File size: 157,815 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
{
    "paper_id": "I17-1007",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:39:41.827229Z"
    },
    "title": "Neural Probabilistic Model for Non-projective MST Parsing",
    "authors": [
        {
            "first": "Xuezhe",
            "middle": [],
            "last": "Ma",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University Pittsburgh",
                "location": {
                    "postCode": "15213",
                    "region": "PA",
                    "country": "USA"
                }
            },
            "email": "xuezhem@cs.cmu.edu"
        },
        {
            "first": "Eduard",
            "middle": [],
            "last": "Hovy",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University Pittsburgh",
                "location": {
                    "postCode": "15213",
                    "region": "PA",
                    "country": "USA"
                }
            },
            "email": "hovy@cmu.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper, we propose a probabilistic parsing model that defines a proper conditional probability distribution over nonprojective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs, which automatically benefits from both word-and character-level representations, by using a combination of bidirectional LSTMs and CNNs. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over nonprojective trees. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straightforward end-to-end model training procedure via back-propagation. We evaluate our model on 17 different datasets, across 14 different languages. Our parser achieves state-of-the-art parsing performance on nine datasets.",
    "pdf_parse": {
        "paper_id": "I17-1007",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper, we propose a probabilistic parsing model that defines a proper conditional probability distribution over nonprojective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs, which automatically benefits from both word-and character-level representations, by using a combination of bidirectional LSTMs and CNNs. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over nonprojective trees. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straightforward end-to-end model training procedure via back-propagation. We evaluate our model on 17 different datasets, across 14 different languages. Our parser achieves state-of-the-art parsing performance on nine datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Dependency parsing is one of the first stages in deep language understanding and has gained interest in the natural language processing (NLP) community, due to its usefulness in a wide range of applications. Many NLP systems, such as machine translation (Xie et al., 2011) , entity coreference resolution (Ng, 2010; Durrett and Klein, 2013; , low-resource languages processing (McDonald et al., 2013; Ma and Xia, 2014) , and word sense disambiguation (Fauceglia et al., 2015) , are becoming more sophisticated, in part because of utilizing syntactic knowledge such as dependency parsing trees.",
                "cite_spans": [
                    {
                        "start": 254,
                        "end": 272,
                        "text": "(Xie et al., 2011)",
                        "ref_id": "BIBREF61"
                    },
                    {
                        "start": 305,
                        "end": 315,
                        "text": "(Ng, 2010;",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 316,
                        "end": 340,
                        "text": "Durrett and Klein, 2013;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 377,
                        "end": 400,
                        "text": "(McDonald et al., 2013;",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 401,
                        "end": 418,
                        "text": "Ma and Xia, 2014)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 451,
                        "end": 475,
                        "text": "(Fauceglia et al., 2015)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Dependency trees represent syntactic relationships through labeled directed edges between heads and their dependents (modifiers). In the past few years, several dependency parsing algorithms (Nivre and Scholz, 2004; McDonald et al., 2005b; Ma and Zhao, 2012a,b) have been proposed, whose high performance heavily rely on hand-crafted features and task-specific resources that are costly to develop, making dependency parsing models difficult to adapt to new languages or new domains.",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 215,
                        "text": "(Nivre and Scholz, 2004;",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 216,
                        "end": 239,
                        "text": "McDonald et al., 2005b;",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 240,
                        "end": 261,
