File size: 114,595 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
{
    "paper_id": "I11-1035",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:32:52.663725Z"
    },
    "title": "Improving Chinese Word Segmentation and POS Tagging with Semi-supervised Methods Using Large Auto-Analyzed Data",
    "authors": [
        {
            "first": "Yiou",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "wangyiou@nict.go.jp"
        },
        {
            "first": "Jun",
            "middle": [
                "'"
            ],
            "last": "Ichi Kazama",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Yoshimasa",
            "middle": [],
            "last": "Tsuruoka",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "tsuruoka@jaist.ac.jp"
        },
        {
            "first": "Wenliang",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "wechen@i2r.a-star.edu.sg"
        },
        {
            "first": "Yujie",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "yjzhang@bjtu.edu.cn"
        },
        {
            "first": "Kentaro",
            "middle": [],
            "last": "Torisawa",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology (NICT)",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "torisawa@nict.go.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper presents a simple yet effective semi-supervised method to improve Chinese word segmentation and POS tagging. We introduce novel features derived from large auto-analyzed data to enhance a simple pipelined system. The auto-analyzed data are generated from unlabeled data by using a baseline system. We evaluate the usefulness of our approach in a series of experiments on Penn Chinese Treebanks and show that the new features provide substantial performance gains in all experiments. Furthermore, the results of our proposed method are superior to the best reported results in the literature.",
    "pdf_parse": {
        "paper_id": "I11-1035",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper presents a simple yet effective semi-supervised method to improve Chinese word segmentation and POS tagging. We introduce novel features derived from large auto-analyzed data to enhance a simple pipelined system. The auto-analyzed data are generated from unlabeled data by using a baseline system. We evaluate the usefulness of our approach in a series of experiments on Penn Chinese Treebanks and show that the new features provide substantial performance gains in all experiments. Furthermore, the results of our proposed method are superior to the best reported results in the literature.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In Chinese, most language processing starts from word segmentation and part-of-speech (POS) tagging. These two steps tokenize a sequence of characters without delimiters into words and predict a syntactic label (POS tag) for each segmented word. They are considered indispensable steps for higher-level NLP tasks such as parsing and information extraction. Although the performance of Chinese word segmentation and POS tagging has been greatly improved over the past years, the task is still challenging.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To improve the accuracy of NLP systems, one of the current trends is semi-supervised learning, which utilizes large unlabeled data in supervised learning. Several studies have demonstrated that the use of unlabeled data can improve the performance of NLP tasks, such as text chunking (Ando and Zhang, 2005) , POS tagging and named entity recognition (Suzuki and Isozaki, 2008) , and parsing (Suzuki et al., 2009; Chen et al., 2009; Koo et al., 2008) . Therefore, it is attractive to consider adopting semi-supervised learning in Chinese word segmentation and POS tagging tasks.",
                "cite_spans": [
                    {
                        "start": 294,
                        "end": 306,
                        "text": "Zhang, 2005)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 350,
                        "end": 376,
                        "text": "(Suzuki and Isozaki, 2008)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 391,
                        "end": 412,
                        "text": "(Suzuki et al., 2009;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 413,
                        "end": 431,
                        "text": "Chen et al., 2009;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 432,
                        "end": 449,
                        "text": "Koo et al., 2008)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we present an approach to improve the performance of both segmentation and POS tagging by incorporating large unlabeled data. We first preprocess unlabeled data with our baseline models. We then extract various items of dictionary information from the auto-analyzed data. Finally, we generate new features that incorporate the extracted information for both word segmentation and POS tagging. We also perform word clustering on the auto-segmented data and use word clusters as features in POS tagging. In addition, we introduce lexicon features by using a crossvalidation technique.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The use of sub-structures from the autoannotated data has been presented previously (Noord, 2007; Chen et al., 2008; Chen et al., 2009) . Chen et al. (2009) extracted different types of subtrees from the auto-parsed data and used them as new features in standard learning methods. They showed this simple method greatly improves the accuracy of dependency parsing. The idea of combining word clusters with discriminative learning has been previously reported in the context of named entity recognition (Miller et al., 2004; Kazama and Torisawa, 2008) and dependency parsing (Koo et al., 2008) . We adapt and extend these techniques to Chinese word segmentation and POS tagging, and demonstrate their effectiveness in this task.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 97,
                        "text": "(Noord, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 98,
                        "end": 116,
                        "text": "Chen et al., 2008;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 117,
                        "end": 135,
                        "text": "Chen et al., 2009)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 138,
                        "end": 156,
                        "text": "Chen et al. (2009)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 502,
                        "end": 523,
                        "text": "(Miller et al., 2004;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 524,
                        "end": 550,
                        "text": "Kazama and Torisawa, 2008)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 574,
                        "end": 592,
                        "text": "(Koo et al., 2008)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One of our criteria in this study was to achieve high accuracy with simple and easy-to-implement techniques. To meet this, the whole system is a pipeline with a character-based CRF for word segmentation and a word-based CRF for POS tagging. The information of unlabeled data is incorporated as additional new features without changing the learning algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To demonstrate the effectiveness of our approach, we conduct segmentation and POS tagging experiments on three versions of Penn Chinese Treebank, including the newly released CTB Word Length 1 2 3 4 5 6 7 or more Tags ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "S BE BB2E BB2B3E BB2B3M E BB2B3M M E BB2B3M...M E",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We implement our approach using sequential tagging models. Following the previous work (Zhao et al., 2006; Zhao et al., 2010) , we employ the linear chain CRFs (Lafferty et al., 2001 ) as our learning model. Specifically, we use its CRF++ (version 0.54) implementation by Taku Kudo. 1",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 106,
                        "text": "(Zhao et al., 2006;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 107,
                        "end": 125,
                        "text": "Zhao et al., 2010)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 160,
                        "end": 182,
                        "text": "(Lafferty et al., 2001",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and POS tagging Models",
                "sec_num": "2"
            },
            {
                "text": "We employ character-based sequence labeling for word segmentation. In addition to its simplicity, the advantage of a character-based model is its robustness to the unknown word problem (Xue, 2003) . In a character-based Chinese word segmentation task, a character in a given sequence is labeled by a tag that stands for its position in the word that the character belongs to. Zhao et al. (2006) reported that a 6-tag tagset shown in Table 1 is the best choice among the tagsets tested for Chinese word segmentation under the CRF framework. Therefore we also use this 6-tag tagset. The basic types of features of our word segmentation model are listed in Table 2 . These basic feature templates are based on Zhao et al. (2006; and Low et al. (2005) .",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 196,
