File size: 157,815 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 |
{
"paper_id": "I17-1007",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:39:41.827229Z"
},
"title": "Neural Probabilistic Model for Non-projective MST Parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Language Technologies Institute Carnegie Mellon University Pittsburgh",
"location": {
"postCode": "15213",
"region": "PA",
"country": "USA"
}
},
"email": "xuezhem@cs.cmu.edu"
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Language Technologies Institute Carnegie Mellon University Pittsburgh",
"location": {
"postCode": "15213",
"region": "PA",
"country": "USA"
}
},
"email": "hovy@cmu.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In this paper, we propose a probabilistic parsing model that defines a proper conditional probability distribution over nonprojective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs, which automatically benefits from both word-and character-level representations, by using a combination of bidirectional LSTMs and CNNs. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over nonprojective trees. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straightforward end-to-end model training procedure via back-propagation. We evaluate our model on 17 different datasets, across 14 different languages. Our parser achieves state-of-the-art parsing performance on nine datasets.",
"pdf_parse": {
"paper_id": "I17-1007",
"_pdf_hash": "",
"abstract": [
{
"text": "In this paper, we propose a probabilistic parsing model that defines a proper conditional probability distribution over nonprojective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs, which automatically benefits from both word-and character-level representations, by using a combination of bidirectional LSTMs and CNNs. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over nonprojective trees. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straightforward end-to-end model training procedure via back-propagation. We evaluate our model on 17 different datasets, across 14 different languages. Our parser achieves state-of-the-art parsing performance on nine datasets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Dependency parsing is one of the first stages in deep language understanding and has gained interest in the natural language processing (NLP) community, due to its usefulness in a wide range of applications. Many NLP systems, such as machine translation (Xie et al., 2011) , entity coreference resolution (Ng, 2010; Durrett and Klein, 2013; , low-resource languages processing (McDonald et al., 2013; Ma and Xia, 2014) , and word sense disambiguation (Fauceglia et al., 2015) , are becoming more sophisticated, in part because of utilizing syntactic knowledge such as dependency parsing trees.",
"cite_spans": [
{
"start": 254,
"end": 272,
"text": "(Xie et al., 2011)",
"ref_id": "BIBREF61"
},
{
"start": 305,
"end": 315,
"text": "(Ng, 2010;",
"ref_id": "BIBREF50"
},
{
"start": 316,
"end": 340,
"text": "Durrett and Klein, 2013;",
"ref_id": "BIBREF17"
},
{
"start": 377,
"end": 400,
"text": "(McDonald et al., 2013;",
"ref_id": "BIBREF47"
},
{
"start": 401,
"end": 418,
"text": "Ma and Xia, 2014)",
"ref_id": "BIBREF40"
},
{
"start": 451,
"end": 475,
"text": "(Fauceglia et al., 2015)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Dependency trees represent syntactic relationships through labeled directed edges between heads and their dependents (modifiers). In the past few years, several dependency parsing algorithms (Nivre and Scholz, 2004; McDonald et al., 2005b; Ma and Zhao, 2012a,b) have been proposed, whose high performance heavily rely on hand-crafted features and task-specific resources that are costly to develop, making dependency parsing models difficult to adapt to new languages or new domains.",
"cite_spans": [
{
"start": 191,
"end": 215,
"text": "(Nivre and Scholz, 2004;",
"ref_id": "BIBREF51"
},
{
"start": 216,
"end": 239,
"text": "McDonald et al., 2005b;",
"ref_id": "BIBREF48"
},
{
"start": 240,
"end": 261,
"text": "Ma and Zhao, 2012a,b)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Recently, non-linear neural networks, such as recurrent neural networks (RNNs) with long-short term memory (LSTM) and convolution neural networks (CNNs), with as input distributed word representations, also known as word embeddings, have been broadly applied, with great success, to NLP problems like part-of-speech (POS) tagging (Collobert et al., 2011) and named entity recognition (NER) (Chiu and Nichols, 2016) . By utilizing distributed representations as inputs, these systems are capable of learning hidden information representations directly from data instead of manually designing hand-crafted features, yielding end-to-end models . Previous studies explored the applicability of neural representations to traditional graph-based parsing models. Some work (Kiperwasser and Goldberg, 2016; Wang and Chang, 2016) replaced the linear scoring function of each arc in traditional models with neural networks and used a margin-based objective (McDonald et al., 2005a) for model training. Other work (Zhang et al., 2016; Dozat and Manning, 2016) formalized dependency parsing as independently selecting the head of each word with cross-entropy objective, without the guarantee of a general non-projective tree structure output. Moreover, there have yet been no previous work on deriving a neural prob-abilistic parsing model to define a proper conditional distribution over non-projective trees for a given sentence.",
"cite_spans": [
{
"start": 330,
"end": 354,
"text": "(Collobert et al., 2011)",
"ref_id": "BIBREF13"
},
{
"start": 390,
"end": 414,
"text": "(Chiu and Nichols, 2016)",
"ref_id": "BIBREF10"
},
{
"start": 766,
"end": 798,
"text": "(Kiperwasser and Goldberg, 2016;",
"ref_id": "BIBREF26"
},
{
"start": 799,
"end": 820,
"text": "Wang and Chang, 2016)",
"ref_id": "BIBREF59"
},
{
"start": 947,
"end": 971,
"text": "(McDonald et al., 2005a)",
"ref_id": "BIBREF46"
},
{
"start": 1003,
"end": 1023,
"text": "(Zhang et al., 2016;",
"ref_id": "BIBREF65"
},
{
"start": 1024,
"end": 1048,
"text": "Dozat and Manning, 2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we propose a probabilistic neural network-based model for non-projective dependency parsing. This parsing model uses bi-directional LSTM-CNNs (BLSTM-CNNs) as backbone to learn neural information representations, on top of which a probabilistic structured layer is constructed with a conditional log-linear model, defining a conditional distribution over all non-projective dependency trees. The architecture of BLSTM-CNNs is similar to the one used for sequence labeling tasks , where CNNs encode character-level information of a word into its character-level representation and BLSTM models context information of each word. Due to the probabilistic structured output layer, we can use negative log-likelihood as the training objective, where the partition function and marginals can be computed via Kirchhoff's Matrix-Tree Theorem (Tutte, 1984) to process the optimization efficiently by back-propagation. At test time, parsing trees can be decoded with the maximum spanning tree (MST) algorithm (Mc-Donald et al., 2005b) . We evaluate our model on 17 treebanks across 14 different languages, achieving state-of-the-art performance on 9 treebanks. The contributions of this work are summarized as: (i) proposing a neural probabilistic model for non-projective dependency parsing. (ii) giving empirical evaluations of this model on benchmark data sets over 14 languages. (iii) achieving stateof-the-art performance with this parser on nine different treebanks.",
"cite_spans": [
{
"start": 816,
"end": 861,
"text": "Kirchhoff's Matrix-Tree Theorem (Tutte, 1984)",
"ref_id": null
},
{
"start": 1013,
"end": 1038,
"text": "(Mc-Donald et al., 2005b)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this section, we describe the components (layers) of our neural parsing model. We introduce the neural layers in our neural network one-by-one from top to bottom.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Probabilistic Parsing Model",
"sec_num": "2"
},
{
"text": "In this paper, we will use the following notation: x = {x 1 , . . . , x n } represents a generic input sentence, where x i is the ith word. y represents a generic (possibly non-projective) dependency tree, which represents syntactic relationships through labeled directed edges between heads and their dependents. For example, Figure 1 shows a dependency tree for the sentence, \"Economic news had little effect on financial markets\", with the sentences root-symbol as its root. T (x) is used to denote the set of possible dependency trees for sentence x.",
"cite_spans": [],
"ref_spans": [
{
"start": 327,
"end": 335,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "The probabilistic model for dependency parsing defines a family of conditional probability p(y|x; \u0398) over all y given sentence x, with a loglinear form:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "P (y|x; \u0398) = exp (x h ,xm)\u2208y \u03c6(x h , x m ; \u0398) Z(x; \u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "where \u0398 is the parameter of this model, s hm = \u03c6(x h , x m ; \u0398) is the score function of edge from x h to x m , and",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Z(x; \u0398) = y\u2208T (x) exp \uf8eb \uf8ed (x h ,xm)\u2208y s hm \uf8f6 \uf8f8",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "is the partition function.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Bi-Linear Score Function. In our model, we adopt a bi-linear form score function:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "\u03c6(x h , x m ; \u0398) = \u03d5(x h ) T W\u03d5(x m ) +U T \u03d5(x h ) + V T \u03d5(x m ) + b where \u0398 = {W, U, V, b}, \u03d5(x i )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "is the representation vector of x i , W, U, V denote the weight matrix of the bi-linear term and the two weight vectors of the linear terms in \u03c6, and b denotes the bias vector. As discussed in Dozat and Manning (2016) , the bi-linear form of score function is related to the bilinear attention mechanism (Luong et al., 2015) . The bi-linear score function differs from the traditional score function proposed in Kiperwasser and Goldberg (2016) by adding the bi-linear term. A similar score function is proposed in Dozat and Manning (2016) . The difference between their and our score function is that they only used the linear term for head words (U T \u03d5(x h )) while use them for both heads and modifiers.",