                        "text": "Ma and Zhao, 2012a,b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, non-linear neural networks, such as recurrent neural networks (RNNs) with long-short term memory (LSTM) and convolution neural networks (CNNs), with as input distributed word representations, also known as word embeddings, have been broadly applied, with great success, to NLP problems like part-of-speech (POS) tagging (Collobert et al., 2011) and named entity recognition (NER) (Chiu and Nichols, 2016) . By utilizing distributed representations as inputs, these systems are capable of learning hidden information representations directly from data instead of manually designing hand-crafted features, yielding end-to-end models . Previous studies explored the applicability of neural representations to traditional graph-based parsing models. Some work (Kiperwasser and Goldberg, 2016; Wang and Chang, 2016) replaced the linear scoring function of each arc in traditional models with neural networks and used a margin-based objective (McDonald et al., 2005a) for model training. Other work (Zhang et al., 2016; Dozat and Manning, 2016) formalized dependency parsing as independently selecting the head of each word with cross-entropy objective, without the guarantee of a general non-projective tree structure output. Moreover, there have yet been no previous work on deriving a neural prob-abilistic parsing model to define a proper conditional distribution over non-projective trees for a given sentence.",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 354,
                        "text": "(Collobert et al., 2011)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 390,
                        "end": 414,
                        "text": "(Chiu and Nichols, 2016)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 766,
                        "end": 798,
                        "text": "(Kiperwasser and Goldberg, 2016;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 799,
                        "end": 820,
                        "text": "Wang and Chang, 2016)",
                        "ref_id": "BIBREF59"
                    },
                    {
                        "start": 947,
                        "end": 971,
                        "text": "(McDonald et al., 2005a)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 1003,
                        "end": 1023,
                        "text": "(Zhang et al., 2016;",
                        "ref_id": "BIBREF65"
                    },
                    {
                        "start": 1024,
                        "end": 1048,
                        "text": "Dozat and Manning, 2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a probabilistic neural network-based model for non-projective dependency parsing. This parsing model uses bi-directional LSTM-CNNs (BLSTM-CNNs) as backbone to learn neural information representations, on top of which a probabilistic structured layer is constructed with a conditional log-linear model, defining a conditional distribution over all non-projective dependency trees. The architecture of BLSTM-CNNs is similar to the one used for sequence labeling tasks , where CNNs encode character-level information of a word into its character-level representation and BLSTM models context information of each word. Due to the probabilistic structured output layer, we can use negative log-likelihood as the training objective, where the partition function and marginals can be computed via Kirchhoff's Matrix-Tree Theorem (Tutte, 1984) to process the optimization efficiently by back-propagation. At test time, parsing trees can be decoded with the maximum spanning tree (MST) algorithm (Mc-Donald et al., 2005b) . We evaluate our model on 17 treebanks across 14 different languages, achieving state-of-the-art performance on 9 treebanks. The contributions of this work are summarized as: (i) proposing a neural probabilistic model for non-projective dependency parsing. (ii) giving empirical evaluations of this model on benchmark data sets over 14 languages. (iii) achieving stateof-the-art performance with this parser on nine different treebanks.",
                "cite_spans": [
                    {
                        "start": 816,
                        "end": 861,
                        "text": "Kirchhoff's Matrix-Tree Theorem (Tutte, 1984)",
                        "ref_id": null
                    },
                    {
                        "start": 1013,
                        "end": 1038,
                        "text": "(Mc-Donald et al., 2005b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section, we describe the components (layers) of our neural parsing model. We introduce the neural layers in our neural network one-by-one from top to bottom.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Probabilistic Parsing Model",
                "sec_num": "2"
            },
            {
                "text": "In this paper, we will use the following notation: x = {x 1 , . . . , x n } represents a generic input sentence, where x i is the ith word. y represents a generic (possibly non-projective) dependency tree, which represents syntactic relationships through labeled directed edges between heads and their dependents. For example, Figure 1 shows a dependency tree for the sentence, \"Economic news had little effect on financial markets\", with the sentences root-symbol as its root. T (x) is used to denote the set of possible dependency trees for sentence x.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 327,