                        "text": "(Xue, 2003)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 376,
                        "end": 394,
                        "text": "Zhao et al. (2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 707,
                        "end": 725,
                        "text": "Zhao et al. (2006;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 730,
                        "end": 747,
                        "text": "Low et al. (2005)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 654,
                        "end": 661,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Baseline Segmentation Model",
                "sec_num": "2.1"
            },
            {
                "text": "Since we employ a pipelined method, the POS tagging can be performed as a word labeling task, where the input is a sequence of segmented words. We use a CRF here as well. The feature set of our baseline POS tagger, is listed in Table 3 . These are adopted from Wu et al. (2008) .",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 277,
                        "text": "Wu et al. (2008)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 228,
                        "end": 235,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Baseline POS Tagging Model",
                "sec_num": "2.2"
            },
            {
                "text": "In this section, we describe our approach of effectively integrating useful information from unlabeled (and labeled) data into the above baseline models through features. We preprocess unlabeled data with our baseline models and obtain wordsegmented sentences with POS tags, and generate new features from the auto-analyzed data. Although the focus of the paper is semi-supervised learning, we also extract a lexicon from the training corpus and use it to generate features. Figure  1 shows an overview of our approach. The rest of this section describes our features in detail.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 475,
                        "end": 484,
                        "text": "Figure  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Our New Features",
                "sec_num": "3"
            },
            {
                "text": "In this section, we describe our approach of extracting character-level n-gram lists and generating n-gram features from unlabeled data. We followed the method of Chen et al. (2009) , and modified the method for word segmentation and POS tagging. First, we preprocess unlabeled data using the baseline segmenter and obtain auto-segmented data. We then extract character n-gram lists from auto-segmented sentences. Finally, we generate ngram features for word segmentation.",
                "cite_spans": [
                    {
                        "start": 163,
                        "end": 181,
                        "text": "Chen et al. (2009)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "By using the baseline segmenter, each character c i in the unlabeled data is labeled with a tag t i . In other words, the output of auto-segmentation is a sequence {(c i , t i )} L i=1 . Let g be a character n-gram (e.g., uni-gram c i , bi-gram c i c i+1 , trigram c i\u22121 c i c i+1 and so on) 2 , and seg be a segmentation profile for n-gram g observed at each position. The segmentation profile can be tag t i or the combination of tags. Take a bi-gram for example, seg may be t i or t i t i+1 . Then, Figure 1 : Overview of the proposed approach we can extract a list of {(g, seg, f (g, seg))} from the auto-segmented data. Here, f (g, seg) is the frequency of the cases where n-gram g is segmented with the segmentation profile seg. Then, following Chen et al. 2009, we group entries in this list into three sets: high-frequency (HF), middle-frequency (MF), and low-frequency (LF). The sets are defined as follows: if (g, seg) is one of the top 5% most frequent entries, it is labeled as HF; if it is between top 5% and 20%, it is labeled as MF, otherwise it is labeled as LF. Finally the list can be transformed as a n-gram list",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 502,
                        "end": 510,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "L ng = {(g, seg, F L(g, seg))}, with F L(g, seg)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "being the frequency label determined as above.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "We attempted to encode the information of the above n-gram list into a new type of features, called n-gram features. We tried several feature representations and generation methods and found that the feature derived from the bi-gram list with seg = t i was most effective.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "We generate the feature for the current character c 0 as follows. We retrieve a set of entries, whose g part matches the bi-gram c 0 c 1 , from L ng . Let this set be L m . From an entry in L m , we generate a feature string represented by (a) seg \u2212 F L(g, seg)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "Then, we concatenate the feature strings of all the entries in L m as one n-gram feature. If there is no entry in L m , the feature representation is \"ND\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "For example, consider that L m is { (\u5e78(Xing)/\u798f(Fu), B, HF), (\u5e78(Xing)/\u798f(Fu), B2, MF), (\u5e78(Xing)/\u798f(Fu), E, LF)} and we are processing c k c k+1 = \"\u5e78(Xing)/\u798f(Fu)\"; conse-quently, the n-gram feature of c k is represented as \"B-HF|B2-MF|E-LF\". Note that the concatenation is in lexicographic order of the feature strings for standardization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.1.1"
            },
            {
                "text": "Although a character-based model is simple and robust to unknown words, a limitation is its inability to consider word-level information. If a sequence of characters matches a word in an existing dictionary, it may be a clue that the character sequence should be segmented as one word. Several studies showed that using a dictionary brings improvement for Chinese word segmentation (Low et al., 2005; Zhao et al., 2010) . For a corpus-based word segmenter, a manually annotated corpus is essential. Thus we can easily compile a lexicon from a training corpus. We refer to the features related to this lexicon as lexicon features.",
                "cite_spans": [
                    {
                        "start": 382,
                        "end": 400,
                        "text": "(Low et al., 2005;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 401,
                        "end": 419,
                        "text": "Zhao et al., 2010)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "In this study, we extract a lexicon in the following way. We collect words and all possible POS tags of the words from the training corpus. For instance, for the word \"\u4ea4\u6d41(JiaoLiu)\", the collected entry may be (\u4ea4\u6d41(JiaoLiu), NN-VV). Here, \"NN-VV\" is a concatenation of all the observed POS tags. POS tags are in lexicographical order, as in \"NN-VV\". However, we were concerned that a lexicon compiled in this way could cause an overfitting problem and that meaningful weights for the lexicon features may not be learned. This concern was indeed confirmed by the preliminary experiments using the development set. To solve this problem, we used the following method to build and use lexicons. The method is based on the idea of cross-validation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "\u2022 Divide the training corpus into ten equalsized sets, as in the data preparation for 10fold cross-validation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "\u2022 For each set, we compile a lexicon using the remaining nine sets and use this lexicon to generate features for this set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "\u2022 For the development and test sets, we collect a lexicon using the entire training corpus and use it for feature generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "Because the lexicon is extracted from other sets, the weights for this feature will not be overestimated by the learning algorithm. This kind of cross-validation-like techniques are used in studies such as Collins (2002) and Martins et al. (2008) to avoid over-fitting to the training data. Our method can be considered as its application to lexicon extraction.",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 220,
                        "text": "Collins (2002)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 225,
                        "end": 246,