"cite_spans": [
{
"start": 193,
"end": 217,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
},
{
"start": 304,
"end": 324,
"text": "(Luong et al., 2015)",
"ref_id": "BIBREF33"
},
{
"start": 412,
"end": 443,
"text": "Kiperwasser and Goldberg (2016)",
"ref_id": "BIBREF26"
},
{
"start": 514,
"end": 538,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Matrix-Tree Theorem. In order to train the probabilistic parsing model, as discussed in Koo et al. (2007) , we have to compute the partition function and the marginals, requiring summation over the set T (x):",
"cite_spans": [
{
"start": 88,
"end": 105,
"text": "Koo et al. (2007)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Z(x; \u0398) = y\u2208T (x) (x h ,xm)\u2208y \u03c8(x h , x m ; \u0398) \u00b5 h,m (x; \u0398) = y\u2208T (x):(x h ,xm)\u2208y P (y|x; \u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "where \u03c8(x h , x m ; \u0398) is the potential function:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "\u03c8(x h , x m ; \u0398) = exp (\u03c6(x h , x m ; \u0398))",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "and \u00b5 h,m (x; \u0398) is the marginal for edge from hth word to mth word for x.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Previous studies (Koo et al., 2007; Smith and Smith, 2007) have presented how a variant of Kirchhoff's Matrix-Tree Theorem (Tutte, 1984) can be used to evaluate the partition function and marginals efficiently. In this section, we briefly revisit this method.",
"cite_spans": [
{
"start": 17,
"end": 35,
"text": "(Koo et al., 2007;",
"ref_id": "BIBREF28"
},
{
"start": 36,
"end": 58,
"text": "Smith and Smith, 2007)",
"ref_id": "BIBREF55"
},
{
"start": 91,
"end": 136,
"text": "Kirchhoff's Matrix-Tree Theorem (Tutte, 1984)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "For a sentence x with n words, we denote x = {x 0 , x 1 , . . . , x n }, where x 0 is the root-symbol. We define a complete graph G on n + 1 nodes (including the root-symbol x 0 ), where each node corresponds to a word in x and each edge corresponds to a dependency arc between two words. Then, we assign non-negative weights to the edges of this complete graph with n + 1 nodes, yielding the weighted adjacency matrix A(\u0398) \u2208 R n+1\u00d7n+1 , for h, m = 0, . . . , n:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "A h,m (\u0398) = \u03c8(x h , x m ; \u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Based on the adjacency matrix A(\u0398), we have the Laplacian matrix:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "L(\u0398) = D(\u0398) \u2212 A(\u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "where D(\u0398) is the weighted degree matrix:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "D h,m (\u0398) = \uf8f1 \uf8f2 \uf8f3 n h =0 A h ,m (\u0398) if h = m 0 otherwise",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Then, according to Theorem 1 in Koo et al. (2007) , the partition function is equal to the minor of L(\u0398) w.r.t row 0 and column 0:",
"cite_spans": [
{
"start": 32,
"end": 49,
"text": "Koo et al. (2007)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Z(x; \u0398) = L (0,0) (\u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "where for a matrix A, A (h,m) denotes the minor of A w.r.t row h and column m; i.e., the determinant of the submatrix formed by deleting the hth row and mth column. The marginals can be computed by calculating the matrix inversion of the matrix corresponding to L (0,0) (\u0398). The time complexity of computing the partition function and marginals is O(n 3 ).",
"cite_spans": [
{
"start": 24,
"end": 29,
"text": "(h,m)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Labeled Parsing Model. Though it is originally designed for unlabeled parsing, our probabilistic parsing model is easily extended to include dependency labels.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "In labeled dependency trees, each edge is represented by a tuple (x h , x m , l), where x h and x m are the head word and modifier, respectively, and l is the label of dependency type of this edge. Then we can extend the original model for labeled dependency parsing by extending the score function to include dependency labels:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "\u03c6(x h , x m , l; \u0398) = \u03d5(x h ) T W l \u03d5(x m ) +U T l \u03d5(x h ) + V T l \u03d5(x m ) +b l where W l , U l , V l , b",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "l are the weights and bias corresponding to dependency label l. Suppose that there are L different dependency labels, it suffices to define the new adjacency matrix by assigning the weight of a edge with the sum of weights over different dependency labels:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "A h,m (\u0398) = L l=1 \u03c8(x h , x m , l; \u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "The partition function and marginals over labeled dependency trees are obtained by operating on the new adjacency matrix A (\u0398). The time complexity becomes O(n 3 + Ln 2 ). In practice, L is probably large. For English, the number of edge labels in Stanford Basic Dependencies (De Marneffe et al., 2006) is 45, and the number in the treebank of CoNLL-2008 shared task (Surdeanu et al., 2008) is 70. While, the average length of sentences in English Penn Treebank (Marcus et al., 1993) is around 23. Thus, L is not negligible comparing to n.",
"cite_spans": [
{
"start": 280,
"end": 302,
"text": "Marneffe et al., 2006)",
"ref_id": "BIBREF15"
},
{
"start": 367,
"end": 390,
"text": "(Surdeanu et al., 2008)",
"ref_id": "BIBREF57"
},
{
"start": 462,
"end": 483,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF43"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "It should be noticed that in our labeled model, for different dependency label l we use the same vector representation \u03d5(x i ) for each word x i . The dependency labels are distinguished (only) by the parameters (weights and bias) corresponding to each of them. One advantage of this is that it significantly reduces the memory requirement comparing to the model in Dozat and Manning (2016) which distinguishes \u03d5 l (x i ) for different label l. Maximum Spanning Tree Decoding. The decoding problem of this parsing model can be formulated as:",
"cite_spans": [
{
"start": 366,
"end": 390,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "y * = argmax y\u2208T (x) P (y|x; \u0398) = argmax y\u2208T (x) (x h ,xm)\u2208y \u03c6(x h , x m ; \u0398)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "which can be solved by using the Maximum Spanning Tree (MST) algorithm described in McDonald et al. (2005b) .",
"cite_spans": [
{
"start": 84,
"end": 107,
"text": "McDonald et al. (2005b)",
"ref_id": "BIBREF48"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Edge-Factored Parsing Layer",
"sec_num": "2.1"
},
{
"text": "Now, the remaining question is how to obtain the vector representation of each word with a neural network. In the following subsections, we will describe the architecture of our neural network model for representation learning.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Network for Representation Learning",
"sec_num": "2.2"
},
{
"text": "Previous work (Santos and Zadrozny, 2014) have shown that CNNs are an effective approach to extract morphological information (like the prefix or suffix of a word) from characters of words and encode it into neural representations, which has been proven particularly useful on Out-of-Vocabulary words (OOV). The CNN architecture our model uses to extract character-level representation of a given word is the same as the one used in . The CNN architecture is shown in Figure 2 . Following Ma and Hovy (2016), a dropout layer (Srivastava et al., 2014) is applied before character embeddings are input to CNN. (Mikolov et al., 2010) , sequence labeling and machine translation (Cho et al., 2014) , to capture context information in languages. Though, in theory, RNNs are able to learn long-distance dependencies, in practice, they fail due to the gradient vanishing/exploding problems (Bengio et al., 1994; Pascanu et al., 2013) .",
"cite_spans": [
{
"start": 525,
"end": 550,
"text": "(Srivastava et al., 2014)",
"ref_id": "BIBREF56"
},
{
"start": 608,
"end": 630,
"text": "(Mikolov et al., 2010)",
"ref_id": "BIBREF49"
},
{
"start": 675,
"end": 693,
"text": "(Cho et al., 2014)",
"ref_id": "BIBREF11"
},
{
"start": 883,
"end": 904,
"text": "(Bengio et al., 1994;",
"ref_id": "BIBREF5"
},
{
"start": 905,
"end": 926,
"text": "Pascanu et al., 2013)",
"ref_id": "BIBREF52"
}
],
"ref_spans": [
{
"start": 468,
"end": 476,
"text": "Figure 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "CNNs",
"sec_num": "2.2.1"
},
{
"text": "LSTMs (Hochreiter and Schmidhuber, 1997) are variants of RNNs designed to cope with these gradient vanishing problems. Basically, a LSTM unit is composed of three multiplicative gates which control the proportions of information to pass and to forget on to the next time step.",
"cite_spans": [
{
"start": 6,
"end": 40,
"text": "(Hochreiter and Schmidhuber, 1997)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "CNNs",
"sec_num": "2.2.1"
},
{
