of all of the characters ch k in the word:",
                "cite_spans": [
                    {
                        "start": 254,
                        "end": 277,
                        "text": "Huang and Harper (2009)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03b8 (w|t x ) = n ch k \u2208w,P \u03b8 (ch k |tx) =0 P \u03b8 (ch k |t x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "where n = |{ch k \u2208 w|P \u03b8 (ch k |t x ) = 0}|. As will be shown later in Section 5, handling Arabic OOV words in a similar way to Chinese produces improved parsing performance on Arabic 3 ; however, the aforementioned language dependent OOV handling approaches are most likely suboptimal and designing a method for a new language could be nontrivial. We call this type of approach the heuristic method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "Researchers have exploited discriminative parsing models (Finkel et al., 2008; Petrov and Klein, 2008) to utilize naturally occurring overlapping features, including features for OOV handling. The discriminative version of the PCFG-LA grammar (Petrov and Klein, 2008 ) was found to be more accurate than its generative counterpart on some languages, partially due to its use of regularization and multi-scale grammars to alleviate data sparsity and rich features to improve OOV word handling. However, such a model is much slower to train and considerably less accurate on English WSJ than its strong generative counterpart. Hence, we will investigate a locally normalized log-linear lexical model to take advantage of rich features within the generative learning framework.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 78,
                        "text": "(Finkel et al., 2008;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 79,
                        "end": 102,
                        "text": "Petrov and Klein, 2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 243,
                        "end": 266,
                        "text": "(Petrov and Klein, 2008",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "3 Log-Linear Lexical Model for PCFG-LA grammars",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "Instead of treating each P \u03b8 (w|t x ) as a free parameter of a multinomial distribution as in a standard PCFG-LA grammar, we first model the conditional probability of latent tag t x given the surface POS tag t and word w using a log-linear model:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03c6 (t x |t, w) = exp \u03c6, f (t x , w) x exp \u03c6, f (t x , w)",
                        "eq_num": "(4)"
                    }
                ],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "where f (t x , w) represents the feature vector extracted from the pair (t x , w), \u03c6 is the feature weight vector, and the denominator sums over all latent tags for POS tag t. This model is applicable to both known and OOV words as long as there are active features; otherwise, a uniform latent tag distribution would be assumed. We call this the latent lexical model as it deals with the distribution of latent tags. The conditional probability of t x given word w can then be expressed as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03b8 (t x |w) = P \u03b8 (t x , t|w) = P \u03c6 (t x |t, w)P(t|w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "and finally the word emission probability given a latent tag can be computed via Bayes' rule:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03b8 (w|t x ) = P \u03c6 (t x |t, w)P(t|w)P(w) w P \u03c6 (t x |t, w )P(t|w )P(w )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "This new lexical model is composed of the latent lexical model P \u03c6 (t x |t, w) and two other parts: P(t|w) and P(w), which are computed differently for known and OOV words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "For words observed in the training data, both P(t|w) are P(w) are computed using the maximum-likelihood estimation (based on the observed training trees) so that P \u03b8 (w|t x ) forms a proper distribution of observed words during grammar induction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "For OOV words, we use a log-linear OOV model to estimate the POS tag distribution:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03b3 (t|w) = exp \u03b3, g(t, w) t exp \u03b3, g(t , w)",
                        "eq_num": "(6)"
                    }
                ],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "where g(t, w) represents the feature vector extracted from the pair (t, w), \u03b3 is the feature weight vector, and the denominator sums over all POS tags with active features. The simple approach in Subsection 2.2 is used when no feature is active. P(w) is approximated by one over the number of training tokens. It should be noted that P \u03b3 (t|w) may use different features than P \u03c6 (t x |t, w).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "Compared with modeling P \u03b8 (w|t x ) directly as a multinomial distribution, the new lexical model separates P(t|w) from P \u03c6 (t x |t, w), offering three important advantages:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 The parameter \u03c6 of the latent lexical model P \u03c6 (t x |t, w) can be smoothed through regularization to address data sparsity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 Rich features can be utilized in the OOV model P \u03b3 (t|w) to estimate POS tag distributions of OOV words for a variety of languages. This is important when working on new languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 Rich features can be utilized in the latent lexical model P \u03c6 (t x |t, w) to guide the induction of latent POS tags.