                        "text": "Martins et al. (2008)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "Using the extracted lexicon, we generate lexicon features as follows. If a character sequence starting with character c 0 matches some words in the lexicon, we greedily choose the longest such matching word w. Letting LEN (w) be the length (the number of characters) of w, we add the following feature for each character c k in c 0 , c 1 , ..., c LEN (w) :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "(b) P (c k )/LEN (w)-P OSs(w) Here, P (c k ) is the position number (i.e., k) of the character c k in w and P OSs(w) represents the POS tags of w in the lexicon. After generating these features, we increment the current position by LEN (w). If there is no matching word, we proceed to the next character. That is, the forward maximum matching is used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "For example, consider that the current character sequence c 0 c 1 = \"\u5e78(Xing)/\u798f(Fu)\" was matched with a lexicon entry (\u5e78\u798f(XingFu), JJ-NN-VA), the feature for c 0 \"\u5e78(Xing)\" is \"1/2-JJ-NN-VA\" and the feature for c 1 \"\u798f(Fu)\" is \"2/2-JJ-NN-VA\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "Several feature representations have been attempted: (i) using only position information, (ii) representing the position information in a 6-tag or 4-tag tagset, or (iii) representing only one POS tag with the highest frequency. Development experiments showed that the current encoding is more effective than others in word segmentation tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "Note that our lexicon feature uses POS tag information for word segmentation. The fact that this feature is very effective as reported in Section 4.3 is interesting, since this can be considered as \"loose\" information feedback from the later process. Although we need a POS tagged corpus even for segmentation, this will not be a big problem since we usually perform POS tagging as well in many applications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.1.2"
            },
            {
                "text": "We generate n-gram and lexicon features for POS tagging as well. In addition, the features that incorporate word clusters derived from a large autoanalyzed corpus (referred to as cluster features) are introduced.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "New Features for POS Tagging",
                "sec_num": "3.2"
            },
            {
                "text": "We preprocess auto-segmented data using the baseline POS tagger and can generate word-level n-gram lists L wg = {w, pos, F L(w, pos)}. Here, w is a word n-gram and pos is the POS tagging profile of the word n-gram. Different from segmentation, features generated from the word unigram list yielded the best results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.2.1"
            },
            {
                "text": "A feature of this type for the current word w 0 is generated as follows. We retrieve a set of entries, whose w part matches the uni-gram w 0 , from L wg . Let this set be L m . In the error analysis, we found that some words were associated with several odd POS tags in the uni-gram list. For instance, in addition to (\u7814\u7a76(YanJiu), NN, HF) and (\u7814\u7a76(YanJiu), VV, HF), (\u7814\u7a76(YanJiu), VA, LF) and (\u7814\u7a76(YanJiu), CD, LF) may appear as entries in the word unigram list, due to mis-tagging by the baseline POS-tagger. Therefore we further impose a restriction based on the frequency as follows: if the number of entries with a HF label \u2265 threshold, only the entries with HF will be selected, and if the sum of entries with a HF or M F label \u2265 threshold, the entries with either HF or M F will be selected, otherwise, all of the entries in L m will be selected. Here the threshold is set to 2 based on the development experiments. Let these selected entries be L s . From an entry in L s , we generate a feature string represented by (c) pos \u2212 F L(w, pos).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.2.1"
            },
            {
                "text": "Then, we concatenate the feature strings of all entries in L s as one n-gram feature. As for the previous instance, the feature for \"\u7814\u7a76(YanJiu)\" is encoded as \"N N -HF |V V -HF \".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised n-gram features",
                "sec_num": "3.2.1"
            },
            {
                "text": "Following the work of Koo et al. (2008) , we produced the clusters of various levels of granularity, Data set CTB chapter IDs Dev 41-80,203-233,301-325,400-409,591,613-617,643-673,1022 41-80,203-233,301-325,400-409,591,613-617,643-673, -1035 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1120 41-80,203-233,301-325,400-409,591,613-617,643-673, -1129 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2110 41-80,203-233,301-325,400-409,591,613-617,643-673, -2159 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2270 41-80,203-233,301-325,400-409,591,613-617,643-673, -2294 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2510 41-80,203-233,301-325,400-409,591,613-617,643-673, -2569 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2760 41-80,203-233,301-325,400-409,591,613-617,643-673, -2799 41-80,203-233,301-325,400-409,591,613-617,643-673, ,3040-3109,4040-4059,4084-4085,4090,4096,4106-4108,4113-4115,4121,4128,4132,4135,4158-4162,4169,4189,4196,4236-4261,4322,4335-4336,4407-4411 Test 1-40,144-174,271-300,410-428,592,900-931,1009 41-80,203-233,301-325,400-409,591,613-617,643-673, -1020 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1036 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1044 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1060 41-80,203-233,301-325,400-409,591,613-617,643-673, -1061 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1072 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1118 41-80,203-233,301-325,400-409,591,613-617,643-673, -1119 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1132 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1141 41-80,203-233,301-325,400-409,591,613-617,643-673, -1142 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1148 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2000 41-80,203-233,301-325,400-409,591,613-617,643-673, -2010 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2160 41-80,203-233,301-325,400-409,591,613-617,643-673, -2220 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2295 41-80,203-233,301-325,400-409,591,613-617,643-673, -2330 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2570 41-80,203-233,301-325,400-409,591,613-617,643-673, -2640 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2800 41-80,203-233,301-325,400-409,591,613-617,643-673, -2845 by using the prefixes of the Brown cluster hierarchy at various lengths 3 . After experimenting with many different feature configurations, we eventually settled on the following features: (d) full string prefixes for w \u22121 , w 0 , w 1 6-bit string prefixes for w \u22121 , w 0 , w 1 The clusters are best exploited when \"anchored\" to words or parts of speech (Koo et al., 2008) . We found it useful to make the above features in Bigram template, in CRF++ with the first character \"B\". With this template, a combination of the current output tag and the previous output tag (bigram) is automatically generated. In this case, the combination of the current POS tag and the previous POS tag output is automatically generated.",
                "cite_spans": [
                    {
                        "start": 22,
                        "end": 39,
                        "text": "Koo et al. (2008)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 130,
                        "end": 184,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673,1022",
                        "ref_id": null
                    },
                    {
                        "start": 185,
                        "end": 241,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1035",
                        "ref_id": null
                    },
                    {
                        "start": 242,
                        "end": 298,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1120",
                        "ref_id": null
                    },
                    {
                        "start": 299,
                        "end": 355,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1129",
                        "ref_id": null
                    },
                    {
                        "start": 356,
                        "end": 412,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2110",
                        "ref_id": null
                    },
                    {
                        "start": 413,
                        "end": 469,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2159",
                        "ref_id": null
                    },
                    {
                        "start": 470,
                        "end": 526,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2270",
                        "ref_id": null
                    },
                    {
                        "start": 527,
                        "end": 583,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2294",
                        "ref_id": null
                    },
                    {
                        "start": 584,
                        "end": 640,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2510",
                        "ref_id": null
                    },
                    {
                        "start": 641,
                        "end": 697,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2569",
                        "ref_id": null
                    },
                    {
                        "start": 698,
                        "end": 754,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2760",
                        "ref_id": null
                    },
                    {
                        "start": 755,
                        "end": 811,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2799",