"text": "BLSTM. Many linguistic structure prediction tasks can benefit from having access to both past (left) and future (right) contexts, while the LSTM's hidden state h t takes information only from past, knowing nothing about the future. An elegant solution whose effectiveness has been proven by previous work is bi-directional LSTM (BLSTM). The basic idea is to present each sequence forwards and backwards to two separate hidden states to capture past and future information, respectively. Then the two hidden states are concatenated to form the final output. As discussed in Dozat and Manning (2016) , there are more than one advantages to apply a multilayer perceptron (MLP) to the output vectors of BLSTM before the score function, eg. reducing the dimensionality and overfitting of the model. We follow this work by using a one-layer perceptron with elu (Clevert et al., 2015) as activation function.",
"cite_spans": [
{
"start": 573,
"end": 597,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
},
{
"start": 855,
"end": 877,
"text": "(Clevert et al., 2015)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "CNNs",
"sec_num": "2.2.1"
},
{
"text": "Finally, we construct our neural network model by feeding the output vectors of BLSTM (after MLP) into the parsing layer. Figure 3 illustrates the architecture of our network in detail.",
"cite_spans": [],
"ref_spans": [
{
"start": 122,
"end": 130,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "BLSTM-CNNs",
"sec_num": "2.3"
},
{
"text": "For each word, the CNN in Figure 2 , with character embeddings as inputs, encodes the characterlevel representation. Then the character-level representation vector is concatenated with the word embedding vector to feed into the BLSTM network. To enrich word-level information, we also use POS embeddings. Finally, the output vec- Figure 3 : The main architecture of our parsing model. The character representation for each word is computed by the CNN in Figure 2 . Then the character representation vector is concatenated with the word and pos embedding before feeding into the BLSTM network. Dashed arrows indicate dropout layers applied on the input, hidden and output vectors of BLSTM. tors of the neural netwok are fed to the parsing layer to jointly parse the best (labeled) dependency tree. As shown in Figure 3 , dropout layers are applied on the input, hidden and output vectors of BLSTM, using the form of recurrent dropout proposed in Gal and Ghahramani (2016) .",
"cite_spans": [
{
"start": 945,
"end": 970,
"text": "Gal and Ghahramani (2016)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 26,
"end": 34,
"text": "Figure 2",
"ref_id": "FIGREF2"
},
{
"start": 330,
"end": 338,
"text": "Figure 3",
"ref_id": null
},
{
"start": 454,
"end": 462,
"text": "Figure 2",
"ref_id": "FIGREF2"
},
{
"start": 809,
"end": 817,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "BLSTM-CNNs",
"sec_num": "2.3"
},
{
"text": "In this section, we provide details about implementing and training the neural parsing model, including parameter initialization, model optimization and hyper parameter selection.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Network Training",
"sec_num": "3"
},
{
"text": "Word Embeddings. For all the parsing models on different languages, we initialize word vectors with pretrained word embeddings. For Chi- , where r and c are the number of of rows and columns in the structure (Glorot and Bengio, 2010) . Bias vectors are initialized to zero, except the bias b f for the forget gate in LSTM , which is initialized to 1.0 (Jozefowicz et al., 2015) .",
"cite_spans": [
{
"start": 208,
"end": 233,
"text": "(Glorot and Bengio, 2010)",
"ref_id": "BIBREF21"
},
{
"start": 352,
"end": 377,
"text": "(Jozefowicz et al., 2015)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Parameter Initialization",
"sec_num": "3.1"
},
{
"text": "Parameter optimization is performed with the Adam optimizer (Kingma and Ba, 2014) with \u03b21 = \u03b22 = 0.9. We choose an initial learning rate of \u03b7 0 = 0.002. The learning rate \u03b7 was adapted using a schedule S = [e 1 , e 2 , . . . , e s ], in which the learning rate \u03b7 is annealed by multiplying a fixed decay rate \u03c1 = 0.5 after e i \u2208 S epochs respectively. We used S = [10, 30, 50, 70, 100] and trained all networks for a total of 120 epochs. While the Adam optimizer automatically adjusts the global learning rate according to past gradient magnitudes, we find that this additional decay consistently improves model performance across all settings and languages. To reduce the effects of \"gradient exploding\", we use a gradient clipping of 5.0 (Pascanu et al., 2013) . We explored other optimization algorithms such as stochastic gradient descent (SGD) with momentum, AdaDelta (Zeiler, 2012), or RMSProp (Dauphin et al., 2015) , but none of them meaningfully improve upon Adam with learning rate annealing in our preliminary experiments.",
"cite_spans": [
{
"start": 60,
"end": 81,
"text": "(Kingma and Ba, 2014)",
"ref_id": "BIBREF25"
},
{
"start": 364,
"end": 368,
"text": "[10,",
"ref_id": null
},
{
"start": 369,
"end": 372,
"text": "30,",
"ref_id": null
},
{
"start": 373,
"end": 376,
"text": "50,",
"ref_id": null
},
{
"start": 377,
"end": 380,
"text": "70,",
"ref_id": null
},
{
"start": 381,
"end": 385,
"text": "100]",
"ref_id": null
},
{
"start": 740,
"end": 762,
"text": "(Pascanu et al., 2013)",
"ref_id": "BIBREF52"
},
{
"start": 892,
"end": 922,
"text": "RMSProp (Dauphin et al., 2015)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Optimization Algorithm",
"sec_num": "3.2"
},
{
"text": "Dropout Training. To mitigate overfitting, we apply the dropout method (Srivastava et al., 2014; Ma et al., 2017) to regularize our model. As shown in Figure 2 and 3, we apply dropout on character embeddings before inputting to CNN, and on the input, hidden and output vectors of BLSTM. We apply dropout rate of 0.15 to all the embeddings. For BLSTM, we use the recurrent dropout (Gal and Ghahramani, 2016) with 0.25 dropout rate between hidden states and 0.33 between layers.",
"cite_spans": [
{
"start": 71,
"end": 96,
"text": "(Srivastava et al., 2014;",
"ref_id": "BIBREF56"
},
{
"start": 97,
"end": 113,
"text": "Ma et al., 2017)",
"ref_id": "BIBREF34"
},
{
"start": 380,
"end": 406,
"text": "(Gal and Ghahramani, 2016)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 151,
"end": 159,
"text": "Figure 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Optimization Algorithm",
"sec_num": "3.2"
},
{
"text": "We found that the model using the new recurrent dropout converged much faster than standard dropout, while achiving similar performance. Table 1 summarizes the chosen hyper-parameters for all experiments. We tune the hyper-parameters on the development sets by random search. We use the same hyper-parameters across the models on different treebanks and languages, due to time constrains. Note that we use 2-layer BLSTM followed with 1-layer MLP. We set the state size of LSTM to 256 and the dimension of MLP to 100. Tuning these two parameters did not significantly impact the performance of our model. ",
"cite_spans": [],
"ref_spans": [
{
"start": 137,
"end": 144,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Optimization Algorithm",
"sec_num": "3.2"
},
{
"text": "We evaluate our neural probabilistic parser on the same data setup as Kuncoro et al. (2016) , namely the English Penn Treebank (PTB version 3.0) (Marcus et al., 1993) , the Penn Chinese Treebank (CTB version 5.1) (Xue et al., 2002) , and the German CoNLL 2009 corpus (Haji\u010d et al., 2009) . Following previous work, all experiments are evaluated on the metrics of unlabeled attachment score (UAS) and Labeled attachment score (LAS).",
"cite_spans": [
{
"start": 70,
"end": 91,
"text": "Kuncoro et al. (2016)",
"ref_id": "BIBREF30"
},
{
"start": 145,
"end": 166,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF43"
},
{
"start": 213,
"end": 231,
"text": "(Xue et al., 2002)",
"ref_id": "BIBREF62"
},
{
"start": 267,
"end": 287,
"text": "(Haji\u010d et al., 2009)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Setup",
"sec_num": "4.1"
},
{
"text": "We first construct experiments to dissect the effectiveness of each input information (embeddings) of our neural network architecture by ablation studies. We compare the performance of four versions of our model with different inputs -Basic, +POS, +Char and Full -where the Basic model utilizes only the pretrained word embeddings as inputs, while the +POS and +Char models augments the basic one with POS embedding and character information, respectively. According to the results shown in for Chinese than English and German. Table 3 gives the performance on PTB of the parsers trained with two different objective functions -the cross-entropy objective of each word, and our objective based on likelihood for an entire tree. The parser with global likelihood objective outperforms the one with simple crossentropy objective, demonstrating the effectiveness of the global structured objective. Table 4 illustrates the results of the four versions of our model on the three languages, together with twelve previous top-performance systems for comparison. Our Full model significantly outperforms the graph-based parser proposed in Kiperwasser and Goldberg (2016) which used similar neural network architecture for representation learning (detailed discussion in Section 5). Moreover, our model achieves better results than the parser distillation method (Kuncoro et al., 2016) on all the three languages. The results of our parser are slightly worse than the scores reported in Dozat and Manning (2016) . One possible reason is that, as mentioned in Section 2.1, for labeled dependency parsing Dozat and Manning (2016) used different vectors for different dependency labels to represent each word, making their model require much more memory than ours.",
"cite_spans": [
{
"start": 1355,
"end": 1377,
"text": "(Kuncoro et al., 2016)",
"ref_id": "BIBREF30"
},
{
"start": 1479,
"end": 1503,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
},
{
"start": 1595,
"end": 1619,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [
{
"start": 528,
"end": 535,
"text": "Table 3",
"ref_id": "TABREF6"
},
{
"start": 896,
"end": 903,
"text": "Table 4",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Main Results",
"sec_num": "4.2"