                        "end": 335,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "The probabilistic model for dependency parsing defines a family of conditional probability p(y|x; \u0398) over all y given sentence x, with a loglinear form:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "P (y|x; \u0398) = exp (x h ,xm)\u2208y \u03c6(x h , x m ; \u0398) Z(x; \u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "where \u0398 is the parameter of this model, s hm = \u03c6(x h , x m ; \u0398) is the score function of edge from x h to x m , and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Z(x; \u0398) = y\u2208T (x) exp \uf8eb \uf8ed (x h ,xm)\u2208y s hm \uf8f6 \uf8f8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "is the partition function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Bi-Linear Score Function. In our model, we adopt a bi-linear form score function:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "\u03c6(x h , x m ; \u0398) = \u03d5(x h ) T W\u03d5(x m ) +U T \u03d5(x h ) + V T \u03d5(x m ) + b where \u0398 = {W, U, V, b}, \u03d5(x i )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "is the representation vector of x i , W, U, V denote the weight matrix of the bi-linear term and the two weight vectors of the linear terms in \u03c6, and b denotes the bias vector. As discussed in Dozat and Manning (2016) , the bi-linear form of score function is related to the bilinear attention mechanism (Luong et al., 2015) . The bi-linear score function differs from the traditional score function proposed in Kiperwasser and Goldberg (2016) by adding the bi-linear term. A similar score function is proposed in Dozat and Manning (2016) . The difference between their and our score function is that they only used the linear term for head words (U T \u03d5(x h )) while use them for both heads and modifiers.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 217,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 304,
                        "end": 324,
                        "text": "(Luong et al., 2015)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 412,
                        "end": 443,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 514,
                        "end": 538,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Matrix-Tree Theorem. In order to train the probabilistic parsing model, as discussed in Koo et al. (2007) , we have to compute the partition function and the marginals, requiring summation over the set T (x):",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 105,
                        "text": "Koo et al. (2007)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Z(x; \u0398) = y\u2208T (x) (x h ,xm)\u2208y \u03c8(x h , x m ; \u0398) \u00b5 h,m (x; \u0398) = y\u2208T (x):(x h ,xm)\u2208y P (y|x; \u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "where \u03c8(x h , x m ; \u0398) is the potential function:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "\u03c8(x h , x m ; \u0398) = exp (\u03c6(x h , x m ; \u0398))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "and \u00b5 h,m (x; \u0398) is the marginal for edge from hth word to mth word for x.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Previous studies (Koo et al., 2007; Smith and Smith, 2007) have presented how a variant of Kirchhoff's Matrix-Tree Theorem (Tutte, 1984) can be used to evaluate the partition function and marginals efficiently. In this section, we briefly revisit this method.",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 35,
                        "text": "(Koo et al., 2007;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 36,
                        "end": 58,
                        "text": "Smith and Smith, 2007)",
                        "ref_id": "BIBREF55"
                    },
                    {
                        "start": 91,
                        "end": 136,
                        "text": "Kirchhoff's Matrix-Tree Theorem (Tutte, 1984)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "For a sentence x with n words, we denote x = {x 0 , x 1 , . . . , x n }, where x 0 is the root-symbol. We define a complete graph G on n + 1 nodes (including the root-symbol x 0 ), where each node corresponds to a word in x and each edge corresponds to a dependency arc between two words. Then, we assign non-negative weights to the edges of this complete graph with n + 1 nodes, yielding the weighted adjacency matrix A(\u0398) \u2208 R n+1\u00d7n+1 , for h, m = 0, . . . , n:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "A h,m (\u0398) = \u03c8(x h , x m ; \u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Based on the adjacency matrix A(\u0398), we have the Laplacian matrix:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "L(\u0398) = D(\u0398) \u2212 A(\u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "where D(\u0398) is the weighted degree matrix:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "D h,m (\u0398) = \uf8f1 \uf8f2 \uf8f3 n h =0 A h ,m (\u0398) if h = m 0 otherwise",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Then, according to Theorem 1 in Koo et al. (2007) , the partition function is equal to the minor of L(\u0398) w.r.t row 0 and column 0:",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 49,
                        "text": "Koo et al. (2007)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Z(x; \u0398) = L (0,0) (\u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "where for a matrix A, A (h,m) denotes the minor of A w.r.t row h and column m; i.e., the determinant of the submatrix formed by deleting the hth row and mth column. The marginals can be computed by calculating the matrix inversion of the matrix corresponding to L (0,0) (\u0398). The time complexity of computing the partition function and marginals is O(n 3 ).",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 29,
