File size: 114,595 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 |
{
"paper_id": "I11-1035",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:32:52.663725Z"
},
"title": "Improving Chinese Word Segmentation and POS Tagging with Semi-supervised Methods Using Large Auto-Analyzed Data",
"authors": [
{
"first": "Yiou",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": "wangyiou@nict.go.jp"
},
{
"first": "Jun",
"middle": [
"'"
],
"last": "Ichi Kazama",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": ""
},
{
"first": "Yoshimasa",
"middle": [],
"last": "Tsuruoka",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": "tsuruoka@jaist.ac.jp"
},
{
"first": "Wenliang",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": "wechen@i2r.a-star.edu.sg"
},
{
"first": "Yujie",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": "yjzhang@bjtu.edu.cn"
},
{
"first": "Kentaro",
"middle": [],
"last": "Torisawa",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Institute of Information and Communications Technology (NICT)",
"location": {
"country": "Japan"
}
},
"email": "torisawa@nict.go.jp"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper presents a simple yet effective semi-supervised method to improve Chinese word segmentation and POS tagging. We introduce novel features derived from large auto-analyzed data to enhance a simple pipelined system. The auto-analyzed data are generated from unlabeled data by using a baseline system. We evaluate the usefulness of our approach in a series of experiments on Penn Chinese Treebanks and show that the new features provide substantial performance gains in all experiments. Furthermore, the results of our proposed method are superior to the best reported results in the literature.",
"pdf_parse": {
"paper_id": "I11-1035",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper presents a simple yet effective semi-supervised method to improve Chinese word segmentation and POS tagging. We introduce novel features derived from large auto-analyzed data to enhance a simple pipelined system. The auto-analyzed data are generated from unlabeled data by using a baseline system. We evaluate the usefulness of our approach in a series of experiments on Penn Chinese Treebanks and show that the new features provide substantial performance gains in all experiments. Furthermore, the results of our proposed method are superior to the best reported results in the literature.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In Chinese, most language processing starts from word segmentation and part-of-speech (POS) tagging. These two steps tokenize a sequence of characters without delimiters into words and predict a syntactic label (POS tag) for each segmented word. They are considered indispensable steps for higher-level NLP tasks such as parsing and information extraction. Although the performance of Chinese word segmentation and POS tagging has been greatly improved over the past years, the task is still challenging.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To improve the accuracy of NLP systems, one of the current trends is semi-supervised learning, which utilizes large unlabeled data in supervised learning. Several studies have demonstrated that the use of unlabeled data can improve the performance of NLP tasks, such as text chunking (Ando and Zhang, 2005) , POS tagging and named entity recognition (Suzuki and Isozaki, 2008) , and parsing (Suzuki et al., 2009; Chen et al., 2009; Koo et al., 2008) . Therefore, it is attractive to consider adopting semi-supervised learning in Chinese word segmentation and POS tagging tasks.",
"cite_spans": [
{
"start": 294,
"end": 306,
"text": "Zhang, 2005)",
"ref_id": "BIBREF18"
},
{
"start": 350,
"end": 376,
"text": "(Suzuki and Isozaki, 2008)",
"ref_id": "BIBREF12"
},
{
"start": 391,
"end": 412,
"text": "(Suzuki et al., 2009;",
"ref_id": "BIBREF13"
},
{
"start": 413,
"end": 431,
"text": "Chen et al., 2009;",
"ref_id": "BIBREF25"
},
{
"start": 432,
"end": 449,
"text": "Koo et al., 2008)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we present an approach to improve the performance of both segmentation and POS tagging by incorporating large unlabeled data. We first preprocess unlabeled data with our baseline models. We then extract various items of dictionary information from the auto-analyzed data. Finally, we generate new features that incorporate the extracted information for both word segmentation and POS tagging. We also perform word clustering on the auto-segmented data and use word clusters as features in POS tagging. In addition, we introduce lexicon features by using a crossvalidation technique.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The use of sub-structures from the autoannotated data has been presented previously (Noord, 2007; Chen et al., 2008; Chen et al., 2009) . Chen et al. (2009) extracted different types of subtrees from the auto-parsed data and used them as new features in standard learning methods. They showed this simple method greatly improves the accuracy of dependency parsing. The idea of combining word clusters with discriminative learning has been previously reported in the context of named entity recognition (Miller et al., 2004; Kazama and Torisawa, 2008) and dependency parsing (Koo et al., 2008) . We adapt and extend these techniques to Chinese word segmentation and POS tagging, and demonstrate their effectiveness in this task.",
"cite_spans": [
{
"start": 84,
"end": 97,
"text": "(Noord, 2007;",
"ref_id": "BIBREF4"
},
{
"start": 98,
"end": 116,
"text": "Chen et al., 2008;",
"ref_id": "BIBREF24"
},
{
"start": 117,
"end": 135,
"text": "Chen et al., 2009)",
"ref_id": "BIBREF25"
},
{
"start": 138,
"end": 156,
"text": "Chen et al. (2009)",
"ref_id": "BIBREF25"
},
{
"start": 502,
"end": 523,
"text": "(Miller et al., 2004;",
"ref_id": "BIBREF19"
},
{
"start": 524,
"end": 550,
"text": "Kazama and Torisawa, 2008)",
"ref_id": "BIBREF11"
},
{
"start": 574,
"end": 592,
"text": "(Koo et al., 2008)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "One of our criteria in this study was to achieve high accuracy with simple and easy-to-implement techniques. To meet this, the whole system is a pipeline with a character-based CRF for word segmentation and a word-based CRF for POS tagging. The information of unlabeled data is incorporated as additional new features without changing the learning algorithm.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To demonstrate the effectiveness of our approach, we conduct segmentation and POS tagging experiments on three versions of Penn Chinese Treebank, including the newly released CTB Word Length 1 2 3 4 5 6 7 or more Tags ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "S BE BB2E BB2B3E BB2B3M E BB2B3M M E BB2B3M...M E",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We implement our approach using sequential tagging models. Following the previous work (Zhao et al., 2006; Zhao et al., 2010) , we employ the linear chain CRFs (Lafferty et al., 2001 ) as our learning model. Specifically, we use its CRF++ (version 0.54) implementation by Taku Kudo. 1",
"cite_spans": [
{
"start": 87,
"end": 106,
"text": "(Zhao et al., 2006;",
"ref_id": "BIBREF5"
},
{
"start": 107,
"end": 125,
"text": "Zhao et al., 2010)",
"ref_id": "BIBREF6"
},
{
"start": 160,
"end": 182,
"text": "(Lafferty et al., 2001",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation and POS tagging Models",
"sec_num": "2"
},
{
"text": "We employ character-based sequence labeling for word segmentation. In addition to its simplicity, the advantage of a character-based model is its robustness to the unknown word problem (Xue, 2003) . In a character-based Chinese word segmentation task, a character in a given sequence is labeled by a tag that stands for its position in the word that the character belongs to. Zhao et al. (2006) reported that a 6-tag tagset shown in Table 1 is the best choice among the tagsets tested for Chinese word segmentation under the CRF framework. Therefore we also use this 6-tag tagset. The basic types of features of our word segmentation model are listed in Table 2 . These basic feature templates are based on Zhao et al. (2006; and Low et al. (2005) .",