},
{
"text": "Datasets. To make a thorough empirical comparison with previous studies, we also evaluate our system on treebanks from CoNLL shared task on dependency parsing -the English treebank from CoNLL-2008 shared task (Surdeanu et al., 2008) and all 13 treebanks from CoNLL-2006 shared task (Buchholz and Marsi, 2006) . For the treebanks from CoNLL-2006 shared task, following , we randomly select 5% of the training data as the development set. UAS and LAS are evaluated using the official scorer 1 of CoNLL-2006 shared task.",
"cite_spans": [
{
"start": 209,
"end": 232,
"text": "(Surdeanu et al., 2008)",
"ref_id": "BIBREF57"
},
{
"start": 282,
"end": 308,
"text": "(Buchholz and Marsi, 2006)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments on CoNLL Treebanks",
"sec_num": "4.4"
},
{
"text": "Baselines. We compare our model with the third-order Turbo parser (Martins et al., 2013) , the low-rank tensor based model (Tensor) , the randomized greedy inference based (RGB) model , the labeled dependency parser with inner-to-outer greedy decoding algorithm (In-Out) , and the bi-direction attention based parser (Bi-Att) . We also compare our parser against the best published results for individual languages. This comparison includes four additional systems: , Martins et al. (2011) , Zhang and McDonald (2014) and Pitler and McDonald (2015) . Results. Table 5 summarizes the results of our model, along with the state-of-the-art baselines. On average across 14 languages, our approach significantly outperforms all the baseline systems. It should be noted that the average UAS of our parser over the 14 languages is better than that of the \"best published\", which are from different systems that achieved best results for different languages. For individual languages, our parser achieves state-of-the-art performance on both UAS and LAS on 8 languages -Bulgarian, Chinese, Czech, Dutch, English, German, Japanese and Spanish. On Arabic, Danish, Portuguese, Slovene and Swedish, our parser obtains the best LAS. Another interesting observation is that the Full model outperforms the +POS model on 13 languages. The only exception is Chinese, which matches the observation in Section 4.2.",
"cite_spans": [
{
"start": 66,
"end": 88,
"text": "(Martins et al., 2013)",
"ref_id": "BIBREF44"
},
{
"start": 468,
"end": 489,
"text": "Martins et al. (2011)",
"ref_id": "BIBREF45"
},
{
"start": 492,
"end": 517,
"text": "Zhang and McDonald (2014)",
"ref_id": "BIBREF64"
},
{
"start": 522,
"end": 548,
"text": "Pitler and McDonald (2015)",
"ref_id": "BIBREF53"
}
],
"ref_spans": [
{
"start": 560,
"end": 567,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experiments on CoNLL Treebanks",
"sec_num": "4.4"
},
{
"text": "In recent years, several different neural network based models have been proposed and successfully applied to dependency parsing. Among these neural models, there are three approaches most similar to our model -the two graphbased parsers with BLSTM feature representation (Kiperwasser and Goldberg, 2016; Wang and Chang, 2016) , and the neural bi-affine attention parser (Dozat and Manning, 2016) . Kiperwasser and Goldberg (2016) proposed a graph-based dependency parser which uses BLSTM for word-level representations. Wang and Chang (2016) used a similar model with a way to learn sentence segment embedding based on an extra forward LSTM network. Both of these two parsers trained the parsing models by optimizing margin-based objectives. There are three main differences between their models and ours. First, they only used linear form score function, instead of using the bi-linear term between the vectors of heads and modifiers. Second, They did not employ CNNs to model character-level information. Third, we proposed a probabilistic model over non-projective trees on the top of neural representations, while they trained their models with a margin-based objective. Dozat and Manning (2016) proposed neural parsing model using bi-affine score function, which is similar to the bi-linear form score function in our model. Our model mainly differ from this model by using CNN to model character-level information. Moreover, their model formalized dependency parsing as independently selecting the head of each word with cross-entropy objective, while our probabilistic parsing model jointly encodes and decodes parsing trees for given sentences.",
"cite_spans": [
{
"start": 272,
"end": 304,
"text": "(Kiperwasser and Goldberg, 2016;",
"ref_id": "BIBREF26"
},
{
"start": 305,
"end": 326,
"text": "Wang and Chang, 2016)",
"ref_id": "BIBREF59"
},
{
"start": 371,
"end": 396,
"text": "(Dozat and Manning, 2016)",
"ref_id": "BIBREF16"
},
{
"start": 399,
"end": 430,
"text": "Kiperwasser and Goldberg (2016)",
"ref_id": "BIBREF26"
},
{
"start": 521,
"end": 542,
"text": "Wang and Chang (2016)",
"ref_id": "BIBREF59"
},
{
"start": 1176,
"end": 1200,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "5"
},
{
"text": "In this paper, we proposed a neural probabilistic model for non-projective dependency parsing, using the BLSTM-CNNs architecture for representation learning. Experimental results on 17 treebanks across 14 languages show that our parser significantly improves the accuracy of both dependency structures (UAS) and edge labels (LAS), over several previously state-of-the-art systems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "http://ilk.uvt.nl/conll/software.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This research was supported in part by DARPA grant FA8750-12-2-0342 funded under the DEFT program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Polyglot: Distributed word representations for multilingual nlp",
"authors": [
{
"first": "Rami",
"middle": [],
"last": "Al-Rfou",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Perozzi",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Skiena",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of CoNLL-2013",
"volume": "",
"issue": "",
"pages": "183--192",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilingual nlp. In Proceedings of CoNLL- 2013. Sofia, Bulgaria, pages 183-192.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Globally normalized transition-based neural networks",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Andor",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Alberti",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Weiss",
"suffix": ""
},
{
"first": "Aliaksei",
"middle": [],
"last": "Severyn",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Presta",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Ganchev",
"suffix": ""
},
{
"first": "Slav",
"middle": [],
"last": "Petrov",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL-2016",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally nor- malized transition-based neural networks. In Pro- ceedings of ACL-2016 (Volume 1: Long Papers).",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Improved transition-based parsing by modeling characters instead of words with lstms",
"authors": [
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of EMNLP-2015",
"volume": "",
"issue": "",
"pages": "349--359",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by model- ing characters instead of words with lstms. In Pro- ceedings of EMNLP-2015. Lisbon, Portugal, pages 349-359.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Training with exploration improves a greedy stack lstm parser",
"authors": [
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP-2016",
"volume": "",
"issue": "",
"pages": "2005--2010",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training with exploration im- proves a greedy stack lstm parser. In Proceedings of EMNLP-2016. Austin, Texas, pages 2005-2010.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Learning long-term dependencies with gradient descent is difficult",
"authors": [
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
},
{
"first": "Patrice",
"middle": [],
"last": "Simard",
"suffix": ""
},
{
"first": "Paolo",
"middle": [],
"last": "Frasconi",
"suffix": ""
}
],
"year": 1994,
"venue": "IEEE Transactions on",
"volume": "5",
"issue": "2",
"pages": "157--166",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gra- dient descent is difficult. Neural Networks, IEEE Transactions on 5(2):157-166.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing",
"authors": [
{
"first": "Bernd",
"middle": [],
"last": "Bohnet",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of EMNLP-2012",
"volume": "",
"issue": "",
"pages": "1455--1465",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bernd Bohnet and Joakim Nivre. 2012. A transition- based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Pro- ceedings of EMNLP-2012. Jeju Island, Korea, pages 1455-1465.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "CoNLL-X shared task on multilingual dependency parsing",
"authors": [
{
"first": "Sabine",
"middle": [],
"last": "Buchholz",
"suffix": ""
},
{
"first": "Erwin",
"middle": [],
"last": "Marsi",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceeding of CoNLL-2006",
"volume": "",
"issue": "",
"pages": "149--164",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceeding of CoNLL-2006. New York, NY, pages 149-164.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A fast and accurate dependency parser using neural networks",
"authors": [
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of EMNLP-2014",
"volume": "",
"issue": "",
"pages": "740--750",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural net- works. In Proceedings of EMNLP-2014. Doha, Qatar, pages 740-750.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Bi-directional attention with agreement for dependency parsing",
"authors": [
{
"first": "Hao",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Deng",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP-2016",
"volume": "",
"issue": "",
"pages": "2204--2214",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional attention with agreement for dependency parsing. In Proceedings of EMNLP-2016. Austin, Texas, pages 2204-2214.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Named entity recognition with bidirectional lstm-cnns",