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "The reader should note that Berg-Kirkpatrick et al. (2010) modeled P \u03b8 (w|t x ) directly using a loglinear model:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03c6 (w|t x ) = exp \u03c6, f (t x , w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "w exp \u03c6, f (t x , w ) This would be problematic for our parsing model because it would not be trained to estimate the probability of OOV words given a latent tag. For parsing, we must model OOV words that can appear in previously unseen sentences. One might compute the numerator for an OOV word based on its features and divide it by a denominator approximated using the words in the training data, but such an estimate is inaccurate and results in poor performance in our preliminary experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "We also choose not to model P \u03b8 (t x |w) directly using a log-linear model:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "P \u03c6 (t x |w) = exp \u03c6, f (t x , w) t x exp \u03c6, f (t x , w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "and compute P \u03b8 (w|t x ) via Bayes' rule. Such a model cannot guarantee that the probability P \u03b8 (t|w) computed by x P \u03b8 (t x |w) is equal to the maximum likelihood estimate, which is a reasonable constraint.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OOV Handling",
                "sec_num": "2.2"
            },
            {
                "text": "The parameter \u03b8 for our parser model consists of \u03c6 for the log-linear latent lexical model, \u03b3 for the log-linear OOV model, and \u03c8 for the phrasal rule expansion probabilities. The other parameters (e.g., P(t|w) and P(w) for known words and P(rare|t x )) can be computed based on observable or fractional counts once \u03b8 is determined. \u03b3 of the OOV model is independent of the latent categories, and we simply use a gradient-based optimization approach to maximize the following objective:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "l (\u03b3) = t,w c t,w log P \u03b3 (t|w) \u2212 \u03ba ||\u03b3|| 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "where c t,w is the count of the pair (t, w) in the training data, and \u03ba is the regularization weight.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "For parameters \u03c8 and \u03c6, we follow the splitmerge training procedure in (Petrov et al., 2006) to induce latent categories. Given a set of latent categories, the goal is to find \u03b8 that maximizes the regularized training likelihood:",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 92,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L(\u03b8) = T \u2208T log P \u03b8 (T ) \u2212 \u03ba||\u03c6|| 2",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "where \u03ba||\u03c6|| 2 is the regularization term 4 for the feature weights of the latent lexical model. The two optimization approaches described in (Berg-Kirkpatrick et al., 2010) can be extended naturally to our problem. One approach is EMbased with an E-step identical to Equation 1 in Section 2. The objective of the M-step becomes:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "l(\u03b8) = w\u2192tx\u2208R l e tx,w log P \u03c6 (w|t x ) \u2212 \u03ba||\u03c6|| 2 + r\u2208Rp e r log P \u03c8 (r)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "where we separate the set of rules R into lexical rules R l and phrasal rules R p . The phrasal rule parameter \u03c8 is updated as before by normalizing the expected rule counts and is smoothed in the same way as in (Petrov et al., 2006) . The intermediate objective function l(\u03c6) related to \u03c6, i.e.,",
                "cite_spans": [
                    {
                        "start": 212,
                        "end": 233,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "l(\u03c6) = w\u2192tx\u2208R l e tx,w log P \u03c6 (w|t x ) \u2212 \u03ba||\u03c6|| 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "can be optimized by a gradient descent optimization algorithm (we use LBFGS (Liu and Nocedal, 1989) ). Its gradient has the following form:",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 99,
                        "text": "(Liu and Nocedal, 1989)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "\u2207l(\u03c6) = w\u2192tx\u2208R l e * tx,w \u2206 tx,w (\u03c6) \u2212 2\u03ba \u2022 \u03c6 \u2206 tx,w (\u03c6) = f (t x , w) \u2212 x P \u03c6 (t x |w, t)f (t x , w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "where e * tx,w = e tx,w \u2212 e tx,\u2022 P \u03c6 (w|t x ). It can be shown that l(\u03c6) is not a concave function with respect to \u03c6, but this created no problems in our experiments. It should be noted that if we set the regularization weight \u03ba to 0, the maximum of l(\u03c6) is achieved when P \u03c6 (w|t x ) is set to e tx,w /e tx,\u2022 , which is identical to the update formula in Equation 3, and would thus be unable to use rich features. This is less of an issue when regularization takes effect as it favors common discriminative features to reduce the penalty term.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "The second approach, which was found to outperform the EM-based approach in (Berg-Kirkpatrick et al., 2010) , optimizes on the regularized log-likelihood (Equation 7) directly by updating both \u03c8 and \u03c6 using a gradient descent approach. In order to convert this to an unconstrained optimization problem 5 , we set each phrasal rule expansion probability \u03c8 i as the output of a log-linear model, i.e., \u03c8 i = exp(\u03c8 i )/Z with Z being the normalization factor, and treat \u03c8 as the parameter for the phrasal rules to be optimized. The gradient of L(\u03b8) with respect to \u03c6 turns out to be the same as in the first approach (Salakhutdinov et al., 2003) . The gradient of L(\u03b8) with respect to \u03c8 can be derived similarly. We omit the details here due to space limitations.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 107,