"cite_spans": [
{
"start": 185,
"end": 196,
"text": "(Xue, 2003)",
"ref_id": "BIBREF16"
},
{
"start": 376,
"end": 394,
"text": "Zhao et al. (2006)",
"ref_id": "BIBREF5"
},
{
"start": 707,
"end": 725,
"text": "Zhao et al. (2006;",
"ref_id": "BIBREF5"
},
{
"start": 730,
"end": 747,
"text": "Low et al. (2005)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [
{
"start": 654,
"end": 661,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Baseline Segmentation Model",
"sec_num": "2.1"
},
{
"text": "Since we employ a pipelined method, the POS tagging can be performed as a word labeling task, where the input is a sequence of segmented words. We use a CRF here as well. The feature set of our baseline POS tagger, is listed in Table 3 . These are adopted from Wu et al. (2008) .",
"cite_spans": [
{
"start": 261,
"end": 277,
"text": "Wu et al. (2008)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [
{
"start": 228,
"end": 235,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Baseline POS Tagging Model",
"sec_num": "2.2"
},
{
"text": "In this section, we describe our approach of effectively integrating useful information from unlabeled (and labeled) data into the above baseline models through features. We preprocess unlabeled data with our baseline models and obtain wordsegmented sentences with POS tags, and generate new features from the auto-analyzed data. Although the focus of the paper is semi-supervised learning, we also extract a lexicon from the training corpus and use it to generate features. Figure 1 shows an overview of our approach. The rest of this section describes our features in detail.",
"cite_spans": [],
"ref_spans": [
{
"start": 475,
"end": 484,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Our New Features",
"sec_num": "3"
},
{
"text": "In this section, we describe our approach of extracting character-level n-gram lists and generating n-gram features from unlabeled data. We followed the method of Chen et al. (2009) , and modified the method for word segmentation and POS tagging. First, we preprocess unlabeled data using the baseline segmenter and obtain auto-segmented data. We then extract character n-gram lists from auto-segmented sentences. Finally, we generate ngram features for word segmentation.",
"cite_spans": [
{
"start": 163,
"end": 181,
"text": "Chen et al. (2009)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "By using the baseline segmenter, each character c i in the unlabeled data is labeled with a tag t i . In other words, the output of auto-segmentation is a sequence {(c i , t i )} L i=1 . Let g be a character n-gram (e.g., uni-gram c i , bi-gram c i c i+1 , trigram c i\u22121 c i c i+1 and so on) 2 , and seg be a segmentation profile for n-gram g observed at each position. The segmentation profile can be tag t i or the combination of tags. Take a bi-gram for example, seg may be t i or t i t i+1 . Then, Figure 1 : Overview of the proposed approach we can extract a list of {(g, seg, f (g, seg))} from the auto-segmented data. Here, f (g, seg) is the frequency of the cases where n-gram g is segmented with the segmentation profile seg. Then, following Chen et al. 2009, we group entries in this list into three sets: high-frequency (HF), middle-frequency (MF), and low-frequency (LF). The sets are defined as follows: if (g, seg) is one of the top 5% most frequent entries, it is labeled as HF; if it is between top 5% and 20%, it is labeled as MF, otherwise it is labeled as LF. Finally the list can be transformed as a n-gram list",
"cite_spans": [],
"ref_spans": [
{
"start": 502,
"end": 510,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "L ng = {(g, seg, F L(g, seg))}, with F L(g, seg)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "being the frequency label determined as above.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "We attempted to encode the information of the above n-gram list into a new type of features, called n-gram features. We tried several feature representations and generation methods and found that the feature derived from the bi-gram list with seg = t i was most effective.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "We generate the feature for the current character c 0 as follows. We retrieve a set of entries, whose g part matches the bi-gram c 0 c 1 , from L ng . Let this set be L m . From an entry in L m , we generate a feature string represented by (a) seg \u2212 F L(g, seg)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "Then, we concatenate the feature strings of all the entries in L m as one n-gram feature. If there is no entry in L m , the feature representation is \"ND\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "For example, consider that L m is { (\u5e78(Xing)/\u798f(Fu), B, HF), (\u5e78(Xing)/\u798f(Fu), B2, MF), (\u5e78(Xing)/\u798f(Fu), E, LF)} and we are processing c k c k+1 = \"\u5e78(Xing)/\u798f(Fu)\"; conse-quently, the n-gram feature of c k is represented as \"B-HF|B2-MF|E-LF\". Note that the concatenation is in lexicographic order of the feature strings for standardization.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.1.1"
},
{
"text": "Although a character-based model is simple and robust to unknown words, a limitation is its inability to consider word-level information. If a sequence of characters matches a word in an existing dictionary, it may be a clue that the character sequence should be segmented as one word. Several studies showed that using a dictionary brings improvement for Chinese word segmentation (Low et al., 2005; Zhao et al., 2010) . For a corpus-based word segmenter, a manually annotated corpus is essential. Thus we can easily compile a lexicon from a training corpus. We refer to the features related to this lexicon as lexicon features.",
"cite_spans": [
{
"start": 382,
"end": 400,
"text": "(Low et al., 2005;",
"ref_id": "BIBREF9"
},
{
"start": 401,
"end": 419,
"text": "Zhao et al., 2010)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "In this study, we extract a lexicon in the following way. We collect words and all possible POS tags of the words from the training corpus. For instance, for the word \"\u4ea4\u6d41(JiaoLiu)\", the collected entry may be (\u4ea4\u6d41(JiaoLiu), NN-VV). Here, \"NN-VV\" is a concatenation of all the observed POS tags. POS tags are in lexicographical order, as in \"NN-VV\". However, we were concerned that a lexicon compiled in this way could cause an overfitting problem and that meaningful weights for the lexicon features may not be learned. This concern was indeed confirmed by the preliminary experiments using the development set. To solve this problem, we used the following method to build and use lexicons. The method is based on the idea of cross-validation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "\u2022 Divide the training corpus into ten equalsized sets, as in the data preparation for 10fold cross-validation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "\u2022 For each set, we compile a lexicon using the remaining nine sets and use this lexicon to generate features for this set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "\u2022 For the development and test sets, we collect a lexicon using the entire training corpus and use it for feature generation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "Because the lexicon is extracted from other sets, the weights for this feature will not be overestimated by the learning algorithm. This kind of cross-validation-like techniques are used in studies such as Collins (2002) and Martins et al. (2008) to avoid over-fitting to the training data. Our method can be considered as its application to lexicon extraction.",
"cite_spans": [
{
"start": 206,
"end": 220,
"text": "Collins (2002)",
"ref_id": "BIBREF15"
},
{
"start": 225,
"end": 246,