"authors": [
{
"first": "Jason",
"middle": [],
"last": "Chiu",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Nichols",
"suffix": ""
}
],
"year": 2016,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "4",
"issue": "",
"pages": "357--370",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional lstm-cnns. Transac- tions of the Association for Computational Linguis- tics 4:357-370.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "On the properties of neural machine translation",
"authors": [
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Bart",
"middle": [],
"last": "Van Merri\u00ebnboer",
"suffix": ""
},
{
"first": "Dzmitry",
"middle": [],
"last": "Bahdanau",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1409.1259"
]
},
"num": null,
"urls": [],
"raw_text": "Kyunghyun Cho, Bart Van Merri\u00ebnboer, Dzmitry Bah- danau, and Yoshua Bengio. 2014. On the properties of neural machine translation: Encoder-decoder ap- proaches. arXiv preprint arXiv:1409.1259 .",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Fast and accurate deep network learning by exponential linear units (elus)",
"authors": [
{
"first": "Djork-Arn\u00e9",
"middle": [],
"last": "Clevert",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Unterthiner",
"suffix": ""
},
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1511.07289"
]
},
"num": null,
"urls": [],
"raw_text": "Djork-Arn\u00e9 Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 .",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Natural language processing (almost) from scratch",
"authors": [
{
"first": "Ronan",
"middle": [],
"last": "Collobert",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "L\u00e9on",
"middle": [],
"last": "Bottou",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Karlen",
"suffix": ""
},
{
"first": "Koray",
"middle": [],
"last": "Kavukcuoglu",
"suffix": ""
},
{
"first": "Pavel",
"middle": [],
"last": "Kuksa",
"suffix": ""
}
],
"year": 2011,
"venue": "The Journal of Machine Learning Research",
"volume": "12",
"issue": "",
"pages": "2493--2537",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ronan Collobert, Jason Weston, L\u00e9on Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. The Journal of Machine Learning Research 12:2493-2537.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Rmsprop and equilibrated adaptive learning rates for non-convex optimization",
"authors": [
{
"first": "",
"middle": [],
"last": "Yann N Dauphin",
"suffix": ""
},
{
"first": "Junyoung",
"middle": [],
"last": "Harm De Vries",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Chung",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1502.04390"
]
},
"num": null,
"urls": [],
"raw_text": "Yann N Dauphin, Harm de Vries, Junyoung Chung, and Yoshua Bengio. 2015. Rmsprop and equili- brated adaptive learning rates for non-convex opti- mization. arXiv preprint arXiv:1502.04390 .",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Generating typed dependency parses from phrase structure parses",
"authors": [
{
"first": "Marie-Catherine De",
"middle": [],
"last": "Marneffe",
"suffix": ""
},
{
"first": "Bill",
"middle": [],
"last": "Maccartney",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of LREC-2006",
"volume": "",
"issue": "",
"pages": "449--454",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marie-Catherine De Marneffe, Bill MacCartney, Christopher D. Manning, et al. 2006. Generat- ing typed dependency parses from phrase structure parses. In Proceedings of LREC-2006. pages 449- 454.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Deep biaffine attention for neural dependency parsing",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1611.01734"
]
},
"num": null,
"urls": [],
"raw_text": "Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency pars- ing. arXiv preprint arXiv:1611.01734 .",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Easy victories and uphill battles in coreference resolution",
"authors": [
{
"first": "Greg",
"middle": [],
"last": "Durrett",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of EMNLP-2013",
"volume": "",
"issue": "",
"pages": "1971--1982",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Greg Durrett and Dan Klein. 2013. Easy victories and uphill battles in coreference resolution. In Proceed- ings of EMNLP-2013. Seattle, Washington, USA, pages 1971-1982.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Transitionbased dependency parsing with stack long shortterm memory",
"authors": [
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Wang",
"middle": [],
"last": "Ling",
"suffix": ""
},
{
"first": "Austin",
"middle": [],
"last": "Matthews",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of ACL-2015",
"volume": "1",
"issue": "",
"pages": "334--343",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition- based dependency parsing with stack long short- term memory. In Proceedings of ACL-2015 (Volume 1: Long Papers). Beijing, China, pages 334-343.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Word sense disambiguation via propstore and ontonotes for event mention detection",
"authors": [
{
"first": "Yiu-Chang",
"middle": [],
"last": "Nicolas R Fauceglia",
"suffix": ""
},
{
"first": "Xuezhe",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and Representation",
"volume": "",
"issue": "",
"pages": "11--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nicolas R Fauceglia, Yiu-Chang Lin, Xuezhe Ma, and Eduard Hovy. 2015. Word sense disambiguation via propstore and ontonotes for event mention detec- tion. In Proceedings of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and Representation. Denver, Colorado, pages 11-15.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A theoretically grounded application of dropout in recurrent neural networks",
"authors": [
{
"first": "Yarin",
"middle": [],
"last": "Gal",
"suffix": ""
},
{
"first": "Zoubin",
"middle": [],
"last": "Ghahramani",
"suffix": ""
}
],
"year": 2016,
"venue": "Advances in Neural Information Processing Systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yarin Gal and Zoubin Ghahramani. 2016. A theoret- ically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Understanding the difficulty of training deep feedforward neural networks",
"authors": [
{
"first": "Xavier",
"middle": [],
"last": "Glorot",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2010,
"venue": "International conference on artificial intelligence and statistics",
"volume": "",
"issue": "",
"pages": "249--256",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xavier Glorot and Yoshua Bengio. 2010. Understand- ing the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics. pages 249-256.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages",
"authors": [
{
"first": "Jan",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
},
{
"first": "Massimiliano",
"middle": [],
"last": "Ciaramita",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Johansson",
"suffix": ""
},
{
"first": "Daisuke",
"middle": [],
"last": "Kawahara",
"suffix": ""
},
{
"first": "Maria",
"middle": [
"Ant\u00f2nia"
],
"last": "Mart\u00ed",
"suffix": ""
},
{
"first": "Llu\u00eds",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Meyers",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Pad\u00f3",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jan\u0161t\u011bp\u00e1nek",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of CoNLL-2009: Shared Task",
"volume": "",
"issue": "",
"pages": "1--18",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jan Haji\u010d, Massimiliano Ciaramita, Richard Johans- son, Daisuke Kawahara, Maria Ant\u00f2nia Mart\u00ed, Llu\u00eds M\u00e0rquez, Adam Meyers, Joakim Nivre, Sebastian Pad\u00f3, Jan\u0160t\u011bp\u00e1nek, et al. 2009. The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of CoNLL- 2009: Shared Task. pages 1-18.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Long short-term memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural computation",
"volume": "9",
"issue": "8",
"pages": "1735--1780",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation 9(8):1735-1780.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "An empirical exploration of recurrent network architectures",
"authors": [
{
"first": "Rafal",
"middle": [],
"last": "Jozefowicz",
"suffix": ""
},
{
"first": "Wojciech",
"middle": [],
"last": "Zaremba",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 32nd International Conference on Machine Learning (ICML-15)",
"volume": "",
"issue": "",
"pages": "2342--2350",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration of recur- rent network architectures. In Proceedings of the 32nd International Conference on Machine Learn- ing (ICML-15). pages 2342-2350.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Adam: A method for stochastic optimization",
"authors": [
{
"first": "Diederik",
"middle": [],
"last": "Kingma",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Ba",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1412.6980"
]
},
"num": null,
"urls": [],
"raw_text": "Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 .",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Simple and accurate dependency parsing using bidirectional lstm feature representations",
"authors": [
{
"first": "Eliyahu",
"middle": [],
"last": "Kiperwasser",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 2016,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "4",
"issue": "",
"pages": "313--327",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional lstm feature representations. Transactions of the Association for Computational Linguistics 4:313-327.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Efficient thirdorder dependency parsers",
"authors": [
{
"first": "Terry",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of ACL-2010",
"volume": "",
"issue": "",