                        "text": "(Berg-Kirkpatrick et al., 2010)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 614,
                        "end": 642,
                        "text": "(Salakhutdinov et al., 2003)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "In the original EM-based training approach (Petrov et al., 2006) , many of the rule expansion probabilities become very small and are pruned to dramatically reduce the grammar size. The phrasal rule probabilities computed from the log-linear model with parameter \u03c8 are not usually low enough to be pruned, due to the fact that a large decrease in \u03c8 i results in a much smaller change in \u03c8 i when \u03c8 i is already relatively small. In order to address this problem, we combine the two optimization approaches together: first run rounds of EM-based optimization to initialize the grammar parameters and prune many of the useless phrasal rules, and then switch to the direct gradient descent optimization approach. This combined approach outperforms the standalone EM-based approach in our study and is used in the experiments reported in this paper.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 64,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Training",
                "sec_num": "4"
            },
            {
                "text": "In this section, we will show the effect of rare word smoothing and OOV handling on the accuracy of the standard PCFG-LA grammars, and investigate how the proposed feature-rich lexical model addresses these problems. In what follows, we first describe the experimental data and then the results of the standard PCFG-LA grammars. We then describe the features and results of the PCFG-LA grammars with log-linear lexical models, and present some analyses. Finally, additional features are discussed and the final test results are compared with the literature.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We experiment with three languages: English, Chinese, and Arabic. For English, we used the WSJ Penn Treebank (Marcus et al., 1999) and the commonly used data splits (Charniak, 2000) . For Chinese, we used the Penn Chinese Treebank 6.0 (CTB6) (Xue et al., 2005) and the preparation steps and data splits in (Huang and Harper, 2009) . For Arabic, we used the Penn Arabic Treebank (ATB) (Maamouri et al., 2009) and the preparation steps 6 and data splits in (Green and Manning, 2010; Chiang et al., 2006) . Table 1 : Gross Statistics of the treebanks. Due to the variability (caused by random initialization) among the grammars (Petrov, 2010) , we train 10 grammars with different seeds in each experiment and report their average F score on the development set. The best grammar selected using the development set is used for evaluation on the test set.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 130,
                        "text": "(Marcus et al., 1999)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 165,
                        "end": 181,
                        "text": "(Charniak, 2000)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 242,
                        "end": 260,
                        "text": "(Xue et al., 2005)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 306,
                        "end": 330,
                        "text": "(Huang and Harper, 2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 384,
                        "end": 407,
                        "text": "(Maamouri et al., 2009)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 455,
                        "end": 480,
                        "text": "(Green and Manning, 2010;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 481,
                        "end": 501,
                        "text": "Chiang et al., 2006)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 625,
                        "end": 639,
                        "text": "(Petrov, 2010)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 504,
                        "end": 511,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data & Setup",
                "sec_num": "5.1"
            },
            {
                "text": "We first study the effect of rare word smoothing and OOV handling on the standard PCFG-LA grammars using our reimplementation of the Berkeley parser. The no+simple row in Table 2 represents the baseline, for which the grammars are trained without rare word smoothing described in Subsection 2.1 and OOV words are handled by the simple method described in Subsection 2.2. Each language-dependent heuristic-based OOV word handling method improves parsing accuracies, and the rare word smoothing method provides even greater improvement across the languages. Their combination results in further improvement. This confirms that both over-fitting and OOV words are issues to consider for training accurate PCFG-LA grammars. Table 2 : The effect of rare word smoothing and OOV handling on parsing F scores evaluated on the respective development set.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 171,