                        "ref_id": null
                    },
                    {
                        "start": 812,
                        "end": 1054,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,3040-3109,4040-4059,4084-4085,4090,4096,4106-4108,4113-4115,4121,4128,4132,4135,4158-4162,4169,4189,4196,4236-4261,4322,4335-4336,4407-4411 Test 1-40,144-174,271-300,410-428,592,900-931,1009",
                        "ref_id": null
                    },
                    {
                        "start": 1055,
                        "end": 1111,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1020",
                        "ref_id": null
                    },
                    {
                        "start": 1112,
                        "end": 1168,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1036",
                        "ref_id": null
                    },
                    {
                        "start": 1169,
                        "end": 1225,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1044",
                        "ref_id": null
                    },
                    {
                        "start": 1226,
                        "end": 1282,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1060",
                        "ref_id": null
                    },
                    {
                        "start": 1283,
                        "end": 1339,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1061",
                        "ref_id": null
                    },
                    {
                        "start": 1340,
                        "end": 1396,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1072",
                        "ref_id": null
                    },
                    {
                        "start": 1397,
                        "end": 1453,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1118",
                        "ref_id": null
                    },
                    {
                        "start": 1454,
                        "end": 1510,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1119",
                        "ref_id": null
                    },
                    {
                        "start": 1511,
                        "end": 1567,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1132",
                        "ref_id": null
                    },
                    {
                        "start": 1568,
                        "end": 1624,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1141",
                        "ref_id": null
                    },
                    {
                        "start": 1625,
                        "end": 1681,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1142",
                        "ref_id": null
                    },
                    {
                        "start": 1682,
                        "end": 1738,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1148",
                        "ref_id": null
                    },
                    {
                        "start": 1739,
                        "end": 1795,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2000",
                        "ref_id": null
                    },
                    {
                        "start": 1796,
                        "end": 1852,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2010",
                        "ref_id": null
                    },
                    {
                        "start": 1853,
                        "end": 1909,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2160",
                        "ref_id": null
                    },
                    {
                        "start": 1910,
                        "end": 1966,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2220",
                        "ref_id": null
                    },
                    {
                        "start": 1967,
                        "end": 2023,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2295",
                        "ref_id": null
                    },
                    {
                        "start": 2024,
                        "end": 2080,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2330",
                        "ref_id": null
                    },
                    {
                        "start": 2081,
                        "end": 2137,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2570",
                        "ref_id": null
                    },
                    {
                        "start": 2138,
                        "end": 2194,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2640",
                        "ref_id": null
                    },
                    {
                        "start": 2195,
                        "end": 2251,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2800",
                        "ref_id": null
                    },
                    {
                        "start": 2252,
                        "end": 2308,
                        "text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2845",
                        "ref_id": null
                    },
                    {
                        "start": 2663,
                        "end": 2681,
                        "text": "(Koo et al., 2008)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-supervised cluster features",
                "sec_num": "3.2.2"
            },
            {
                "text": "We use the same lexicon extracted for word segmentation for POS tagging. We add the following feature for the current word w 0 : (e) P OSs(w 0 ) Here, P OSs(w 0 ) are all possible POS tags of the current word w 0 in the lexicon. We also tried to use different lexicons, as well as representing the feature with only one POS tag with the highest frequency. However, the experimental results were not better than those by using the above simple method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon features",
                "sec_num": "3.2.3"
            },
            {
                "text": "We conducted word segmentation and POS tagging experiments on Penn Chinese Treebanks incorporating up to 200-million-word unlabeled data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "To compare with previous studies, we selected the widely used CTB5 (LDC2005T01), and defined the training, development and test sets according to Kruengkrai (2009a) . In order to increase the reliability of our findings, we also used CTB6 (LDC2007T36) and CTB7 (LDC2010T07), which are larger than CTB5. For CTB6, we used the same data split as recommended in the CTB6 document 4 . Because CTB7 includes data from various sources and various genres, we made a new data split according to the following criteria:",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 164,
                        "text": "Kruengkrai (2009a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Put the test set and the development set data described in CTB7 documents 5 into each data set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Put the test set and the development set data of CTB5 into each set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Put all double checked files into the test-set. 6 \u2022 Keep the data of different genres and sources in balance.",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 51,
                        "text": "6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Increase the size of the development and test sets to make the evaluation more reliable. 7 The test set and development set of the CTB7 data split used in this paper are detailed in Table 4, and we used the rest as the training set. Table 5 provides the detailed statistics of each genre: NS (Newswire), NM (News magazine), BN (Broadcast news), BC (Broadcast conversation), NW (Newsgroups weblogs). Table 6 provides the statistics of our experimental settings on the treebanks. The out-of-vocabulary (OOV) is defined as the words in the test set that are not in the training set (Sproat and Emerson, 2003) . The development sets were used to obtain the optimal values of tunable parameters and feature configurations. The unlabeled data for our experiments were taken from the XIN_CMN portion of Chinese Gigaword Version 2.0 (LDC2009T14), which has approximately 311 million words. Some of CTB data and Chinese Gigaword data are from the same source: Xinhua newswire between 1994 and 1998. In order to avoid overlap between the CTB data and the unlabeled data, we used only the articles published in 1991-1993 and 1999-2004 as unlabeled data, with 204 million words. 8 Note that we only used one million words from this data for word clustering, because the clustering process is time-consuming and the amount is enough to show the impact of cluster feature.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 92,
                        "text": "7",
                        "ref_id": null
                    },
                    {
                        "start": 581,
                        "end": 607,
                        "text": "(Sproat and Emerson, 2003)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 235,
                        "end": 242,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 401,