                        "text": "(h,m)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Labeled Parsing Model. Though it is originally designed for unlabeled parsing, our probabilistic parsing model is easily extended to include dependency labels.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "In labeled dependency trees, each edge is represented by a tuple (x h , x m , l), where x h and x m are the head word and modifier, respectively, and l is the label of dependency type of this edge. Then we can extend the original model for labeled dependency parsing by extending the score function to include dependency labels:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "\u03c6(x h , x m , l; \u0398) = \u03d5(x h ) T W l \u03d5(x m ) +U T l \u03d5(x h ) + V T l \u03d5(x m ) +b l where W l , U l , V l , b",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "l are the weights and bias corresponding to dependency label l. Suppose that there are L different dependency labels, it suffices to define the new adjacency matrix by assigning the weight of a edge with the sum of weights over different dependency labels:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "A h,m (\u0398) = L l=1 \u03c8(x h , x m , l; \u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "The partition function and marginals over labeled dependency trees are obtained by operating on the new adjacency matrix A (\u0398). The time complexity becomes O(n 3 + Ln 2 ). In practice, L is probably large. For English, the number of edge labels in Stanford Basic Dependencies (De Marneffe et al., 2006) is 45, and the number in the treebank of CoNLL-2008 shared task (Surdeanu et al., 2008) is 70. While, the average length of sentences in English Penn Treebank (Marcus et al., 1993) is around 23. Thus, L is not negligible comparing to n.",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 302,
                        "text": "Marneffe et al., 2006)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 367,
                        "end": 390,
                        "text": "(Surdeanu et al., 2008)",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 462,
                        "end": 483,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "It should be noticed that in our labeled model, for different dependency label l we use the same vector representation \u03d5(x i ) for each word x i . The dependency labels are distinguished (only) by the parameters (weights and bias) corresponding to each of them. One advantage of this is that it significantly reduces the memory requirement comparing to the model in Dozat and Manning (2016) which distinguishes \u03d5 l (x i ) for different label l. Maximum Spanning Tree Decoding. The decoding problem of this parsing model can be formulated as:",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 390,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "y * = argmax y\u2208T (x) P (y|x; \u0398) = argmax y\u2208T (x) (x h ,xm)\u2208y \u03c6(x h , x m ; \u0398)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "which can be solved by using the Maximum Spanning Tree (MST) algorithm described in McDonald et al. (2005b) .",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 107,
                        "text": "McDonald et al. (2005b)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Edge-Factored Parsing Layer",
                "sec_num": "2.1"
            },
            {
                "text": "Now, the remaining question is how to obtain the vector representation of each word with a neural network. In the following subsections, we will describe the architecture of our neural network model for representation learning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Network for Representation Learning",
                "sec_num": "2.2"
            },
            {
                "text": "Previous work (Santos and Zadrozny, 2014) have shown that CNNs are an effective approach to extract morphological information (like the prefix or suffix of a word) from characters of words and encode it into neural representations, which has been proven particularly useful on Out-of-Vocabulary words (OOV). The CNN architecture our model uses to extract character-level representation of a given word is the same as the one used in . The CNN architecture is shown in Figure 2 . Following Ma and Hovy (2016), a dropout layer (Srivastava et al., 2014) is applied before character embeddings are input to CNN. (Mikolov et al., 2010) , sequence labeling and machine translation (Cho et al., 2014) , to capture context information in languages. Though, in theory, RNNs are able to learn long-distance dependencies, in practice, they fail due to the gradient vanishing/exploding problems (Bengio et al., 1994; Pascanu et al., 2013) .",
                "cite_spans": [
                    {
                        "start": 525,
                        "end": 550,
                        "text": "(Srivastava et al., 2014)",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 608,
                        "end": 630,
                        "text": "(Mikolov et al., 2010)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 675,
                        "end": 693,
                        "text": "(Cho et al., 2014)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 883,
                        "end": 904,
                        "text": "(Bengio et al., 1994;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 905,