"text": "Martins et al. (2008)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "Using the extracted lexicon, we generate lexicon features as follows. If a character sequence starting with character c 0 matches some words in the lexicon, we greedily choose the longest such matching word w. Letting LEN (w) be the length (the number of characters) of w, we add the following feature for each character c k in c 0 , c 1 , ..., c LEN (w) :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "(b) P (c k )/LEN (w)-P OSs(w) Here, P (c k ) is the position number (i.e., k) of the character c k in w and P OSs(w) represents the POS tags of w in the lexicon. After generating these features, we increment the current position by LEN (w). If there is no matching word, we proceed to the next character. That is, the forward maximum matching is used.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "For example, consider that the current character sequence c 0 c 1 = \"\u5e78(Xing)/\u798f(Fu)\" was matched with a lexicon entry (\u5e78\u798f(XingFu), JJ-NN-VA), the feature for c 0 \"\u5e78(Xing)\" is \"1/2-JJ-NN-VA\" and the feature for c 1 \"\u798f(Fu)\" is \"2/2-JJ-NN-VA\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "Several feature representations have been attempted: (i) using only position information, (ii) representing the position information in a 6-tag or 4-tag tagset, or (iii) representing only one POS tag with the highest frequency. Development experiments showed that the current encoding is more effective than others in word segmentation tasks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "Note that our lexicon feature uses POS tag information for word segmentation. The fact that this feature is very effective as reported in Section 4.3 is interesting, since this can be considered as \"loose\" information feedback from the later process. Although we need a POS tagged corpus even for segmentation, this will not be a big problem since we usually perform POS tagging as well in many applications.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.1.2"
},
{
"text": "We generate n-gram and lexicon features for POS tagging as well. In addition, the features that incorporate word clusters derived from a large autoanalyzed corpus (referred to as cluster features) are introduced.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "New Features for POS Tagging",
"sec_num": "3.2"
},
{
"text": "We preprocess auto-segmented data using the baseline POS tagger and can generate word-level n-gram lists L wg = {w, pos, F L(w, pos)}. Here, w is a word n-gram and pos is the POS tagging profile of the word n-gram. Different from segmentation, features generated from the word unigram list yielded the best results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.2.1"
},
{
"text": "A feature of this type for the current word w 0 is generated as follows. We retrieve a set of entries, whose w part matches the uni-gram w 0 , from L wg . Let this set be L m . In the error analysis, we found that some words were associated with several odd POS tags in the uni-gram list. For instance, in addition to (\u7814\u7a76(YanJiu), NN, HF) and (\u7814\u7a76(YanJiu), VV, HF), (\u7814\u7a76(YanJiu), VA, LF) and (\u7814\u7a76(YanJiu), CD, LF) may appear as entries in the word unigram list, due to mis-tagging by the baseline POS-tagger. Therefore we further impose a restriction based on the frequency as follows: if the number of entries with a HF label \u2265 threshold, only the entries with HF will be selected, and if the sum of entries with a HF or M F label \u2265 threshold, the entries with either HF or M F will be selected, otherwise, all of the entries in L m will be selected. Here the threshold is set to 2 based on the development experiments. Let these selected entries be L s . From an entry in L s , we generate a feature string represented by (c) pos \u2212 F L(w, pos).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.2.1"
},
{
"text": "Then, we concatenate the feature strings of all entries in L s as one n-gram feature. As for the previous instance, the feature for \"\u7814\u7a76(YanJiu)\" is encoded as \"N N -HF |V V -HF \".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised n-gram features",
"sec_num": "3.2.1"
},
{
"text": "Following the work of Koo et al. (2008) , we produced the clusters of various levels of granularity, Data set CTB chapter IDs Dev 41-80,203-233,301-325,400-409,591,613-617,643-673,1022 41-80,203-233,301-325,400-409,591,613-617,643-673, -1035 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1120 41-80,203-233,301-325,400-409,591,613-617,643-673, -1129 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2110 41-80,203-233,301-325,400-409,591,613-617,643-673, -2159 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2270 41-80,203-233,301-325,400-409,591,613-617,643-673, -2294 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2510 41-80,203-233,301-325,400-409,591,613-617,643-673, -2569 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2760 41-80,203-233,301-325,400-409,591,613-617,643-673, -2799 41-80,203-233,301-325,400-409,591,613-617,643-673, ,3040-3109,4040-4059,4084-4085,4090,4096,4106-4108,4113-4115,4121,4128,4132,4135,4158-4162,4169,4189,4196,4236-4261,4322,4335-4336,4407-4411 Test 1-40,144-174,271-300,410-428,592,900-931,1009 41-80,203-233,301-325,400-409,591,613-617,643-673, -1020 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1036 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1044 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1060 41-80,203-233,301-325,400-409,591,613-617,643-673, -1061 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1072 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1118 41-80,203-233,301-325,400-409,591,613-617,643-673, -1119 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1132 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1141 41-80,203-233,301-325,400-409,591,613-617,643-673, -1142 41-80,203-233,301-325,400-409,591,613-617,643-673, ,1148 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2000 41-80,203-233,301-325,400-409,591,613-617,643-673, -2010 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2160 41-80,203-233,301-325,400-409,591,613-617,643-673, -2220 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2295 41-80,203-233,301-325,400-409,591,613-617,643-673, -2330 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2570 41-80,203-233,301-325,400-409,591,613-617,643-673, -2640 41-80,203-233,301-325,400-409,591,613-617,643-673, ,2800 41-80,203-233,301-325,400-409,591,613-617,643-673, -2845 by using the prefixes of the Brown cluster hierarchy at various lengths 3 . After experimenting with many different feature configurations, we eventually settled on the following features: (d) full string prefixes for w \u22121 , w 0 , w 1 6-bit string prefixes for w \u22121 , w 0 , w 1 The clusters are best exploited when \"anchored\" to words or parts of speech (Koo et al., 2008) . We found it useful to make the above features in Bigram template, in CRF++ with the first character \"B\". With this template, a combination of the current output tag and the previous output tag (bigram) is automatically generated. In this case, the combination of the current POS tag and the previous POS tag output is automatically generated.",
"cite_spans": [
{
"start": 22,
"end": 39,
"text": "Koo et al. (2008)",
"ref_id": "BIBREF20"
},
{
"start": 130,
"end": 184,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673,1022",
"ref_id": null
},
{
"start": 185,
"end": 241,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1035",
"ref_id": null
},
{
"start": 242,
"end": 298,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1120",
"ref_id": null
},
{
"start": 299,
"end": 355,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1129",
"ref_id": null
},
{
"start": 356,
"end": 412,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2110",
"ref_id": null
},
{
"start": 413,
"end": 469,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2159",
"ref_id": null
},
{
"start": 470,