                        "end": 408,
                        "text": "Table 6",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "4.1"
            },
            {
                "text": "CRF++ has four major tunable parameters to control the training condition: a, the regularization algorithm; c, the balance between over-fitting and under-fitting; f, the cut-off threshold for the feature frequencies; and p, the number of threads. We used a = CRF -L2 (Gaussian regularization) and f = 1. We set p to 12 for all experiments to speed up the training. For the baseline segmentation model, we varied c in the range of [1.0, 5.0] and found that setting c = 4.0 yielded the best performance on the development set of CTB7. For our approach, we varied c in the range of [0.3, 5.0] and found that setting c = 1.0 yielded the best performance. For the POS tagging model, c was set to 4.0 in all of the methods . For the clustering tool, c (the number of clusters) was set to 1000.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Tuning",
                "sec_num": "4.2"
            },
            {
                "text": "We evaluated both word segmentation (Seg) and joint word segmentation and POS tagging (Seg &Tag). We used recall (R), precision (P) and F 1 as evaluation metrics. The experimental results of word segmentation on CTB5, CTB6 and CTB7 test sets are shown in Table 7 , where (a) refers to the n-gram feature generated from the unlabeled data and (b) refers to the lexicon feature. The results show that the n-gram feature was very effective in all experiments and that the combination of (a) and (b) can provide further improvement.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 255,
                        "end": 262,
                        "text": "Table 7",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "4.3"
            },
            {
                "text": "The experimental results of segmentation and POS tagging on CTB5, CTB6 and CTB7 test sets are shown in Table 8 and Table 9 . Table 8 shows the results when we used the baseline segmenta- tion model and Table 9 shows the results when we used our best segmentation model (i.e., (a)+(b)).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 103,
                        "end": 122,
                        "text": "Table 8 and Table 9",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 125,
                        "end": 132,
                        "text": "Table 8",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 202,
                        "end": 209,
                        "text": "Table 9",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "4.3"
            },
            {
                "text": "The results show that the cluster features were the most effective ones and that a combination of three types of features achieves the best performance. This suggests that these features are relatively independent in feature characteristics. The results of our best system are compared with the previous methods in the next section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "4.3"
            },
            {
                "text": "In this section, we compare our approach with the best previous approaches reported in the literature. The performance scores of previous studies are directly taken from their papers, except for N&U 07 (Nakagawa and Uchimoto, 2007) , which is taken from Kruengkrai et al. (2009b) . Z&C 10 refers to Zhang and Clark (2010) . Two methods in Kruengkrai et al. (2009a; 2009b) are referred to as K 09a and K 09b. Jiang 08a and Jiang 08b refer to Jiang et al. (2008a; 2008b) . Table 10 compares F 1 results on CTB5.0. The best score in each column is in boldface. The results of our approach are superior to those of previous studies for both p-value Models CTB5 CTB6 CTB7 Ours vs. K 09b(Seg) 0.8054 5.0e-08 \u2248 0.0 Ours vs. K 09b(Seg&Tag) 0.7060 1.6e-14 \u2248 0.0 Ours vs. Base Seg4.0e-06 1.8e-11 \u2248 0.0 Ours vs. Base Seg&Tag2.1e-06 \u2248 0.0 \u2248 0.0 Seg and Seg&Tag. We also conducted experiments using the system implemented by Kruengkrai for comparison on CTB6 and CTB7 with two methods (K 09a and K 09b) and the F 1 results are shown in Table 11 .",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 231,
                        "text": "(Nakagawa and Uchimoto, 2007)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 254,
                        "end": 279,
                        "text": "Kruengkrai et al. (2009b)",
                        "ref_id": null
                    },
                    {
                        "start": 299,
                        "end": 321,
                        "text": "Zhang and Clark (2010)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 339,
                        "end": 364,
                        "text": "Kruengkrai et al. (2009a;",
                        "ref_id": null
                    },
                    {
                        "start": 365,
                        "end": 371,
                        "text": "2009b)",
                        "ref_id": null
                    },
                    {
                        "start": 441,
                        "end": 461,
                        "text": "Jiang et al. (2008a;",
                        "ref_id": null
                    },
                    {
                        "start": 462,
                        "end": 468,
                        "text": "2008b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 471,
                        "end": 479,
                        "text": "Table 10",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1023,
                        "end": 1031,
                        "text": "Table 11",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Comparative Results",
                "sec_num": "4.4"
            },
            {
                "text": "For reference, the results of the development set are also shown in Table 12 . Although the Seg performances of CTB5 and CTB7 are lower than K 09a and K 09b , Seg&Tag achieves the best performance on all development sets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 68,
                        "end": 76,
                        "text": "Table 12",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Comparative Results",
                "sec_num": "4.4"
            },
            {
                "text": "We evaluated statistical significance using McNemar's test 9 . With McNemar' test, we compared the correctness of the labeling decisions of the two models. The null hypothesis is that the disagreements (correct vs. incorrect) are due to chance. For Seg, a word in the system output is considered correct if the word boundary is correctly identified. For Seg &Tag, a word is considered correct only when both the word boundary and its POS tag are correctly identified. Table 13 summarizes the results on test sets. These tests suggest that although the difference from K 09b for CTB5 data is not statistically significant, all other differences are clearly statistically significant (p < 10 \u22125 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 468,
                        "end": 476,
                        "text": "Table 13",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Statistical Significance Tests",
                "sec_num": "4.5"
            },
            {
                "text": "An alternative method of incorporating unlabeled data is self-training, so we also compared our results to the self-training method. Because no existing research was found concerning the selftraining method on word segmentation and POS tagging for Chinese, we tested the simplest selftraining here. We analyzed the unlabeled data with the baseline models, added the newly autolabeled data to the training corpus, and trained a new model. Since the manually labeled data should be considered more important than the unlabeled data (McClosky et al., 2006) , we also adjusted the weight of the labeled data to the integer in the range of [1, 5] in experiments. The results of all the experiments were not positive -we were not able to obtain any improvement over the baseline models in either word segmentation or POS tagging. Due to space limitation, we only include the results with the labeled data weight = 1. Other weights did not change the conclusion here. Table 14 shows the F 1 results on segmentation with different sizes of the additional data on the CTB7 test set. Table 15 shows the F 1 results on segmentation and POS tagging. The segmentation by the baseline model was used for all of the POS tagging experiments here.",
                "cite_spans": [
                    {
                        "start": 530,
                        "end": 553,
                        "text": "(McClosky et al., 2006)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 635,
                        "end": 638,
                        "text": "[1,",
                        "ref_id": null
                    },
                    {
                        "start": 639,
                        "end": 641,
                        "text": "5]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 961,
                        "end": 969,
                        "text": "Table 14",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1074,
                        "end": 1082,
                        "text": "Table 15",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison with Self-Training",