                        "end": 926,
                        "text": "Pascanu et al., 2013)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 468,
                        "end": 476,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "CNNs",
                "sec_num": "2.2.1"
            },
            {
                "text": "LSTMs (Hochreiter and Schmidhuber, 1997) are variants of RNNs designed to cope with these gradient vanishing problems. Basically, a LSTM unit is composed of three multiplicative gates which control the proportions of information to pass and to forget on to the next time step.",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 40,
                        "text": "(Hochreiter and Schmidhuber, 1997)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CNNs",
                "sec_num": "2.2.1"
            },
            {
                "text": "BLSTM. Many linguistic structure prediction tasks can benefit from having access to both past (left) and future (right) contexts, while the LSTM's hidden state h t takes information only from past, knowing nothing about the future. An elegant solution whose effectiveness has been proven by previous work is bi-directional LSTM (BLSTM). The basic idea is to present each sequence forwards and backwards to two separate hidden states to capture past and future information, respectively. Then the two hidden states are concatenated to form the final output. As discussed in Dozat and Manning (2016) , there are more than one advantages to apply a multilayer perceptron (MLP) to the output vectors of BLSTM before the score function, eg. reducing the dimensionality and overfitting of the model. We follow this work by using a one-layer perceptron with elu (Clevert et al., 2015) as activation function.",
                "cite_spans": [
                    {
                        "start": 573,
                        "end": 597,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 855,
                        "end": 877,
                        "text": "(Clevert et al., 2015)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CNNs",
                "sec_num": "2.2.1"
            },
            {
                "text": "Finally, we construct our neural network model by feeding the output vectors of BLSTM (after MLP) into the parsing layer. Figure 3 illustrates the architecture of our network in detail.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 122,
                        "end": 130,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BLSTM-CNNs",
                "sec_num": "2.3"
            },
            {
                "text": "For each word, the CNN in Figure 2 , with character embeddings as inputs, encodes the characterlevel representation. Then the character-level representation vector is concatenated with the word embedding vector to feed into the BLSTM network. To enrich word-level information, we also use POS embeddings. Finally, the output vec- Figure 3 : The main architecture of our parsing model. The character representation for each word is computed by the CNN in Figure 2 . Then the character representation vector is concatenated with the word and pos embedding before feeding into the BLSTM network. Dashed arrows indicate dropout layers applied on the input, hidden and output vectors of BLSTM. tors of the neural netwok are fed to the parsing layer to jointly parse the best (labeled) dependency tree. As shown in Figure 3 , dropout layers are applied on the input, hidden and output vectors of BLSTM, using the form of recurrent dropout proposed in Gal and Ghahramani (2016) .",
                "cite_spans": [
                    {
                        "start": 945,
                        "end": 970,
                        "text": "Gal and Ghahramani (2016)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 34,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 330,
                        "end": 338,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 454,
                        "end": 462,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 809,
                        "end": 817,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BLSTM-CNNs",
                "sec_num": "2.3"
            },
            {
                "text": "In this section, we provide details about implementing and training the neural parsing model, including parameter initialization, model optimization and hyper parameter selection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Network Training",
                "sec_num": "3"
            },
            {
                "text": "Word Embeddings. For all the parsing models on different languages, we initialize word vectors with pretrained word embeddings. For Chi- , where r and c are the number of of rows and columns in the structure (Glorot and Bengio, 2010) . Bias vectors are initialized to zero, except the bias b f for the forget gate in LSTM , which is initialized to 1.0 (Jozefowicz et al., 2015) .",
                "cite_spans": [
                    {
                        "start": 208,
                        "end": 233,
                        "text": "(Glorot and Bengio, 2010)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 352,
                        "end": 377,
                        "text": "(Jozefowicz et al., 2015)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Initialization",
                "sec_num": "3.1"
            },
            {