                        "end": 178,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 720,
                        "end": 727,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Standard PCFG-LA Grammars",
                "sec_num": "5.2"
            },
            {
                "text": "Here we investigate a core set of features that have proven effective for POS tagging to demonstrate the effectiveness of our model and its robustness across languages, and leave it to future work to include additional features as discussed in Subsection 5.5. Table 3 lists the templates we used to extract predicates on words. For the log-linear OOV model, we use the full feature set, i.e., (t, pred) pairs extracted using all of the predicates. For the log-linear latent lexical model, we experiment with two feature sets: 1) the wid feature set containing only (t x , wid) pairs, which are the same as those used in the standard PCFG-LA grammars, 2) the full feature set using all of the predicates.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 260,
                        "end": 267,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "Predicate Explanation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "\u03b4(w = \u2022) word identity (wid) \u03b4(hasDigit(w) = \u2022) contains a digit? \u03b4(hasHyphen(w) = \u2022) contains a hyphen? \u03b4(initCap(w) = \u2022) first letter capitalized? \u03b4(prefix k (w) = \u2022) prefix of length k \u2264 3 \u03b4(suffix k (w) = \u2022)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "suffix of length k \u2264 3 Table 3 : Predicate templates on word w.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 23,
                        "end": 30,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "We first evaluate the effectiveness of regularization and the log-linear OOV model by training the latent lexical model using the wid feature set with regularization and examining different OOV handling methods. As shown in Table 4 , the wid+simple and wid+heuristic approaches 7 produce results comparable to the corresponding PCFG-LA grammars trained with rare word smoothing and respective OOV handling. This shows that regularizing the latent lexical model alleviates data sparsity, however, we will illustrate in Subsection 5.4 that this is achieved in a different way than rare word smoothing.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 224,
                        "end": 231,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "The log-linear OOV model using the full feature set results in improved parsing performance over all languages, with the most improvement seen on Arabic (0.71 F), followed by Chinese (0.28 F), confirming that the log-linear OOV model is more accurate than the heuristic approach, and can be flexibly used for different languages. The improvement on English is marginal possibly because the signature-based OOV features are sufficiently accurate for handling English unknown 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 Figure 2 : The conditional distribution P(t x |t, w) of latent tags for selected cardinal numbers (e.g., 0.26, million) that appear only once, 10 times, or frequently for standard PCFG-LA grammars trained with (labeled rare) or without (labeled baseline) rare word smoothing and for PCFG-LA grammars with regularized feature-rich lexical model using the wid feature set (labeled wid). The distribution is represented by the four bars separated by dotted vertical lines, and each bar represents the conditional probability of a latent tag.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 570,
                        "end": 578,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "words after years of expert crafting. We next investigate the effect of training the latent lexical model using the full feature set. Compared with the wid+full model, the full+full model improves 0.38 F on Arabic and 0.27 F on Chinese, despite the fact that the additional features are very simple, mostly prefixes and suffixes of words. The improvement on English is again marginal possibly because the features do not provide such insights on fine-grained syntactic subcategories (e.g., suffix -ed is indicative of past tense verbs, but not their sub-categories). Admittedly, many of the features are noisy, but as we will show in Subsection 5.4, some of the features can guide the learning of the latent categories to reflect the similarity between syntactically similar words of the same POS type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "Compared with the baseline (no+simple in Table 2), the feature-rich full+full model significantly improves parsing F scores by 1.03, 1.66, and 2.67 absolute on English, Chinese, and Arabic, respectively. Table 4 : The effect of features (wid vs. full) for training the latent lexical model and the OOV handling methods (simple, heuristic, or the log-linear model using the full feature set) on parsing performance (F score) on the development set.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 204,