                "sec_num": "4.6"
            },
            {
                "text": "Our approach is to incorporate large unlabeled data in Chinese word segmentation and POS tagging. For research using large unlabeled data, Suzuki and Isozaki (2008) and Suzuki et al. (2009) proposed semi-supervised learning algorithms on giga-word-scale unlabeled data and showed performance improvement in POS tagging, syntactic chunking, and named entity recognition. Instead of using specialized semi-supervised learning algorithms, Chen et al. (2009) used features based on sub-structures in auto-parsed data and demonstrated the effectiveness of these features. Koo et al. (2008) presented the use of cluster features. The advantage of the methods by Chen et al. (2009) and Koo et al. (2008) is their simplicity and flexibility. Our research applied these techniques to word segmentation and POS tagging rather than dependency parsing. Yu et al. (2007) proposed a character-based joint method for word segmentation and POS tagging, in which they introduced an unsupervised method for unknown word learning. However, they only learned the unknown words from the test set. Zhao and Kit (2007; proposed an approach using unsupervised segmentation criteria as features for Chinese word segmentation. However, their features were only accumulated from the training and test data. Our approach differs in that we used features generated from large unlabeled data and provided richer information, which may be unseen from the training corpus. Kruengkrai et al. (2009a; 2009b) presented a discriminative word-character hybrid model for joint Chinese word segmentation and POS tagging and achieved the state-of-the-art accuracy for the CTB test sets. Instead of using the hybrid model, we used conceptually simpler pipelined models built with standard CRF tools. Compared with their method, our approach achieved higher performance with the help of unlabeled data.",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 164,
                        "text": "Suzuki and Isozaki (2008)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 169,
                        "end": 189,
                        "text": "Suzuki et al. (2009)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 436,
                        "end": 454,
                        "text": "Chen et al. (2009)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 567,
                        "end": 584,
                        "text": "Koo et al. (2008)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 656,
                        "end": 674,
                        "text": "Chen et al. (2009)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 679,
                        "end": 696,
                        "text": "Koo et al. (2008)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 841,
                        "end": 857,
                        "text": "Yu et al. (2007)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1076,
                        "end": 1095,
                        "text": "Zhao and Kit (2007;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1441,
                        "end": 1466,
                        "text": "Kruengkrai et al. (2009a;",
                        "ref_id": null
                    },
                    {
                        "start": 1467,
                        "end": 1473,
                        "text": "2009b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "In this paper, we presented a simple yet effective semi-supervised approach to pipelined Chinese segmentation and POS tagging. Through a series of experiments, we demonstrated that our approach provides substantial improvement over the best previously reported methods as well as the baseline methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Available from http://crfpp.sourceforge.net/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that there are several alternative ways for extracting n-grams at position i, for example ci\u22121ci for a bi-gram. In this paper, we used the way as explained here.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We used the word clustering tool, available from http://www.cs.berkeley.edu/pliang/software/brown-cluster-1.2.zip, to produce word clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "list-of-files.pdf 5 This is the same as the CTB6 data split.6 In CTB7, sentences checked twice are marked, and they are expected to have higher annotation quality.7 CTB5 and CTB6 data splits include small development and test sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This may be a too strict setting, but we wanted to test our approach in the fairest way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We used the version with Yates' correction, using correction factor 0.5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Stacking Dependency Parsers",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "T"
                        ],
                        "last": "Andr",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [
                            "P"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Xing",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of EMNLP-2008",
                "volume": "",
                "issue": "",
                "pages": "513--521",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andr F. T.Martins, Dipanjan Das, Noah A. Smith, and Eric P. Xing 2008. Stacking Dependency Parsers. In Proceedings of EMNLP-2008, pages 513-521.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An Error-Driven Word-Character Hybird Model for Joint Chinese Word Segmentation and POS Tagging",
                "authors": [
                    {
                        "first": "Canasai",
                        "middle": [],
                        "last": "Kruengkrai",
                        "suffix": ""
                    },
                    {
                        "first": "Kiyotaka",
                        "middle": [],
                        "last": "Uchimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Yiou",
                        "middle": [],
                        "last": "Jun'ichi Kazama",
                        "suffix": ""
                    },
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Hitoshi",
                        "middle": [],
                        "last": "Torisawa",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of ACL-IJCNLP-2009",
                "volume": "",
                "issue": "",
                "pages": "513--521",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Canasai Kruengkrai, Kiyotaka Uchimoto, Jun'ichi Kazama, Yiou Wang, Kentaro Torisawa, and Hitoshi Isahara 2009. An Error-Driven Word-Character Hybird Model for Joint Chinese Word Segmentation and POS Tagging. In Proceedings of ACL-IJCNLP- 2009, pages 513-521.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Joint Chinese Word Segmentation and POS Tagging Using an Error-Driven Word-Character Hybrid Model",
                "authors": [
                    {
                        "first": "Canasai",
                        "middle": [],
                        "last": "Kruengkrai Kiyotaka Uchimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Yiou",
                        "middle": [],
                        "last": "Jun'ichi Kazama",
                        "suffix": ""
                    },
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Hitoshi",
                        "middle": [],
                        "last": "Torisawa",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IEICE transactions on information and systems",
                "volume": "92",
                "issue": "12",
                "pages": "2298--2305",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Canasai Kruengkrai Kiyotaka Uchimoto, Jun'ichi Kazama, Yiou Wang, Kentaro Torisawa, and Hi- toshi Isahara 2009. Joint Chinese Word Segmenta- tion and POS Tagging Using an Error-Driven Word- Character Hybrid Model. IEICE transactions on in- formation and systems 92(12), pages 2298-2305.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Effective self-training for parsing",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mcclosky",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Human Language Technology Conference of the NAACL-2006",
                "volume": "",
                "issue": "",
                "pages": "152--159",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David McClosky, Eugene Charniak, and Mark Johnson 2006. Effective self-training for parsing. In Pro- ceedings of the Human Language Technology Con- ference of the NAACL-2006, pages 152-159.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Using Self-trained Ailexical Preferences to Improve Disambiguation Accuracy",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gertjan Van Noord",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of IWPT-07",
                "volume": "",
                "issue": "",