                "text": "Parameter optimization is performed with the Adam optimizer (Kingma and Ba, 2014) with \u03b21 = \u03b22 = 0.9. We choose an initial learning rate of \u03b7 0 = 0.002. The learning rate \u03b7 was adapted using a schedule S = [e 1 , e 2 , . . . , e s ], in which the learning rate \u03b7 is annealed by multiplying a fixed decay rate \u03c1 = 0.5 after e i \u2208 S epochs respectively. We used S = [10, 30, 50, 70, 100] and trained all networks for a total of 120 epochs. While the Adam optimizer automatically adjusts the global learning rate according to past gradient magnitudes, we find that this additional decay consistently improves model performance across all settings and languages. To reduce the effects of \"gradient exploding\", we use a gradient clipping of 5.0 (Pascanu et al., 2013) . We explored other optimization algorithms such as stochastic gradient descent (SGD) with momentum, AdaDelta (Zeiler, 2012), or RMSProp (Dauphin et al., 2015) , but none of them meaningfully improve upon Adam with learning rate annealing in our preliminary experiments.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 81,
                        "text": "(Kingma and Ba, 2014)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 364,
                        "end": 368,
                        "text": "[10,",
                        "ref_id": null
                    },
                    {
                        "start": 369,
                        "end": 372,
                        "text": "30,",
                        "ref_id": null
                    },
                    {
                        "start": 373,
                        "end": 376,
                        "text": "50,",
                        "ref_id": null
                    },
                    {
                        "start": 377,
                        "end": 380,
                        "text": "70,",
                        "ref_id": null
                    },
                    {
                        "start": 381,
                        "end": 385,
                        "text": "100]",
                        "ref_id": null
                    },
                    {
                        "start": 740,
                        "end": 762,
                        "text": "(Pascanu et al., 2013)",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 892,
                        "end": 922,
                        "text": "RMSProp (Dauphin et al., 2015)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimization Algorithm",
                "sec_num": "3.2"
            },
            {
                "text": "Dropout Training. To mitigate overfitting, we apply the dropout method (Srivastava et al., 2014; Ma et al., 2017) to regularize our model. As shown in Figure 2 and 3, we apply dropout on character embeddings before inputting to CNN, and on the input, hidden and output vectors of BLSTM. We apply dropout rate of 0.15 to all the embeddings. For BLSTM, we use the recurrent dropout (Gal and Ghahramani, 2016) with 0.25 dropout rate between hidden states and 0.33 between layers.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 96,
                        "text": "(Srivastava et al., 2014;",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 97,
                        "end": 113,
                        "text": "Ma et al., 2017)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 380,
                        "end": 406,
                        "text": "(Gal and Ghahramani, 2016)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 159,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Optimization Algorithm",
                "sec_num": "3.2"
            },
            {
                "text": "We found that the model using the new recurrent dropout converged much faster than standard dropout, while achiving similar performance. Table 1 summarizes the chosen hyper-parameters for all experiments. We tune the hyper-parameters on the development sets by random search. We use the same hyper-parameters across the models on different treebanks and languages, due to time constrains. Note that we use 2-layer BLSTM followed with 1-layer MLP. We set the state size of LSTM to 256 and the dimension of MLP to 100. Tuning these two parameters did not significantly impact the performance of our model. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 137,
                        "end": 144,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Optimization Algorithm",
                "sec_num": "3.2"
            },
            {
                "text": "We evaluate our neural probabilistic parser on the same data setup as Kuncoro et al. (2016) , namely the English Penn Treebank (PTB version 3.0) (Marcus et al., 1993) , the Penn Chinese Treebank (CTB version 5.1) (Xue et al., 2002) , and the German CoNLL 2009 corpus (Haji\u010d et al., 2009) . Following previous work, all experiments are evaluated on the metrics of unlabeled attachment score (UAS) and Labeled attachment score (LAS).",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 91,
                        "text": "Kuncoro et al. (2016)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 145,
                        "end": 166,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 213,
                        "end": 231,
                        "text": "(Xue et al., 2002)",
                        "ref_id": "BIBREF62"
                    },
                    {
                        "start": 267,