"end": 526,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2270",
"ref_id": null
},
{
"start": 527,
"end": 583,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2294",
"ref_id": null
},
{
"start": 584,
"end": 640,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2510",
"ref_id": null
},
{
"start": 641,
"end": 697,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2569",
"ref_id": null
},
{
"start": 698,
"end": 754,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2760",
"ref_id": null
},
{
"start": 755,
"end": 811,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2799",
"ref_id": null
},
{
"start": 812,
"end": 1054,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,3040-3109,4040-4059,4084-4085,4090,4096,4106-4108,4113-4115,4121,4128,4132,4135,4158-4162,4169,4189,4196,4236-4261,4322,4335-4336,4407-4411 Test 1-40,144-174,271-300,410-428,592,900-931,1009",
"ref_id": null
},
{
"start": 1055,
"end": 1111,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1020",
"ref_id": null
},
{
"start": 1112,
"end": 1168,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1036",
"ref_id": null
},
{
"start": 1169,
"end": 1225,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1044",
"ref_id": null
},
{
"start": 1226,
"end": 1282,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1060",
"ref_id": null
},
{
"start": 1283,
"end": 1339,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1061",
"ref_id": null
},
{
"start": 1340,
"end": 1396,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1072",
"ref_id": null
},
{
"start": 1397,
"end": 1453,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1118",
"ref_id": null
},
{
"start": 1454,
"end": 1510,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1119",
"ref_id": null
},
{
"start": 1511,
"end": 1567,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1132",
"ref_id": null
},
{
"start": 1568,
"end": 1624,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1141",
"ref_id": null
},
{
"start": 1625,
"end": 1681,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -1142",
"ref_id": null
},
{
"start": 1682,
"end": 1738,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,1148",
"ref_id": null
},
{
"start": 1739,
"end": 1795,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2000",
"ref_id": null
},
{
"start": 1796,
"end": 1852,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2010",
"ref_id": null
},
{
"start": 1853,
"end": 1909,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2160",
"ref_id": null
},
{
"start": 1910,
"end": 1966,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2220",
"ref_id": null
},
{
"start": 1967,
"end": 2023,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2295",
"ref_id": null
},
{
"start": 2024,
"end": 2080,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2330",
"ref_id": null
},
{
"start": 2081,
"end": 2137,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2570",
"ref_id": null
},
{
"start": 2138,
"end": 2194,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2640",
"ref_id": null
},
{
"start": 2195,
"end": 2251,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, ,2800",
"ref_id": null
},
{
"start": 2252,
"end": 2308,
"text": "41-80,203-233,301-325,400-409,591,613-617,643-673, -2845",
"ref_id": null
},
{
"start": 2663,
"end": 2681,
"text": "(Koo et al., 2008)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semi-supervised cluster features",
"sec_num": "3.2.2"
},
{
"text": "We use the same lexicon extracted for word segmentation for POS tagging. We add the following feature for the current word w 0 : (e) P OSs(w 0 ) Here, P OSs(w 0 ) are all possible POS tags of the current word w 0 in the lexicon. We also tried to use different lexicons, as well as representing the feature with only one POS tag with the highest frequency. However, the experimental results were not better than those by using the above simple method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lexicon features",
"sec_num": "3.2.3"
},
{
"text": "We conducted word segmentation and POS tagging experiments on Penn Chinese Treebanks incorporating up to 200-million-word unlabeled data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "4"
},
{
"text": "To compare with previous studies, we selected the widely used CTB5 (LDC2005T01), and defined the training, development and test sets according to Kruengkrai (2009a) . In order to increase the reliability of our findings, we also used CTB6 (LDC2007T36) and CTB7 (LDC2010T07), which are larger than CTB5. For CTB6, we used the same data split as recommended in the CTB6 document 4 . Because CTB7 includes data from various sources and various genres, we made a new data split according to the following criteria:",
"cite_spans": [
{
"start": 146,
"end": 164,
"text": "Kruengkrai (2009a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Set",
"sec_num": "4.1"
},
{
"text": "\u2022 Put the test set and the development set data described in CTB7 documents 5 into each data set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Set",
"sec_num": "4.1"
},
{
"text": "\u2022 Put the test set and the development set data of CTB5 into each set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Set",
"sec_num": "4.1"
},
{
"text": "\u2022 Put all double checked files into the test-set. 6 \u2022 Keep the data of different genres and sources in balance.",
"cite_spans": [
{
"start": 50,
"end": 51,
"text": "6",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Set",
"sec_num": "4.1"
},
{
"text": "\u2022 Increase the size of the development and test sets to make the evaluation more reliable. 7 The test set and development set of the CTB7 data split used in this paper are detailed in Table 4, and we used the rest as the training set. Table 5 provides the detailed statistics of each genre: NS (Newswire), NM (News magazine), BN (Broadcast news), BC (Broadcast conversation), NW (Newsgroups weblogs). Table 6 provides the statistics of our experimental settings on the treebanks. The out-of-vocabulary (OOV) is defined as the words in the test set that are not in the training set (Sproat and Emerson, 2003) . The development sets were used to obtain the optimal values of tunable parameters and feature configurations. The unlabeled data for our experiments were taken from the XIN_CMN portion of Chinese Gigaword Version 2.0 (LDC2009T14), which has approximately 311 million words. Some of CTB data and Chinese Gigaword data are from the same source: Xinhua newswire between 1994 and 1998. In order to avoid overlap between the CTB data and the unlabeled data, we used only the articles published in 1991-1993 and 1999-2004 as unlabeled data, with 204 million words. 8 Note that we only used one million words from this data for word clustering, because the clustering process is time-consuming and the amount is enough to show the impact of cluster feature.",
"cite_spans": [
{
"start": 91,
"end": 92,
"text": "7",
"ref_id": null
},
{
"start": 581,
"end": 607,
"text": "(Sproat and Emerson, 2003)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [
{
"start": 235,
"end": 242,
"text": "Table 5",
"ref_id": "TABREF5"
},
{
"start": 401,
"end": 408,
"text": "Table 6",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Data Set",
"sec_num": "4.1"
},
{
"text": "CRF++ has four major tunable parameters to control the training condition: a, the regularization algorithm; c, the balance between over-fitting and under-fitting; f, the cut-off threshold for the feature frequencies; and p, the number of threads. We used a = CRF -L2 (Gaussian regularization) and f = 1. We set p to 12 for all experiments to speed up the training. For the baseline segmentation model, we varied c in the range of [1.0, 5.0] and found that setting c = 4.0 yielded the best performance on the development set of CTB7. For our approach, we varied c in the range of [0.3, 5.0] and found that setting c = 1.0 yielded the best performance. For the POS tagging model, c was set to 4.0 in all of the methods . For the clustering tool, c (the number of clusters) was set to 1000.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parameter Tuning",