                        "end": 211,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Log-Linear Lexical Model",
                "sec_num": "5.3"
            },
            {
                "text": "We examine in Figure 2 the effect of regularization and rare word smoothing on the learned rules by looking at the distribution P(t x |t, w) for PCFG-LA grammars trained in different ways 8 . For standard PCFG-LA grammars trained without rare word smoothing (labeled baseline), rare words have sparse distributions of latent tags, which are determined solely based on limited contexts and are thus not reliable. The rare word smoothing approach (labeled rare) collapses all rare words into a single token so that P(t x |t, w) = P(t x |t, rare) is identical for any rare word w. This constraint greatly reduces data sparsity; however, treating all rare words as one token could eliminate too much lexical information (e.g., the distribution of latent tags is the same for all rare cardinal numbers no matter whether they appear only once or 10 times). Regularization of the log-linear latent lexical model (labeled wid) favors a uniform distribution (zero penalty when all feature weights are zero). There is not much evidence to skew the distribution from uniform for rare words. However, when more evidence is available, the distribution becomes smoothly skewed to reflect the different syntactic preferences of the individual words, and it can eventually become as spiky as in the other approaches given sufficient evidence. In order to provide some insights into why parsing accuracies are improved for Arabic and Chinese by using the full feature set when training the latent lexical model, we look at the country names \u9a6c \u8fbe full wid 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 C h i n a U S K o r e a F r a n c e U K G e r m a n y T h a i l a n d R u s s i a B a n g l a d e s h M a l a y s i a M o n g o l i a I s r a e l B r u n e i P a l e s t i n e Figure 3 : The conditional distribution P(t x |t, w) of latent tags for selected country names (proper nouns) listed in order of decreasing frequency from the Chinese treebank (English translations are provided under Chinese names), after training using the wid and the full feature set, respectively. The distribution is represented by the four bars separated by dotted vertical lines, and each bar represents the conditional probability of a latent tag. The preferred latent tag for country names is highlighted in black.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 14,
                        "end": 22,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 1825,
                        "end": 1833,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "5.4"
            },
            {
                "text": "that end with the character \u56fd (country) in the Chinese treebank. These names appear in similar contexts and would be expected to favor certain latent tag or tags; however, when training using the wid feature set, this is only true for the frequent names as shown in Figure 3 . For the rare names, there is not much evidence to divert the distribution away from uniform. When training with the full feature set, the suffix1=\u56fd predicate is active for all of those country names and has a large feature weight associated with the preferred latent tag. As a result, the distribution of latent tags for the rare names is skewed more toward the preferred latent tag due to strong evidence from that suffix feature.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 266,
                        "end": 274,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "5.4"
            },
            {
                "text": "Our model supports any local features that can be extracted from the pair (t x , w), including the language-dependent features studied in (Attia et al., 2010) . In addition, features related to word semantics (e.g., using WordNet (Fellbaum, 1998)) or word clusters (e.g., using unsupervised clustering (Brown et al., 1992; Koo et al., 2008; Goyal and Daume, 2011) ) might also be beneficial for modeling P \u03c6 (t x |t, w) and/or P \u03b3 (t|w). Features extracted from (t, w) could also be helpful for providing some smoothing effect across the latent tags. Moreover, it might be beneficial to perform feature selection prior to training. We leave this to future work. Table 5 compares the final test results of our best grammars (the full+full approach) with the literature 9 . Our PCFG-LA grammars with a 9 All of the parsers from the referenced papers are trained and evaluated using the data splits in our experiments.",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 158,
                        "text": "(Attia et al., 2010)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 230,
                        "end": 247,
                        "text": "(Fellbaum, 1998))",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 302,
                        "end": 322,
                        "text": "(Brown et al., 1992;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 323,
                        "end": 340,
                        "text": "Koo et al., 2008;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 341,
                        "end": 363,
                        "text": "Goyal and Daume, 2011)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 662,
                        "end": 669,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Other Features",
                "sec_num": "5.5"