                "pages": "1--10",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gertjan van Noord 2007. Using Self-trained Ailexical Preferences to Improve Disambiguation Accuracy. In Proceedings of IWPT-07, pages 1-10",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chang-Ning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Bao-Liang",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "87--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu 2006. Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling. In Proceedings of the 20th Pacific Asia Conference on Language, Information and Compu- tation.pages 87-94.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A Unified Character-Based Tagging Framework for Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chang-Ning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Bao-Liang",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "ACM Transactions on Asian Language Information Processing",
                "volume": "9",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu 2010. A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Transactions on Asian Language Information Pro- cessing, 9(2), Article 5.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Exploiting Unlabeled Text with Different Unsupervised Segmentation Criteria for Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Research in Computing Science",
                "volume": "33",
                "issue": "",
                "pages": "93--104",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao and Chunyu Kit 2008. Exploiting Unlabeled Text with Different Unsupervised Segmentation Cri- teria for Chinese Word Segmentation. Research in Computing Science, Vol. 33, pages 93-104.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Incorporating Global Information into Supervised Learning for Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of PACLING-2007",
                "volume": "",
                "issue": "",
                "pages": "66--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao and Chunyu Kit 2007. Incorporating Global Information into Supervised Learning for Chinese Word Segmentation. In Proceedings of PACLING- 2007, pages 66-74.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A Maximum Entropy Approach to Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "Jin",
                        "middle": [
                            "Kiat"
                        ],
                        "last": "Low",
                        "suffix": ""
                    },
                    {
                        "first": "Tou",
                        "middle": [],
                        "last": "Hwee",
                        "suffix": ""
                    },
                    {
                        "first": "Wenyuan",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 4th SIGHAN Workshop on Chinese Language Processing (SIGHAN05)",
                "volume": "",
                "issue": "",
                "pages": "161--164",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jin Kiat Low, Hwee Tou Ng and Wenyuan Guo 2005. A Maximum Entropy Approach to Chinese Word Segmentation. In Proceedings of the 4th SIGHAN Workshop on Chinese Language Process- ing (SIGHAN05), pages 161-164.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "Jfernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of ICML01",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Lafferty, Andrew McCallum, and JFernando Pereira 2001. Conditional Random Fields: Prob- abilistic Models for Segmenting and Labeling Se- quence Data. In Proceedings of ICML01, pages 282-289.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Inducing Gazetteers for Named Entity Recognition by Large-scale Clustering of Dependency Relations",
                "authors": [
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Jun'ichi Kazama",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Torisawa",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-2008",
                "volume": "",
                "issue": "",
                "pages": "665--673",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun'ichi Kazama and Kentaro Torisawa 2008. In- ducing Gazetteers for Named Entity Recognition by Large-scale Clustering of Dependency Relations. In Proceedings of ACL-2008, pages 665-673.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Semi-Supervised Sequential Labeling and Segmentation using Gigaword Scale Unlabeled Data",
                "authors": [
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "407--415",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun Suzuki and Hideki Isozaki 2008. Semi-Supervised Sequential Labeling and Segmentation using Giga- word Scale Unlabeled Data. In Proceedings of ACL-08: HLT, pages 407-415.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An Empirical Study of Semisupervised Structured Conditional Models for Dependency Parsing",
                "authors": [
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of EMNLP-2009",
                "volume": "",
                "issue": "",
                "pages": "551--560",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins 2009. An Empirical Study of Semi- supervised Structured Conditional Models for De- pendency Parsing. In Proceedings of EMNLP-2009, pages 551-560.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Characterbased Chinese Word Segmentation and Pos-tagging with Unsupervised Unknown Word Learning",
                "authors": [
                    {
                        "first": "Kun",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of NLP-2007",
                "volume": "",
                "issue": "",
                "pages": "823--826",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kun Yu, Sadao Kurohashi, Hao Liu 2007. Character- based Chinese Word Segmentation and Pos-tagging with Unsupervised Unknown Word Learning. In Proceedings of NLP-2007, pages 823-826.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Ranking Algorithms for Named-entity Extraction: Boosting and the Voted Perceptron",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of ACL-2002",
                "volume": "",
                "issue": "",
                "pages": "489--496",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Collins 2002. Ranking Algorithms for Named-entity Extraction: Boosting and the Voted Perceptron. In Proceedings of ACL-2002, pages 489-496",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing",
                "authors": [
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "8",
                "issue": "",
                "pages": "29--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nianwen Xue 2003. Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing 8(1), pages 29-48",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The First International Chinese Word Segmentation Bakeoff",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Emerson",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "133--143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Sproat and Thomas Emerson 2003. The First International Chinese Word Segmentation Bakeoff. In Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing, pages, 133-143.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data",
                "authors": [
                    {
                        "first": "Rie",
                        "middle": [],
                        "last": "Kubota",
                        "suffix": ""
                    },
                    {
                        "first": "Ando",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Journal of Machine Learning Research",
                "volume": "6",
                "issue": "",
                "pages": "1817--1853",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rie Kubota Ando and Tong Zhang 2005. A Frame- work for Learning Predictive Structures from Multi- ple Tasks and Unlabeled Data. Journal of Machine Learning Research, 6, pages 1817-1853",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Name Tagging with Word Clusters and Discriminative Training",
                "authors": [
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "Jethran",
                        "middle": [],
                        "last": "Guinness",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Zamanian",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT-2004",
                "volume": "",
                "issue": "",
                "pages": "337--342",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Scott Miller, Jethran Guinness, and Alex Zamanian 2004. Name Tagging with Word Clusters and Dis- criminative Training. In Proceedings of HLT-2004, pages 337-342",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Simple Semi-supervised Dependency Parsing",
                "authors": [
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-2008",
                "volume": "",
                "issue": "",
                "pages": "595--603",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Terry Koo, Xavier Carreras and Michael Collins 2008. Simple Semi-supervised Dependency Parsing. In Proceedings of ACL-2008, pages 595-603",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Hybrid Approach to Word Segmentation and Pos Tagging",
                "authors": [
                    {
                        "first": "Tetsuji",
                        "middle": [],
                        "last": "Nakagawa",
                        "suffix": ""
                    },
                    {
                        "first": "Kiyotaka",
                        "middle": [],
                        "last": "Uchimoto",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of ACL Demo and Poster Sessions",