"sec_num": "4.2"
},
{
"text": "We evaluated both word segmentation (Seg) and joint word segmentation and POS tagging (Seg &Tag). We used recall (R), precision (P) and F 1 as evaluation metrics. The experimental results of word segmentation on CTB5, CTB6 and CTB7 test sets are shown in Table 7 , where (a) refers to the n-gram feature generated from the unlabeled data and (b) refers to the lexicon feature. The results show that the n-gram feature was very effective in all experiments and that the combination of (a) and (b) can provide further improvement.",
"cite_spans": [],
"ref_spans": [
{
"start": 255,
"end": 262,
"text": "Table 7",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "4.3"
},
{
"text": "The experimental results of segmentation and POS tagging on CTB5, CTB6 and CTB7 test sets are shown in Table 8 and Table 9 . Table 8 shows the results when we used the baseline segmenta- tion model and Table 9 shows the results when we used our best segmentation model (i.e., (a)+(b)).",
"cite_spans": [],
"ref_spans": [
{
"start": 103,
"end": 122,
"text": "Table 8 and Table 9",
"ref_id": "TABREF9"
},
{
"start": 125,
"end": 132,
"text": "Table 8",
"ref_id": "TABREF9"
},
{
"start": 202,
"end": 209,
"text": "Table 9",
"ref_id": "TABREF10"
}
],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "4.3"
},
{
"text": "The results show that the cluster features were the most effective ones and that a combination of three types of features achieves the best performance. This suggests that these features are relatively independent in feature characteristics. The results of our best system are compared with the previous methods in the next section.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "4.3"
},
{
"text": "In this section, we compare our approach with the best previous approaches reported in the literature. The performance scores of previous studies are directly taken from their papers, except for N&U 07 (Nakagawa and Uchimoto, 2007) , which is taken from Kruengkrai et al. (2009b) . Z&C 10 refers to Zhang and Clark (2010) . Two methods in Kruengkrai et al. (2009a; 2009b) are referred to as K 09a and K 09b. Jiang 08a and Jiang 08b refer to Jiang et al. (2008a; 2008b) . Table 10 compares F 1 results on CTB5.0. The best score in each column is in boldface. The results of our approach are superior to those of previous studies for both p-value Models CTB5 CTB6 CTB7 Ours vs. K 09b(Seg) 0.8054 5.0e-08 \u2248 0.0 Ours vs. K 09b(Seg&Tag) 0.7060 1.6e-14 \u2248 0.0 Ours vs. Base Seg4.0e-06 1.8e-11 \u2248 0.0 Ours vs. Base Seg&Tag2.1e-06 \u2248 0.0 \u2248 0.0 Seg and Seg&Tag. We also conducted experiments using the system implemented by Kruengkrai for comparison on CTB6 and CTB7 with two methods (K 09a and K 09b) and the F 1 results are shown in Table 11 .",
"cite_spans": [
{
"start": 202,
"end": 231,
"text": "(Nakagawa and Uchimoto, 2007)",
"ref_id": "BIBREF21"
},
{
"start": 254,
"end": 279,
"text": "Kruengkrai et al. (2009b)",
"ref_id": null
},
{
"start": 299,
"end": 321,
"text": "Zhang and Clark (2010)",
"ref_id": "BIBREF27"
},
{
"start": 339,
"end": 364,
"text": "Kruengkrai et al. (2009a;",
"ref_id": null
},
{
"start": 365,
"end": 371,
"text": "2009b)",
"ref_id": null
},
{
"start": 441,
"end": 461,
"text": "Jiang et al. (2008a;",
"ref_id": null
},
{
"start": 462,
"end": 468,
"text": "2008b)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 471,
"end": 479,
"text": "Table 10",
"ref_id": "TABREF0"
},
{
"start": 1023,
"end": 1031,
"text": "Table 11",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Comparative Results",
"sec_num": "4.4"
},
{
"text": "For reference, the results of the development set are also shown in Table 12 . Although the Seg performances of CTB5 and CTB7 are lower than K 09a and K 09b , Seg&Tag achieves the best performance on all development sets.",
"cite_spans": [],
"ref_spans": [
{
"start": 68,
"end": 76,
"text": "Table 12",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Comparative Results",
"sec_num": "4.4"
},
{
"text": "We evaluated statistical significance using McNemar's test 9 . With McNemar' test, we compared the correctness of the labeling decisions of the two models. The null hypothesis is that the disagreements (correct vs. incorrect) are due to chance. For Seg, a word in the system output is considered correct if the word boundary is correctly identified. For Seg &Tag, a word is considered correct only when both the word boundary and its POS tag are correctly identified. Table 13 summarizes the results on test sets. These tests suggest that although the difference from K 09b for CTB5 data is not statistically significant, all other differences are clearly statistically significant (p < 10 \u22125 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 468,
"end": 476,
"text": "Table 13",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Statistical Significance Tests",
"sec_num": "4.5"
},
{
"text": "An alternative method of incorporating unlabeled data is self-training, so we also compared our results to the self-training method. Because no existing research was found concerning the selftraining method on word segmentation and POS tagging for Chinese, we tested the simplest selftraining here. We analyzed the unlabeled data with the baseline models, added the newly autolabeled data to the training corpus, and trained a new model. Since the manually labeled data should be considered more important than the unlabeled data (McClosky et al., 2006) , we also adjusted the weight of the labeled data to the integer in the range of [1, 5] in experiments. The results of all the experiments were not positive -we were not able to obtain any improvement over the baseline models in either word segmentation or POS tagging. Due to space limitation, we only include the results with the labeled data weight = 1. Other weights did not change the conclusion here. Table 14 shows the F 1 results on segmentation with different sizes of the additional data on the CTB7 test set. Table 15 shows the F 1 results on segmentation and POS tagging. The segmentation by the baseline model was used for all of the POS tagging experiments here.",
"cite_spans": [
{
"start": 530,
"end": 553,
"text": "(McClosky et al., 2006)",
"ref_id": "BIBREF3"
},
{
"start": 635,
"end": 638,
"text": "[1,",
"ref_id": null
},
{
"start": 639,
"end": 641,
"text": "5]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 961,
"end": 969,
"text": "Table 14",
"ref_id": "TABREF0"
},
{
"start": 1074,
"end": 1082,
"text": "Table 15",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Comparison with Self-Training",
"sec_num": "4.6"
},
{
"text": "Our approach is to incorporate large unlabeled data in Chinese word segmentation and POS tagging. For research using large unlabeled data, Suzuki and Isozaki (2008) and Suzuki et al. (2009) proposed semi-supervised learning algorithms on giga-word-scale unlabeled data and showed performance improvement in POS tagging, syntactic chunking, and named entity recognition. Instead of using specialized semi-supervised learning algorithms, Chen et al. (2009) used features based on sub-structures in auto-parsed data and demonstrated the effectiveness of these features. Koo et al. (2008) presented the use of cluster features. The advantage of the methods by Chen et al. (2009) and Koo et al. (2008) is their simplicity and flexibility. Our research applied these techniques to word segmentation and POS tagging rather than dependency parsing. Yu et al. (2007) proposed a character-based joint method for word segmentation and POS tagging, in which they introduced an unsupervised method for unknown word learning. However, they only learned the unknown words from the test set. Zhao and Kit (2007; proposed an approach using unsupervised segmentation criteria as features for Chinese word segmentation. However, their features were only accumulated from the training and test data. Our approach differs in that we used features generated from large unlabeled data and provided richer information, which may be unseen from the training corpus. Kruengkrai et al. (2009a; 2009b) presented a discriminative word-character hybrid model for joint Chinese word segmentation and POS tagging and achieved the state-of-the-art accuracy for the CTB test sets. Instead of using the hybrid model, we used conceptually simpler pipelined models built with standard CRF tools. Compared with their method, our approach achieved higher performance with the help of unlabeled data.",