            },
            {
                "text": "LP LR F WSJ Charniak (2000) 89.9 89.5 89.7 Petrov and Klein (2007) 90.2 90.1 90.1 Petrov and Klein (2008) --89.4 Huang and Harper (2009) 90.4 89.9 90.1 This Paper 90.8 90.3 90.5 Charniak (2000) 80.5 79.5 80.0 Petrov and Klein (2007) 84.0 82.9 83.4 Huang and Harper (2009) feature-rich lexical model significantly outperform the standard PCFG-LA grammars of (Petrov and Klein, 2007) for all of the three languages, especially on Chinese (+1.6 F) and Arabic (+2.2 F).",
                "cite_spans": [
                    {
                        "start": 12,
                        "end": 27,
                        "text": "Charniak (2000)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 43,
                        "end": 66,
                        "text": "Petrov and Klein (2007)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 82,
                        "end": 105,
                        "text": "Petrov and Klein (2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 113,
                        "end": 136,
                        "text": "Huang and Harper (2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 178,
                        "end": 193,
                        "text": "Charniak (2000)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 209,
                        "end": 232,
                        "text": "Petrov and Klein (2007)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 248,
                        "end": 271,
                        "text": "Huang and Harper (2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 357,
                        "end": 381,
                        "text": "(Petrov and Klein, 2007)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "TB Parser",
                "sec_num": null
            },
            {
                "text": "We have presented a feature-rich lexical model for PCFG-LA grammars to: 1) alleviate over-fitting via regularization, 2) handle OOV words using rich features, and 3) exploit lexical features for grammar induction. Experiments show that the proposed approach allows us to train more effective PCFG-LA grammars for more accurate and robust parsing of three different languages. It is expected that even more accurate parsers can be produced by using this approach together with self-training (Huang and Harper, 2009) and/or product models (Petrov, 2010; Huang et al., 2010) .",
                "cite_spans": [
                    {
                        "start": 490,
                        "end": 514,
                        "text": "(Huang and Harper, 2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 537,
                        "end": 551,
                        "text": "(Petrov, 2010;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 552,
                        "end": 571,
                        "text": "Huang et al., 2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "This method is used in the simple lexicon of the Berkeley parser.3 We use prefixes and suffixes up to three characters for handling Arabic OOV words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Both \u03ba and \u03ba are tuned on the development set. We could also use L1 regularization and leave it to future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The elements of \u03c8 are constrained to form proper probability distributions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Except that clitic marks were removed, which results in about 0.3 degradation in F score (p.c.).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Training the latent lexical model using the wid feature set and handling OOV words using the simple or heuristic approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "For standard PCFG-LA grammars, P(tx|t, w) is simply computed by et x,w /et,w; whereas, for the feature-rich lexical model, P(tx|t, w) is computed from the latent lexical model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research was supported in part by NSF IIS-0703859. We would like to thank Spence Green for providing the processed Arabic Treebank data and lots of insightful suggestions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Handling unknown words in statistical latent-variable parsing models for Arabic, English and French",
                "authors": [
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Attia",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Deirdre",
                        "middle": [],
                        "last": "Hogan",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [
                            "Le"
                        ],
                        "last": "Roux",
                        "suffix": ""
                    },
                    {
                        "first": "Lamia",
                        "middle": [],
                        "last": "Tounsi",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the North American Chapter of the Association for Computational Linguistics conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohammed Attia, Jennifer Foster, Deirdre Hogan, Joseph Le Roux, Lamia Tounsi, and Josef van Gen- abith. 2010. Handling unknown words in statistical latent-variable parsing models for Arabic, English and French. In Proceedings of the North American Chapter of the Association for Computational Lin- guistics conference.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Painless unsupervised learning with features",