                "volume": "",
                "issue": "",
                "pages": "217--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tetsuji Nakagawa and Kiyotaka Uchimoto 2007. Hy- brid Approach to Word Segmentation and Pos Tag- ging. In Proceedings of ACL Demo and Poster Ses- sions, pages 217-220",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging",
                "authors": [
                    {
                        "first": "Wenbin",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yajuan",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-2008",
                "volume": "",
                "issue": "",
                "pages": "897--904",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lu. 2008. A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging. In Proceedings of ACL-2008, pages 897-904",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Word Lattice Reranking for Chinese Word Segmentation and Part-of-Speech Tagging",
                "authors": [
                    {
                        "first": "Wenbin",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Haitao",
                        "middle": [],
                        "last": "Mi",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of COLING-2008",
                "volume": "",
                "issue": "",
                "pages": "385--392",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenbin Jiang, Haitao Mi and Qun Liu 2008. Word Lattice Reranking for Chinese Word Segmentation and Part-of-Speech Tagging. In Proceedings of COLING-2008, pages 385-392",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Dependency Parsing with Short Dependency Relations in Unlabeled Data",
                "authors": [
                    {
                        "first": "Wenliang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Daisuke",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "Kiyotaka",
                        "middle": [],
                        "last": "Uchimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Yujie",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Hitoshi",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of IJCNLP-2008",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenliang Chen, Daisuke Kawahara, Kiyotaka Uchi- moto, Yujie Zhang, and Hitoshi Isahara 2008. De- pendency Parsing with Short Dependency Relations in Unlabeled Data. In Proceedings of IJCNLP-2008",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Improving Dependency Parsing with Subtrees from auto-Parsed Data",
                "authors": [
                    {
                        "first": "Wenliang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Kiyotaka",
                        "middle": [],
                        "last": "Kazama",
                        "suffix": ""
                    },
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Uchimoto",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Torisawa",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of EMNLP-2009",
                "volume": "",
                "issue": "",
                "pages": "570--579",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenliang Chen, Jun'ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa 2009. Improving Depen- dency Parsing with Subtrees from auto-Parsed Data. In Proceedings of EMNLP-2009, pages 570-579,",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Description of the NCU Chinese Word Segmentation and Part-of-Speech Tagging for SIGHAN Bakeoff",
                "authors": [
                    {
                        "first": "Yu-Chieh Wu Jie-Chi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yue-Shi",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "161--166",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu-Chieh Wu Jie-Chi Yang and Yue-Shi Lee 2008. Description of the NCU Chinese Word Segmenta- tion and Part-of-Speech Tagging for SIGHAN Bake- off 2008. In Proceedings of the SIGHAN Workshop on Chinese Language Processing, pages 161-166.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of EMNLP-2010",
                "volume": "",
                "issue": "",
                "pages": "843--852",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Stephen Clark 2010. A Fast Decoder for Joint Word Segmentation and POS-Tagging Us- ing a Single Discriminative Model. In Proceedings of EMNLP-2010, pages 843-852",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "text": "Word representation with a 6-tag tagset :S, B, B 2 , B 3 , M, E",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Type Character Unigram Nearing Character Bigram Jump Character Bigram Punctuation Character Type</td><td>Feature c\u22121, c0, c1 (c\u22121 c0), (c0 c1) c\u22121 c1 IsPu(c0) K(c\u22122)K(c\u22121)K(c0)K(c1)K(c2) Types of character: date, numeral, alphabet, Chinese Description Previous, current and next character Previous (next) character and current character Previous character and next character Current character is punctuation</td></tr></table>",
                "html": null
            },
            "TABREF1": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>: Feature templates for word segmentation</td></tr><tr><td>version 7.0. We show that our semi-supervised ap-</td></tr><tr><td>proach yields improvements for all the test collec-</td></tr><tr><td>tions and achieves better results than the best re-</td></tr><tr><td>ported results in the literature.</td></tr></table>",
                "html": null
            },
            "TABREF3": {
                "text": "Feature templates for POS tagging",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Unlabeled Data</td><td>Labeled Data</td><td>Dictionary Extraction</td><td>Lexicons</td></tr><tr><td>Preprocessing</td><td>Word</td><td>Word Clusters</td><td>Feature Generation</td></tr><tr><td/><td>Clustering</td><td/><td/></tr><tr><td/><td/><td>Character N-gram List</td><td>Training</td></tr><tr><td>Auto-analyzed</td><td>Dictionary</td><td/><td/></tr><tr><td>Data</td><td>Extraction</td><td>Word N-gram List</td><td>New Model</td></tr></table>",
                "html": null
            },
            "TABREF4": {
                "text": "Dev-set and test-set of CTB7 data split",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Total Dev-LDC Test-LDC 107,14 561 981 8,420 682 917 BN 10,079 NS NM 836 898 BC 12,049 0 0 NW 10,181 0 0</td><td>Dev 2,084 2,028 Test 1,618 1,646 2,067 2,038 2,367 2,382 2,000 2,086</td></tr></table>",
                "html": null
            },
            "TABREF5": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF7": {
                "text": "Statistics of CTB5, CTB6 and CTB7 data splits",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>method Baseline +(a) n-gram +(b) lexicon +(a)+(b)</td><td>R 0.9791 0.9830 0.9809 0.9845</td><td>CTB5 P 0.9715 0.9766 0.9743 0.9777</td><td>F1 0.9753 0.9798 0.9776 0.9811</td><td>CTB6 P 0.9504 0.9521 0.9513 0.9503 0.9492 0.9498 CTB7 R F1 R P F1 0.9567 0.9568 0.9567 0.9562 0.9546 0.9554 0.9545 0.9555 0.9550 0.9548 0.9535 0.9542 0.9575 0.9583 0.9579 0.9576 0.9554 0.9565</td></tr></table>",
                "html": null
            },
            "TABREF8": {
                "text": "Results of word segmentation",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>POS tag method Baseline +(c) n-gram +(d) cluster +(e) lexicon +(c)+(d)+(e)</td><td>CTB5 0.9318 0.8999 0.8937 CTB6 CTB7 0.9333 0.9014 0.8958 0.9350 0.9026 0.8959 0.9346 0.9015 0.8959 0.9359 0.9048 0.8985</td></tr></table>",
                "html": null
            },
            "TABREF9": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF10": {
                "text": "F 1 results of segmentation and POS tagging (our best model for word segmentation)",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF12": {
                "text": "F 1 Results comparison on development set",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Method Ours Baseline Z&amp;C 10 K 09a K 09b Jiang 08a Jiang 08b N&amp;U 07</td><td>Seg 0.9811 0.9753 0.9778 0.9787 0.9798 0.9785 0.9774 0.9796</td><td>Seg&amp;Tag 0.9418 0.9318 0.9367 0.9367 0.9400 0.9341 0.9337 0.9338</td></tr></table>",
                "html": null
            },
            "TABREF13": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">: Comparison with previous studies on</td></tr><tr><td>CTB5</td><td/></tr><tr><td>CTB6 Seg&amp;Tag 0.9579 Seg 0.9112 Baseline 0.9513 Methods Ours 0.8999 K 09a 0.9550 0.9050 K 09b 0.9551 0.9053</td><td>CTB7 Seg&amp;Tag 0.9565 Seg 0.9046 0.9498 0.8937 0.9540 0.8986 0.9546 0.8990</td></tr></table>",
                "html": null
            },
            "TABREF14": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>: Comparison with previous studies on</td></tr><tr><td>CTB6 and CTB7</td></tr></table>",
                "html": null
            },
            "TABREF15": {
                "text": "Results of McNemar's test.",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF17": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>: Comparison with self-training (Seg)</td></tr><tr><td>sentences added POS tagging F1 0(Baseline) 0.8937 5k 0.8926 10k 0.8922 30k 0.8911 50k 0.8908</td></tr></table>",
                "html": null
            },
            "TABREF18": {
                "text": "Comparison with self-training (POS)",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            }
        }
    }
}