"cite_spans": [
{
"start": 139,
"end": 164,
"text": "Suzuki and Isozaki (2008)",
"ref_id": "BIBREF12"
},
{
"start": 169,
"end": 189,
"text": "Suzuki et al. (2009)",
"ref_id": "BIBREF13"
},
{
"start": 436,
"end": 454,
"text": "Chen et al. (2009)",
"ref_id": "BIBREF25"
},
{
"start": 567,
"end": 584,
"text": "Koo et al. (2008)",
"ref_id": "BIBREF20"
},
{
"start": 656,
"end": 674,
"text": "Chen et al. (2009)",
"ref_id": "BIBREF25"
},
{
"start": 679,
"end": 696,
"text": "Koo et al. (2008)",
"ref_id": "BIBREF20"
},
{
"start": 841,
"end": 857,
"text": "Yu et al. (2007)",
"ref_id": "BIBREF14"
},
{
"start": 1076,
"end": 1095,
"text": "Zhao and Kit (2007;",
"ref_id": "BIBREF8"
},
{
"start": 1441,
"end": 1466,
"text": "Kruengkrai et al. (2009a;",
"ref_id": null
},
{
"start": 1467,
"end": 1473,
"text": "2009b)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "5"
},
{
"text": "In this paper, we presented a simple yet effective semi-supervised approach to pipelined Chinese segmentation and POS tagging. Through a series of experiments, we demonstrated that our approach provides substantial improvement over the best previously reported methods as well as the baseline methods.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "Available from http://crfpp.sourceforge.net/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Note that there are several alternative ways for extracting n-grams at position i, for example ci\u22121ci for a bi-gram. In this paper, we used the way as explained here.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We used the word clustering tool, available from http://www.cs.berkeley.edu/pliang/software/brown-cluster-1.2.zip, to produce word clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "list-of-files.pdf 5 This is the same as the CTB6 data split.6 In CTB7, sentences checked twice are marked, and they are expected to have higher annotation quality.7 CTB5 and CTB6 data splits include small development and test sets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "This may be a too strict setting, but we wanted to test our approach in the fairest way.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We used the version with Yates' correction, using correction factor 0.5",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Stacking Dependency Parsers",
"authors": [
{
"first": "F",
"middle": [
"T"
],
"last": "Andr",
"suffix": ""
},
{
"first": "Dipanjan",
"middle": [],
"last": "Martins",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Das",
"suffix": ""
},
{
"first": "Eric",
"middle": [
"P"
],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Xing",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of EMNLP-2008",
"volume": "",
"issue": "",
"pages": "513--521",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andr F. T.Martins, Dipanjan Das, Noah A. Smith, and Eric P. Xing 2008. Stacking Dependency Parsers. In Proceedings of EMNLP-2008, pages 513-521.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "An Error-Driven Word-Character Hybird Model for Joint Chinese Word Segmentation and POS Tagging",
"authors": [
{
"first": "Canasai",
"middle": [],
"last": "Kruengkrai",
"suffix": ""
},
{
"first": "Kiyotaka",
"middle": [],
"last": "Uchimoto",
"suffix": ""
},
{
"first": "Yiou",
"middle": [],
"last": "Jun'ichi Kazama",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Torisawa",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of ACL-IJCNLP-2009",
"volume": "",
"issue": "",
"pages": "513--521",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Canasai Kruengkrai, Kiyotaka Uchimoto, Jun'ichi Kazama, Yiou Wang, Kentaro Torisawa, and Hitoshi Isahara 2009. An Error-Driven Word-Character Hybird Model for Joint Chinese Word Segmentation and POS Tagging. In Proceedings of ACL-IJCNLP- 2009, pages 513-521.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Joint Chinese Word Segmentation and POS Tagging Using an Error-Driven Word-Character Hybrid Model",
"authors": [
{
"first": "Canasai",
"middle": [],
"last": "Kruengkrai Kiyotaka Uchimoto",
"suffix": ""
},
{
"first": "Yiou",
"middle": [],
"last": "Jun'ichi Kazama",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Torisawa",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2009,
"venue": "IEICE transactions on information and systems",
"volume": "92",
"issue": "12",
"pages": "2298--2305",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Canasai Kruengkrai Kiyotaka Uchimoto, Jun'ichi Kazama, Yiou Wang, Kentaro Torisawa, and Hi- toshi Isahara 2009. Joint Chinese Word Segmenta- tion and POS Tagging Using an Error-Driven Word- Character Hybrid Model. IEICE transactions on in- formation and systems 92(12), pages 2298-2305.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Effective self-training for parsing",
"authors": [
{
"first": "David",
"middle": [],
"last": "Mcclosky",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Charniak",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Johnson",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Human Language Technology Conference of the NAACL-2006",
"volume": "",
"issue": "",
"pages": "152--159",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David McClosky, Eugene Charniak, and Mark Johnson 2006. Effective self-training for parsing. In Pro- ceedings of the Human Language Technology Con- ference of the NAACL-2006, pages 152-159.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Using Self-trained Ailexical Preferences to Improve Disambiguation Accuracy",
"authors": [
{
"first": "",
"middle": [],
"last": "Gertjan Van Noord",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of IWPT-07",
"volume": "",
"issue": "",
"pages": "1--10",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gertjan van Noord 2007. Using Self-trained Ailexical Preferences to Improve Disambiguation Accuracy. In Proceedings of IWPT-07, pages 1-10",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling",
"authors": [
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Chang-Ning",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Mu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Bao-Liang",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation",
"volume": "",
"issue": "",
"pages": "87--94",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu 2006. Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling. In Proceedings of the 20th Pacific Asia Conference on Language, Information and Compu- tation.pages 87-94.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A Unified Character-Based Tagging Framework for Chinese Word Segmentation",
"authors": [
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Chang-Ning",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Mu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Bao-Liang",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2010,
"venue": "ACM Transactions on Asian Language Information Processing",
"volume": "9",
"issue": "2",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu 2010. A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Transactions on Asian Language Information Pro- cessing, 9(2), Article 5.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Exploiting Unlabeled Text with Different Unsupervised Segmentation Criteria for Chinese Word Segmentation",
"authors": [
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Chunyu",
"middle": [],
"last": "Kit",
"suffix": ""
}
],
"year": 2008,
"venue": "Research in Computing Science",
"volume": "33",
"issue": "",