                "authors": [
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandre",
                        "middle": [],
                        "last": "Bouchard-C\u00f4t\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Denero",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Taylor Berg-Kirkpatrick, Alexandre Bouchard-C\u00f4t\u00e9, John DeNero, and Dan Klein. 2010. Painless un- supervised learning with features. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Class-based n-gram models of natural language",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "Della"
                        ],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "V"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Jenifer",
                        "middle": [
                            "C"
                        ],
                        "last": "Desouza",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "L"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter F. Brown, Vincent J. Della Pietra, Peter V. deS- ouza, Jenifer C. Lai, and Robert L. Mercer. 1992. Class-based n-gram models of natural language. Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A maximum-entropyinspired parser",
                "authors": [
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eugene Charniak. 2000. A maximum-entropy- inspired parser. In Proceedings of the Annual Meet- ing of the Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Owen Rambow, and Safiullah Shareef",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Chiang",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Conference of the European Chapter",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Chiang, Mona Diab, Nizar Habash, Owen Ram- bow, and Safiullah Shareef. 2006. Parsing Arabic dialects. In Conference of the European Chapter of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "WordNet: An Electronic Lexical Database",
                "authors": [
                    {
                        "first": "Christiane",
                        "middle": [],
                        "last": "Fellbaum",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. The MIT Press.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Efficient, feature-based, conditional random field parsing",
                "authors": [
                    {
                        "first": "Jenny",
                        "middle": [
                            "Rose"
                        ],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Kleeman",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. 2008. Efficient, feature-based, condi- tional random field parsing. In Proceedings of the Annual Meeting of the Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Approximate scalable bounded space sketch for large data NLP",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Hal",
                        "middle": [],
                        "last": "Daume",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amit Goyal and Hal Daume. 2011. Approximate scal- able bounded space sketch for large data NLP. In Proceedings of the Conference on Empirical Meth- ods in Natural Language Processing.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Better Arabic parsing: Baselines, evaluations, and analysis",
                "authors": [
                    {
                        "first": "Spence",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Spence Green and Christopher D. Manning. 2010. Better Arabic parsing: Baselines, evaluations, and analysis. In Proceedings of the International Con- ference on Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Selftraining PCFG grammars with latent annotations across languages",
                "authors": [
                    {
                        "first": "Zhongqiang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Harper",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhongqiang Huang and Mary Harper. 2009. Self- training PCFG grammars with latent annotations across languages. In Proceedings of the Conference on Empirical Methods in Natural Language Pro- cessing.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Self-training with products of latent variable",
                "authors": [
                    {
                        "first": "Zhongqiang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Harper",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhongqiang Huang, Mary Harper, and Slav Petrov. 2010. Self-training with products of latent vari- able. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Simple semi-supervised dependency parsing",
                "authors": [
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carrera",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Terry Koo, Xavier Carrera, and Michael Collins. 2008. Simple semi-supervised dependency parsing. In Proceedings of the Annual Meeting of the Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "On the limited memory BFGS method for large scale optimization",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Jorge",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nocedal",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Penn Arabic treebank guidelines",
                "authors": [
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Maamouri",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Bies",
                        "suffix": ""