"pages": "1--11",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Terry Koo and Michael Collins. 2010. Efficient third- order dependency parsers. In Proceedings of ACL- 2010. Uppsala, Sweden, pages 1-11.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Structured prediction models via the matrix-tree theorem",
"authors": [
{
"first": "Terry",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Globerson",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of EMNLP-2007",
"volume": "",
"issue": "",
"pages": "141--150",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. 2007. Structured prediction mod- els via the matrix-tree theorem. In Proceedings of EMNLP-2007. Prague, Czech Republic, pages 141- 150.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Dual decomposition for parsing with non-projective head automata",
"authors": [
{
"first": "Terry",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"M"
],
"last": "Rush",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "Tommi",
"middle": [],
"last": "Jaakkola",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Sontag",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of EMNLP-2010",
"volume": "",
"issue": "",
"pages": "1288--1298",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual decomposition for parsing with non-projective head automata. In Proceedings of EMNLP-2010. Cam- bridge, MA, pages 1288-1298.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Distilling an ensemble of greedy dependency parsers into one mst parser",
"authors": [
{
"first": "Adhiguna",
"middle": [],
"last": "Kuncoro",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Lingpeng",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP-2016",
"volume": "",
"issue": "",
"pages": "1744--1753",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Dis- tilling an ensemble of greedy dependency parsers into one mst parser. In Proceedings of EMNLP- 2016. Austin, Texas, pages 1744-1753.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Low-rank tensors for scoring dependency structures",
"authors": [
{
"first": "Tao",
"middle": [],
"last": "Lei",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Xin",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "Tommi",
"middle": [],
"last": "Jaakkola",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of ACL-2014",
"volume": "1",
"issue": "",
"pages": "1381--1391",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-rank tensors for scor- ing dependency structures. In Proceedings of ACL- 2014 (Volume 1: Long Papers). Baltimore, Mary- land, pages 1381-1391.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Two/too simple adaptations of word2vec for syntax problems",
"authors": [
{
"first": "Wang",
"middle": [],
"last": "Ling",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Alan",
"middle": [
"W"
],
"last": "Black",
"suffix": ""
},
{
"first": "Isabel",
"middle": [],
"last": "Trancoso",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of NAACL-2015",
"volume": "",
"issue": "",
"pages": "1299--1304",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proceedings of NAACL-2015. Denver, Colorado, pages 1299-1304.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Effective approaches to attentionbased neural machine translation",
"authors": [
{
"first": "Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Hieu",
"middle": [],
"last": "Pham",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of EMNLP-2015",
"volume": "",
"issue": "",
"pages": "1412--1421",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thang Luong, Hieu Pham, and Christopher D. Man- ning. 2015. Effective approaches to attention- based neural machine translation. In Proceedings of EMNLP-2015. Lisbon, Portugal, pages 1412-1421.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Dropout with expectation-linear regularization",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Yingkai",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Zhiting",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Yaoliang",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Yuntian",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 5th International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard Hovy. 2017. Dropout with expectation-linear regularization. In Proceed- ings of the 5th International Conference on Learn- ing Representations (ICLR-2017). Toulon, France.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Efficient inner-toouter greedy algorithm for higher-order labeled dependency parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of EMNLP-2015",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Eduard Hovy. 2015. Efficient inner-to- outer greedy algorithm for higher-order labeled de- pendency parsing. In Proceedings of EMNLP-2015.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "End-to-end sequence labeling via bi-directional lstm-cnns-crf",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL-2016",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Eduard Hovy. 2016. End-to-end se- quence labeling via bi-directional lstm-cnns-crf. In Proceedings of ACL-2016 (Volume 1: Long Papers).",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Unsupervised ranking model for entity coreference resolution",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Zhengzhong",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of NAACL-2016",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma, Zhengzhong Liu, and Eduard Hovy. 2016. Unsupervised ranking model for entity coreference resolution. In Proceedings of NAACL-2016. San Diego, California, USA.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Unsupervised dependency parsing with transferring distribution via parallel guidance and entropy regularization",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Xia",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of ACL-2014",
"volume": "",
"issue": "",
"pages": "1337--1348",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Fei Xia. 2014. Unsupervised depen- dency parsing with transferring distribution via par- allel guidance and entropy regularization. In Pro- ceedings of ACL-2014. Baltimore, Maryland, pages 1337-1348.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Fourth-order dependency parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of COLING 2012: Posters",
"volume": "",
"issue": "",
"pages": "785--796",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Hai Zhao. 2012a. Fourth-order depen- dency parsing. In Proceedings of COLING 2012: Posters. Mumbai, India, pages 785-796.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Probabilistic models for high-order projective dependency parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1502.04174"
]
},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Hai Zhao. 2012b. Probabilistic models for high-order projective dependency parsing. Tech- nical Report, arXiv:1502.04174 .",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Building a large annotated corpus of English: the Penn Treebank",
"authors": [
{
"first": "Mitchell",
"middle": [],
"last": "Marcus",
"suffix": ""
},
{
"first": "Beatrice",
"middle": [],
"last": "Santorini",
"suffix": ""
},
{
"first": "Mary",
"middle": [
"Ann"
],
"last": "Marcinkiewicz",
"suffix": ""
}
],
"year": 1993,
"venue": "Computational Linguistics",
"volume": "19",
"issue": "2",
"pages": "313--330",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: the Penn Treebank. Computa- tional Linguistics 19(2):313-330.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Turning on the turbo: Fast third-order nonprojective turbo parsers",
"authors": [
{
"first": "Andre",
"middle": [],
"last": "Martins",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Almeida",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of ACL-2013",
"volume": "2",
"issue": "",
"pages": "617--622",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andre Martins, Miguel Almeida, and Noah A. Smith. 2013. Turning on the turbo: Fast third-order non- projective turbo parsers. In Proceedings of ACL- 2013 (Volume 2: Short Papers). Sofia, Bulgaria, pages 617-622.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Dual decomposition with many overlapping components",
"authors": [
{
"first": "Andre",
"middle": [],
"last": "Martins",
"suffix": ""
},
{
"first": "Noah",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Figueiredo",
"suffix": ""
},
{
"first": "Pedro",
"middle": [],
"last": "Aguiar",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of EMNLP-2011",
"volume": "",
"issue": "",
"pages": "238--249",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andre Martins, Noah Smith, Mario Figueiredo, and Pedro Aguiar. 2011. Dual decomposition with many overlapping components. In Proceedings of EMNLP-2011. Edinburgh, Scotland, UK., pages 238-249.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Online large-margin training of dependency parsers",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "Koby",
"middle": [],
"last": "Crammer",
"suffix": ""
},
{
"first": "Fernando",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of ACL-2005",
"volume": "",
"issue": "",
"pages": "91--98",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online large-margin training of de- pendency parsers. In Proceedings of ACL-2005. Ann Arbor, Michigan, USA, pages 91-98.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Universal dependency annotation for multilingual parsing",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Yvonne",
"middle": [],
"last": "Quirmbach-Brundage",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Dipanjan",
"middle": [],
"last": "Das",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Ganchev",
"suffix": ""
},
{
"first": "Keith",
"middle": [],
"last": "Hall",
"suffix": ""
},
{
"first": "Slav",
"middle": [],
"last": "Petrov",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Oscar",
"middle": [],
"last": "T\u00e4ckstr\u00f6m",
"suffix": ""
},
{
"first": "Claudia",
"middle": [],
"last": "Bedini",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of ACL-2013",
"volume": "",
"issue": "",