"pages": "93--104",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hai Zhao and Chunyu Kit 2008. Exploiting Unlabeled Text with Different Unsupervised Segmentation Cri- teria for Chinese Word Segmentation. Research in Computing Science, Vol. 33, pages 93-104.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Incorporating Global Information into Supervised Learning for Chinese Word Segmentation",
"authors": [
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Chunyu",
"middle": [],
"last": "Kit",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of PACLING-2007",
"volume": "",
"issue": "",
"pages": "66--74",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hai Zhao and Chunyu Kit 2007. Incorporating Global Information into Supervised Learning for Chinese Word Segmentation. In Proceedings of PACLING- 2007, pages 66-74.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A Maximum Entropy Approach to Chinese Word Segmentation",
"authors": [
{
"first": "Jin",
"middle": [
"Kiat"
],
"last": "Low",
"suffix": ""
},
{
"first": "Tou",
"middle": [],
"last": "Hwee",
"suffix": ""
},
{
"first": "Wenyuan",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Guo",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 4th SIGHAN Workshop on Chinese Language Processing (SIGHAN05)",
"volume": "",
"issue": "",
"pages": "161--164",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jin Kiat Low, Hwee Tou Ng and Wenyuan Guo 2005. A Maximum Entropy Approach to Chinese Word Segmentation. In Proceedings of the 4th SIGHAN Workshop on Chinese Language Process- ing (SIGHAN05), pages 161-164.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data",
"authors": [
{
"first": "John",
"middle": [],
"last": "Lafferty",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "Jfernando",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of ICML01",
"volume": "",
"issue": "",
"pages": "282--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Lafferty, Andrew McCallum, and JFernando Pereira 2001. Conditional Random Fields: Prob- abilistic Models for Segmenting and Labeling Se- quence Data. In Proceedings of ICML01, pages 282-289.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Inducing Gazetteers for Named Entity Recognition by Large-scale Clustering of Dependency Relations",
"authors": [
{
"first": "Kentaro",
"middle": [],
"last": "Jun'ichi Kazama",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Torisawa",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-2008",
"volume": "",
"issue": "",
"pages": "665--673",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jun'ichi Kazama and Kentaro Torisawa 2008. In- ducing Gazetteers for Named Entity Recognition by Large-scale Clustering of Dependency Relations. In Proceedings of ACL-2008, pages 665-673.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Semi-Supervised Sequential Labeling and Segmentation using Gigaword Scale Unlabeled Data",
"authors": [
{
"first": "Jun",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "Hideki",
"middle": [],
"last": "Isozaki",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-08: HLT",
"volume": "",
"issue": "",
"pages": "407--415",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jun Suzuki and Hideki Isozaki 2008. Semi-Supervised Sequential Labeling and Segmentation using Giga- word Scale Unlabeled Data. In Proceedings of ACL-08: HLT, pages 407-415.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "An Empirical Study of Semisupervised Structured Conditional Models for Dependency Parsing",
"authors": [
{
"first": "Jun",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "Hideki",
"middle": [],
"last": "Isozaki",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of EMNLP-2009",
"volume": "",
"issue": "",
"pages": "551--560",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins 2009. An Empirical Study of Semi- supervised Structured Conditional Models for De- pendency Parsing. In Proceedings of EMNLP-2009, pages 551-560.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Characterbased Chinese Word Segmentation and Pos-tagging with Unsupervised Unknown Word Learning",
"authors": [
{
"first": "Kun",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of NLP-2007",
"volume": "",
"issue": "",
"pages": "823--826",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kun Yu, Sadao Kurohashi, Hao Liu 2007. Character- based Chinese Word Segmentation and Pos-tagging with Unsupervised Unknown Word Learning. In Proceedings of NLP-2007, pages 823-826.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Ranking Algorithms for Named-entity Extraction: Boosting and the Voted Perceptron",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of ACL-2002",
"volume": "",
"issue": "",
"pages": "489--496",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Collins 2002. Ranking Algorithms for Named-entity Extraction: Boosting and the Voted Perceptron. In Proceedings of ACL-2002, pages 489-496",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing",
"authors": [
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "8",
"issue": "",
"pages": "29--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nianwen Xue 2003. Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing 8(1), pages 29-48",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "The First International Chinese Word Segmentation Bakeoff",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Sproat",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Emerson",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "133--143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Sproat and Thomas Emerson 2003. The First International Chinese Word Segmentation Bakeoff. In Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing, pages, 133-143.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data",
"authors": [
{
"first": "Rie",
"middle": [],
"last": "Kubota",
"suffix": ""
},
{
"first": "Ando",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Tong",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2005,
"venue": "Journal of Machine Learning Research",
"volume": "6",
"issue": "",
"pages": "1817--1853",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rie Kubota Ando and Tong Zhang 2005. A Frame- work for Learning Predictive Structures from Multi- ple Tasks and Unlabeled Data. Journal of Machine Learning Research, 6, pages 1817-1853",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Name Tagging with Word Clusters and Discriminative Training",
"authors": [
{
"first": "Scott",
"middle": [],
"last": "Miller",
"suffix": ""
},
{
"first": "Jethran",
"middle": [],
"last": "Guinness",
"suffix": ""
},
{
"first": "Alex",
"middle": [],
"last": "Zamanian",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of HLT-2004",
"volume": "",
"issue": "",
"pages": "337--342",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Scott Miller, Jethran Guinness, and Alex Zamanian 2004. Name Tagging with Word Clusters and Dis- criminative Training. In Proceedings of HLT-2004, pages 337-342",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Simple Semi-supervised Dependency Parsing",
"authors": [
{
"first": "Terry",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-2008",
"volume": "",
"issue": "",
"pages": "595--603",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Terry Koo, Xavier Carreras and Michael Collins 2008. Simple Semi-supervised Dependency Parsing. In Proceedings of ACL-2008, pages 595-603",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Hybrid Approach to Word Segmentation and Pos Tagging",
"authors": [
{
"first": "Tetsuji",
"middle": [],
"last": "Nakagawa",
"suffix": ""
},
{
"first": "Kiyotaka",
"middle": [],
"last": "Uchimoto",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of ACL Demo and Poster Sessions",
"volume": "",
"issue": "",
"pages": "217--220",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tetsuji Nakagawa and Kiyotaka Uchimoto 2007. Hy- brid Approach to Word Segmentation and Pos Tag- ging. In Proceedings of ACL Demo and Poster Ses- sions, pages 217-220",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging",
"authors": [
{