                    },
                    {
                        "first": "Sondos",
                        "middle": [],
                        "last": "Krouna",
                        "suffix": ""
                    },
                    {
                        "first": "Fatma",
                        "middle": [],
                        "last": "Gaddeche",
                        "suffix": ""
                    },
                    {
                        "first": "Basma",
                        "middle": [],
                        "last": "Bouziri",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohamed Maamouri, Ann Bies, Sondos Krouna, Fatma Gaddeche, and Basma Bouziri. 2009. Penn Arabic treebank guidelines. Technical report, Lin- guistic Data Consortium, University of Pennsylva- nia.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Treebank-3. Linguistic Data Consortium",
                "authors": [
                    {
                        "first": "Mitchell",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [
                            "Ann"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor, 1999. Treebank-3. Linguistic Data Consortium, Philadelphia.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Probabilistic CFG with latent annotations",
                "authors": [
                    {
                        "first": "Takuya",
                        "middle": [],
                        "last": "Matsuzaki",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. 2005. Probabilistic CFG with latent annotations. In Proceedings of the Annual Meeting of the Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Improved inference for unlexicalized parsing",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov and Dan Klein. 2007. Improved infer- ence for unlexicalized parsing. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Hu- man Language Technology.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Sparse multi-scale grammars for discriminative latent variable parsing",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov and Dan Klein. 2008. Sparse multi-scale grammars for discriminative latent variable pars- ing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Learning accurate, compact, and interpretable tree annotation",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Leon",
                        "middle": [],
                        "last": "Barrett",
                        "suffix": ""
                    },
                    {
                        "first": "Romain",
                        "middle": [],
                        "last": "Thibaux",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact, and inter- pretable tree annotation. In Proceedings of the An- nual Meeting of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Coarse-to-fine natural language processing",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov. 2009. Coarse-to-fine natural language processing. Ph.D. thesis, University of California at Bekeley.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Products of random latent variable grammars",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov. 2010. Products of random latent vari- able grammars. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Optimization with EM and expectation-conjugate-gradient",
                "authors": [
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Roweis",
                        "suffix": ""
                    },
                    {
                        "first": "Zoubin",
                        "middle": [],
                        "last": "Ghahramani",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. 2003. Optimization with EM and expectation-conjugate-gradient. In Proceedings of the International Conference on Machine Learning.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "The Penn Chinese Treebank: Phrase structure annotation of a large corpus",
                "authors": [
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Fu-Dong",
                        "middle": [],
                        "last": "Chiou",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Natural Language Engineering",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nianwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. 2005. The Penn Chinese Treebank: Phrase structure annotation of a large corpus. Natural Lan- guage Engineering.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Figure 1: (a) treebank tree (b) derivation tree",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "provides gross statistics for each treebank. As we can see, CTB6 and ATB both have a higher OOV rate than WSJ, and hence have greater need for effective OOV handling.",
                "content": "<table><tr><td/><td>Statistics</td><td>Train</td><td>Dev</td><td>Test</td></tr><tr><td>English (WSJ)</td><td>#sents #tokens %oov types %oov tokens</td><td colspan=\"3\">39832 950.0k -12.8% 13.2% 1700 2416 40.1k 56.7k -2.8% 2.5%</td></tr><tr><td>Chinese (CTB6)</td><td>#sents #tokens %oov types %oov tokens</td><td colspan=\"3\">24416 678.8k -20.6% 20.9% 1904 1975 51.2k 52.9k -5.0% 5.3%</td></tr><tr><td>Arabic (ATB)</td><td>#sents #tokens %oov types %oov tokens</td><td colspan=\"3\">18818 597.9k -15.6% 16.7% 2318 2313 70.7k 70.1k -3.2% 3.4%</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Final test set accuracies.",
                "content": "<table/>"
            }
        }
    }
}