"pages": "92--97",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan McDonald, Joakim Nivre, Yvonne Quirmbach- Brundage, Yoav Goldberg, Dipanjan Das, Kuz- man Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar T\u00e4ckstr\u00f6m, Claudia Bedini, N\u00faria Bertomeu Castell\u00f3, and Jungmee Lee. 2013. Uni- versal dependency annotation for multilingual pars- ing. In Proceedings of ACL-2013. Sofia, Bulgaria, pages 92-97.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Non-projective dependency parsing using spanning tree algorithms",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "Fernando",
"middle": [],
"last": "Pereira",
"suffix": ""
},
{
"first": "Kiril",
"middle": [],
"last": "Ribarov",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of HLT/EMNLP-2005",
"volume": "",
"issue": "",
"pages": "523--530",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005b. Non-projective dependency pars- ing using spanning tree algorithms. In Proceedings of HLT/EMNLP-2005. Vancouver, Canada, pages 523-530.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Recurrent neural network based language model",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Karafi\u00e1t",
"suffix": ""
},
{
"first": "Lukas",
"middle": [],
"last": "Burget",
"suffix": ""
}
],
"year": 2010,
"venue": "Interspeech",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Martin Karafi\u00e1t, Lukas Burget, Jan Cernock\u1ef3, and Sanjeev Khudanpur. 2010. Recur- rent neural network based language model. In Inter- speech. volume 2, page 3.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Supervised noun phrase coreference research: The first fifteen years",
"authors": [
{
"first": "Vincent",
"middle": [],
"last": "Ng",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of ACL-2010. Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1396--1411",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vincent Ng. 2010. Supervised noun phrase coreference research: The first fifteen years. In Proceedings of ACL-2010. Association for Computational Linguis- tics, Uppsala, Sweden, pages 1396-1411.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Deterministic dependency parsing of English text",
"authors": [
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Scholz",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of COLING-2004",
"volume": "",
"issue": "",
"pages": "64--70",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joakim Nivre and Mario Scholz. 2004. Deterministic dependency parsing of English text. In Proceedings of COLING-2004. Geneva, Switzerland, pages 64- 70.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "On the difficulty of training recurrent neural networks",
"authors": [
{
"first": "Razvan",
"middle": [],
"last": "Pascanu",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of ICML-2013",
"volume": "",
"issue": "",
"pages": "1310--1318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neu- ral networks. In Proceedings of ICML-2013. pages 1310-1318.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "A linear-time transition system for crossing interval trees",
"authors": [
{
"first": "Emily",
"middle": [],
"last": "Pitler",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of NAACL-2015",
"volume": "",
"issue": "",
"pages": "662--671",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emily Pitler and Ryan McDonald. 2015. A linear-time transition system for crossing interval trees. In Pro- ceedings of NAACL-2015. Denver, Colorado, pages 662-671.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Learning character-level representations for part-of-speech tagging",
"authors": [
{
"first": "D",
"middle": [],
"last": "Cicero",
"suffix": ""
},
{
"first": "Bianca",
"middle": [],
"last": "Santos",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zadrozny",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of ICML-2014",
"volume": "",
"issue": "",
"pages": "1818--1826",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cicero D Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging. In Proceedings of ICML-2014. pages 1818-1826.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Probabilistic models of nonprojective dependency trees",
"authors": [
{
"first": "David",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of EMNLP-2007. Prague, Czech Republic",
"volume": "",
"issue": "",
"pages": "132--140",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David A. Smith and Noah A. Smith. 2007. Proba- bilistic models of nonprojective dependency trees. In Proceedings of EMNLP-2007. Prague, Czech Re- public, pages 132-140.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Dropout: A simple way to prevent neural networks from overfitting",
"authors": [
{
"first": "Nitish",
"middle": [],
"last": "Srivastava",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "Alex",
"middle": [],
"last": "Krizhevsky",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Ruslan",
"middle": [],
"last": "Salakhutdinov",
"suffix": ""
}
],
"year": 2014,
"venue": "The Journal of Machine Learning Research",
"volume": "15",
"issue": "1",
"pages": "1929--1958",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929-1958.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "The conll-2008 shared task on joint parsing of syntactic and semantic dependencies",
"authors": [
{
"first": "Mihai",
"middle": [],
"last": "Surdeanu",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Johansson",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Meyers",
"suffix": ""
},
{
"first": "Llu\u00eds",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of CoNLL-2008",
"volume": "",
"issue": "",
"pages": "159--177",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihai Surdeanu, Richard Johansson, Adam Meyers, Llu\u00eds M\u00e0rquez, and Joakim Nivre. 2008. The conll- 2008 shared task on joint parsing of syntactic and semantic dependencies. In Proceedings of CoNLL- 2008. pages 159-177.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "Graph theory",
"authors": [
{
"first": "William",
"middle": [],
"last": "Thomas Tutte",
"suffix": ""
}
],
"year": 1984,
"venue": "",
"volume": "11",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "William Thomas Tutte. 1984. Graph theory, vol- ume 11. Addison-Wesley Menlo Park.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Graph-based dependency parsing with bidirectional lstm",
"authors": [
{
"first": "Wenhui",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Baobao",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL-2016",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenhui Wang and Baobao Chang. 2016. Graph-based dependency parsing with bidirectional lstm. In Pro- ceedings of ACL-2016 (Volume 1: Long Papers).",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "A novel dependency-to-string model for statistical machine translation",
"authors": [
{
"first": "Jun",
"middle": [],
"last": "Xie",
"suffix": ""
},
{
"first": "Haitao",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of EMNLP-2011. Edinburgh",
"volume": "",
"issue": "",
"pages": "216--226",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jun Xie, Haitao Mi, and Qun Liu. 2011. A novel dependency-to-string model for statistical machine translation. In Proceedings of EMNLP-2011. Edin- burgh, Scotland, UK., pages 216-226.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Building a large-scale annotated chinese corpus",
"authors": [
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Fu-Dong",
"middle": [],
"last": "Chiou",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of COLING-2002",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nianwen Xue, Fu-Dong Chiou, and Martha Palmer. 2002. Building a large-scale annotated chinese cor- pus. In Proceedings of COLING-2002. pages 1-8.",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "Adadelta: an adaptive learning rate method",
"authors": [
{
"first": "D",
"middle": [],
"last": "Matthew",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zeiler",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1212.5701"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew D Zeiler. 2012. Adadelta: an adaptive learn- ing rate method. arXiv preprint arXiv:1212.5701 .",
"links": null
},
"BIBREF64": {
"ref_id": "b64",
"title": "Enforcing structural diversity in cube-pruned dependency parsing",
"authors": [
{
"first": "Hao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of ACL-2014",
"volume": "2",
"issue": "",
"pages": "656--661",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hao Zhang and Ryan McDonald. 2014. Enforcing structural diversity in cube-pruned dependency pars- ing. In Proceedings of ACL-2014 (Volume 2: Short Papers). Baltimore, Maryland, pages 656-661.",
"links": null
},
"BIBREF65": {
"ref_id": "b65",
"title": "Dependency parsing as head selection",
"authors": [
{
"first": "Xingxing",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jianpeng",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Mirella",
"middle": [],
"last": "Lapata",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1606.01280"
]
},
"num": null,
"urls": [],
"raw_text": "Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata. 2016. Dependency parsing as head selection. arXiv preprint arXiv:1606.01280 .",
"links": null
},
"BIBREF66": {
"ref_id": "b66",
"title": "Greed is good if randomized: New inference for dependency parsing",
"authors": [
{
"first": "Yuan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Lei",
"suffix": ""
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "Tommi",
"middle": [],
"last": "Jaakkola",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of EMNLP-2014",
"volume": "",
"issue": "",
"pages": "1013--1024",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2014. Greed is good if randomized: New inference for dependency parsing. In Proceedings of EMNLP-2014. Doha, Qatar, pages 1013-1024.",
"links": null
}
},
"ref_entries": {
"FIGREF1": {
"uris": null,
"type_str": "figure",
"num": null,
"text": "An example labeled dependency tree."