"first": "Wenbin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yajuan",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-2008",
"volume": "",
"issue": "",
"pages": "897--904",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lu. 2008. A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging. In Proceedings of ACL-2008, pages 897-904",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Word Lattice Reranking for Chinese Word Segmentation and Part-of-Speech Tagging",
"authors": [
{
"first": "Wenbin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Haitao",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of COLING-2008",
"volume": "",
"issue": "",
"pages": "385--392",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenbin Jiang, Haitao Mi and Qun Liu 2008. Word Lattice Reranking for Chinese Word Segmentation and Part-of-Speech Tagging. In Proceedings of COLING-2008, pages 385-392",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Dependency Parsing with Short Dependency Relations in Unlabeled Data",
"authors": [
{
"first": "Wenliang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Daisuke",
"middle": [],
"last": "Kawahara",
"suffix": ""
},
{
"first": "Kiyotaka",
"middle": [],
"last": "Uchimoto",
"suffix": ""
},
{
"first": "Yujie",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of IJCNLP-2008",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenliang Chen, Daisuke Kawahara, Kiyotaka Uchi- moto, Yujie Zhang, and Hitoshi Isahara 2008. De- pendency Parsing with Short Dependency Relations in Unlabeled Data. In Proceedings of IJCNLP-2008",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Improving Dependency Parsing with Subtrees from auto-Parsed Data",
"authors": [
{
"first": "Wenliang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Kiyotaka",
"middle": [],
"last": "Kazama",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Uchimoto",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Torisawa",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of EMNLP-2009",
"volume": "",
"issue": "",
"pages": "570--579",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenliang Chen, Jun'ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa 2009. Improving Depen- dency Parsing with Subtrees from auto-Parsed Data. In Proceedings of EMNLP-2009, pages 570-579,",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Description of the NCU Chinese Word Segmentation and Part-of-Speech Tagging for SIGHAN Bakeoff",
"authors": [
{
"first": "Yu-Chieh Wu Jie-Chi",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Yue-Shi",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the SIGHAN Workshop on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "161--166",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yu-Chieh Wu Jie-Chi Yang and Yue-Shi Lee 2008. Description of the NCU Chinese Word Segmenta- tion and Part-of-Speech Tagging for SIGHAN Bake- off 2008. In Proceedings of the SIGHAN Workshop on Chinese Language Processing, pages 161-166.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of EMNLP-2010",
"volume": "",
"issue": "",
"pages": "843--852",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark 2010. A Fast Decoder for Joint Word Segmentation and POS-Tagging Us- ing a Single Discriminative Model. In Proceedings of EMNLP-2010, pages 843-852",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"text": "Word representation with a 6-tag tagset :S, B, B 2 , B 3 , M, E",
"type_str": "table",
"num": null,
"content": "<table><tr><td>Type Character Unigram Nearing Character Bigram Jump Character Bigram Punctuation Character Type</td><td>Feature c\u22121, c0, c1 (c\u22121 c0), (c0 c1) c\u22121 c1 IsPu(c0) K(c\u22122)K(c\u22121)K(c0)K(c1)K(c2) Types of character: date, numeral, alphabet, Chinese Description Previous, current and next character Previous (next) character and current character Previous character and next character Current character is punctuation</td></tr></table>",
"html": null
},
"TABREF1": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table><tr><td>: Feature templates for word segmentation</td></tr><tr><td>version 7.0. We show that our semi-supervised ap-</td></tr><tr><td>proach yields improvements for all the test collec-</td></tr><tr><td>tions and achieves better results than the best re-</td></tr><tr><td>ported results in the literature.</td></tr></table>",
"html": null
},
"TABREF3": {
"text": "Feature templates for POS tagging",
"type_str": "table",
"num": null,
"content": "<table><tr><td>Unlabeled Data</td><td>Labeled Data</td><td>Dictionary Extraction</td><td>Lexicons</td></tr><tr><td>Preprocessing</td><td>Word</td><td>Word Clusters</td><td>Feature Generation</td></tr><tr><td/><td>Clustering</td><td/><td/></tr><tr><td/><td/><td>Character N-gram List</td><td>Training</td></tr><tr><td>Auto-analyzed</td><td>Dictionary</td><td/><td/></tr><tr><td>Data</td><td>Extraction</td><td>Word N-gram List</td><td>New Model</td></tr></table>",
"html": null
},
"TABREF4": {
"text": "Dev-set and test-set of CTB7 data split",
"type_str": "table",
"num": null,
"content": "<table><tr><td>Total Dev-LDC Test-LDC 107,14 561 981 8,420 682 917 BN 10,079 NS NM 836 898 BC 12,049 0 0 NW 10,181 0 0</td><td>Dev 2,084 2,028 Test 1,618 1,646 2,067 2,038 2,367 2,382 2,000 2,086</td></tr></table>",
"html": null
},
"TABREF5": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table/>",
"html": null
},
"TABREF7": {
"text": "Statistics of CTB5, CTB6 and CTB7 data splits",
"type_str": "table",
"num": null,
"content": "<table><tr><td>method Baseline +(a) n-gram +(b) lexicon +(a)+(b)</td><td>R 0.9791 0.9830 0.9809 0.9845</td><td>CTB5 P 0.9715 0.9766 0.9743 0.9777</td><td>F1 0.9753 0.9798 0.9776 0.9811</td><td>CTB6 P 0.9504 0.9521 0.9513 0.9503 0.9492 0.9498 CTB7 R F1 R P F1 0.9567 0.9568 0.9567 0.9562 0.9546 0.9554 0.9545 0.9555 0.9550 0.9548 0.9535 0.9542 0.9575 0.9583 0.9579 0.9576 0.9554 0.9565</td></tr></table>",
"html": null
},
"TABREF8": {
"text": "Results of word segmentation",
"type_str": "table",
"num": null,
"content": "<table><tr><td>POS tag method Baseline +(c) n-gram +(d) cluster +(e) lexicon +(c)+(d)+(e)</td><td>CTB5 0.9318 0.8999 0.8937 CTB6 CTB7 0.9333 0.9014 0.8958 0.9350 0.9026 0.8959 0.9346 0.9015 0.8959 0.9359 0.9048 0.8985</td></tr></table>",
"html": null
},
"TABREF9": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table/>",
"html": null
},
"TABREF10": {
"text": "F 1 results of segmentation and POS tagging (our best model for word segmentation)",
"type_str": "table",
"num": null,
"content": "<table/>",
"html": null
},
"TABREF12": {
"text": "F 1 Results comparison on development set",
"type_str": "table",
"num": null,
"content": "<table><tr><td>Method Ours Baseline Z&C 10 K 09a K 09b Jiang 08a Jiang 08b N&U 07</td><td>Seg 0.9811 0.9753 0.9778 0.9787 0.9798 0.9785 0.9774 0.9796</td><td>Seg&Tag 0.9418 0.9318 0.9367 0.9367 0.9400 0.9341 0.9337 0.9338</td></tr></table>",
"html": null
},
"TABREF13": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table><tr><td colspan=\"2\">: Comparison with previous studies on</td></tr><tr><td>CTB5</td><td/></tr><tr><td>CTB6 Seg&Tag 0.9579 Seg 0.9112 Baseline 0.9513 Methods Ours 0.8999 K 09a 0.9550 0.9050 K 09b 0.9551 0.9053</td><td>CTB7 Seg&Tag 0.9565 Seg 0.9046 0.9498 0.8937 0.9540 0.8986 0.9546 0.8990</td></tr></table>",
"html": null
},
"TABREF14": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table><tr><td>: Comparison with previous studies on</td></tr><tr><td>CTB6 and CTB7</td></tr></table>",
"html": null
},
"TABREF15": {
"text": "Results of McNemar's test.",
"type_str": "table",
"num": null,
"content": "<table/>",
"html": null
},
"TABREF17": {
"text": "",
"type_str": "table",
"num": null,
"content": "<table><tr><td>: Comparison with self-training (Seg)</td></tr><tr><td>sentences added POS tagging F1 0(Baseline) 0.8937 5k 0.8926 10k 0.8922 30k 0.8911 50k 0.8908</td></tr></table>",
"html": null
},
"TABREF18": {
"text": "Comparison with self-training (POS)",
"type_str": "table",
"num": null,
"content": "<table/>",
"html": null
}
}
}
} |