},
"FIGREF2": {
"uris": null,
"type_str": "figure",
"num": null,
"text": "The convolution neural network for extracting character-level representations of words. Dashed arrows indicate a dropout layer applied before character embeddings are input to CNN."
},
"FIGREF3": {
"uris": null,
"type_str": "figure",
"num": null,
"text": "5: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art parsers. \"Best Published\" includes the most accurate parsers in term of UAS among Koo et al. (2010), Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al. (2014), Zhang and McDonald (2014), Pitler and McDonald (2015), Ma and Hovy (2015), and Cheng et al. (2016)."
},
"TABREF0": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "2.2.2 Bi-directional LSTM LSTM Unit. Recurrent neural networks (RNNs) are a powerful family of connectionist models that have been widely applied in NLP tasks, such as language modeling"
},
"TABREF3": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td/><td/><td colspan=\"2\">English</td><td/><td/><td colspan=\"2\">Chinese</td><td/><td/><td colspan=\"2\">German</td><td/></tr><tr><td/><td>Dev</td><td/><td colspan=\"2\">Test</td><td>Dev</td><td/><td colspan=\"2\">Test</td><td>Dev</td><td/><td colspan=\"2\">Test</td></tr><tr><td>Model</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td></tr><tr><td>Basic</td><td>94.51</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
"text": "92.23 94.62 92.54 84.33 81.65 84.35 81.63 90.46 87.77 90.69 88.42 +Char 94.74 92.55 94.73 92.75 85.07 82.63 85.24 82.46 92.16 89.82 92.24 90.18 +POS 94.71 92.60 94.83 92.96 88.98 87.55 89.05 87.74 91.94 89.51 92.19 90.05 Full 94.77 92.66 94.88 92.98 88.51 87.16 88.79 87.47 92.37 90.09 92.58 90.54"
},
"TABREF4": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Parsing performance (UAS and LAS) of different versions of our model on both the development and test sets for three languages."
},
"TABREF6": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Parsing performance on PTB with different training objective functions."
},
"TABREF7": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td>English</td><td>Chinese</td><td>German</td></tr></table>",
"text": "+Char model obtains better performance than the Basic model on all the three languages, showing that character-level representations are important for dependency parsing. Second, on English and German, +Char and +POS achieves comparable performance, while on Chinese +POS significantly outperforms +Char model. Finally, the Full model achieves the best accuracy on English and German, but on Chinese +POS obtains the best. Thus, we guess that the POS information is more useful"
},
"TABREF8": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "UAS and LAS of four versions of our model on test sets for three languages, together with top-performance parsing systems."
},
"TABREF9": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td/><td colspan=\"3\">Turbo Tensor RGB</td><td>In-Out</td><td>Bi-Att</td><td>+POS</td><td>Full</td><td colspan=\"2\">Best Published</td></tr><tr><td/><td>UAS</td><td>UAS</td><td>UAS</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS</td><td>LAS</td></tr><tr><td>ar</td><td>79.64</td><td>79.95</td><td colspan=\"5\">80.24 60]</td><td>94.02</td><td>-</td></tr><tr><td>zh</td><td>89.98</td><td>92.68</td><td colspan=\"2\">93.04 92.58 [88.51]</td><td>-</td><td colspan=\"2\">93.44 [90.04] 93.40 [90.10]</td><td>93.04</td><td>-</td></tr><tr><td>cs</td><td>90.32</td><td>90.50</td><td colspan=\"5\">90.77 82]</td><td>87.39</td><td>-</td></tr><tr><td>en</td><td>93.22</td><td>93.02</td><td colspan=\"2\">93.25 92.45 [89.43]</td><td>-</td><td colspan=\"2\">94.43 [92.31] 94.66 [92.52]</td><td>93.25</td><td>-</td></tr><tr><td>de</td><td>92.41</td><td>91.97</td><td colspan=\"5\">92.67 90.79 [87.74] 92.71 [89.80] 93.53 [91.55] 93.62 [91.90]</td><td>92.71</td><td>89.80</td></tr><tr><td>ja</td><td>93.52</td><td>93.71</td><td colspan=\"5\">93.56 93.54 [91.80] 93.44 [90.67] 93.82 [92.34] 94.02 [92.60]</td><td>93.80</td><td>-</td></tr><tr><td>pt</td><td>92.69</td><td>91.92</td><td colspan=\"5\">92.36 91.54 [87.68] 92.77 [88.44] 92.59 [89.12] 92.71 [88.92]</td><td>93.03</td><td>-</td></tr><tr><td>sl</td><td>86.01</td><td>86.24</td><td colspan=\"5\">86.72 84.39 [73.74] 86.01 [75.90] 85.73 [76.48] 86.73 [77.56]</td><td>87.06</td><td>-</td></tr><tr><td>es</td><td>85.59</td><td>88.00</td><td colspan=\"5\">88.75 86.44 [83.29] 88.74 [84.03] 88.58 [85.03] 89.20 [85.77]</td><td>88.75</td><td>84.03</td></tr><tr><td>sv</td><td>91.14</td><td>91.00</td><td colspan=\"5\">91.08 89.94 [83.09] 90.50 [84.05] 90.89 [86.58] 91.22 [86.92]</td><td>91.85</td><td>85.26</td></tr><tr><td>tr</td><td>76.90</td><td>76.84</td><td colspan=\"5\">76.68 75.32 [60.39] 78.43 [66.16] 75.88 [61.72] 77.71 [65.81]</td><td>78.43</td><td>66.16</td></tr><tr><td>av</td><td>88.73</td><td>89.08</td><td colspan=\"2\">89.44 88.08 [81.84]</td><td>-</td><td colspan=\"2\">89.47 [84.24] 89.95 [84.99]</td><td>89.83</td><td>-</td></tr></table>",
"text": "79.60 [67.09] 80.34 [68.58] 80.05 [67.80] 80.80 [69.40] 81.12 bg 93.10 93.50 93.72 92.68 [87.79] 93.96 [89.55] 93.66 [89.79] 94.28 [90.88.01 [79.31] 91.16 [85.14] 91.04 [85.82] 91.18 [85.92] 91.16 85.14 da 91.48 91.39 91.86 91.44 [85.55] 91.56 [85.53] 91.52 [86.57] 91.86 [87.07] 92.00 nl 86.19 86.41 87.39 84.45 [80.31] 87.15 [82.41] 87.41 [84.17] 87.85 [84."
},
"TABREF10": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": ""
}
}
}
} |