                        "end": 287,
                        "text": "(Haji\u010d et al., 2009)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "4.1"
            },
            {
                "text": "We first construct experiments to dissect the effectiveness of each input information (embeddings) of our neural network architecture by ablation studies. We compare the performance of four versions of our model with different inputs -Basic, +POS, +Char and Full -where the Basic model utilizes only the pretrained word embeddings as inputs, while the +POS and +Char models augments the basic one with POS embedding and character information, respectively. According to the results shown in for Chinese than English and German. Table 3 gives the performance on PTB of the parsers trained with two different objective functions -the cross-entropy objective of each word, and our objective based on likelihood for an entire tree. The parser with global likelihood objective outperforms the one with simple crossentropy objective, demonstrating the effectiveness of the global structured objective. Table 4 illustrates the results of the four versions of our model on the three languages, together with twelve previous top-performance systems for comparison. Our Full model significantly outperforms the graph-based parser proposed in Kiperwasser and Goldberg (2016) which used similar neural network architecture for representation learning (detailed discussion in Section 5). Moreover, our model achieves better results than the parser distillation method (Kuncoro et al., 2016) on all the three languages. The results of our parser are slightly worse than the scores reported in Dozat and Manning (2016) . One possible reason is that, as mentioned in Section 2.1, for labeled dependency parsing Dozat and Manning (2016) used different vectors for different dependency labels to represent each word, making their model require much more memory than ours.",
                "cite_spans": [
                    {
                        "start": 1355,
                        "end": 1377,
                        "text": "(Kuncoro et al., 2016)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1479,
                        "end": 1503,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1595,
                        "end": 1619,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 528,
                        "end": 535,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 896,
                        "end": 903,
                        "text": "Table 4",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Main Results",
                "sec_num": "4.2"
            },
            {
                "text": "Datasets. To make a thorough empirical comparison with previous studies, we also evaluate our system on treebanks from CoNLL shared task on dependency parsing -the English treebank from CoNLL-2008 shared task (Surdeanu et al., 2008) and all 13 treebanks from CoNLL-2006 shared task (Buchholz and Marsi, 2006) . For the treebanks from CoNLL-2006 shared task, following , we randomly select 5% of the training data as the development set. UAS and LAS are evaluated using the official scorer 1 of CoNLL-2006 shared task.",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 232,
                        "text": "(Surdeanu et al., 2008)",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 282,
                        "end": 308,
                        "text": "(Buchholz and Marsi, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments on CoNLL Treebanks",
                "sec_num": "4.4"
            },
            {
                "text": "Baselines. We compare our model with the third-order Turbo parser (Martins et al., 2013) , the low-rank tensor based model (Tensor) , the randomized greedy inference based (RGB) model , the labeled dependency parser with inner-to-outer greedy decoding algorithm (In-Out) , and the bi-direction attention based parser (Bi-Att) . We also compare our parser against the best published results for individual languages. This comparison includes four additional systems: , Martins et al. (2011) , Zhang and McDonald (2014) and Pitler and McDonald (2015) . Results. Table 5 summarizes the results of our model, along with the state-of-the-art baselines. On average across 14 languages, our approach significantly outperforms all the baseline systems. It should be noted that the average UAS of our parser over the 14 languages is better than that of the \"best published\", which are from different systems that achieved best results for different languages. For individual languages, our parser achieves state-of-the-art performance on both UAS and LAS on 8 languages -Bulgarian, Chinese, Czech, Dutch, English, German, Japanese and Spanish. On Arabic, Danish, Portuguese, Slovene and Swedish, our parser obtains the best LAS. Another interesting observation is that the Full model outperforms the +POS model on 13 languages. The only exception is Chinese, which matches the observation in Section 4.2.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 88,
                        "text": "(Martins et al., 2013)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 468,
                        "end": 489,
                        "text": "Martins et al. (2011)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 492,
                        "end": 517,
                        "text": "Zhang and McDonald (2014)",
                        "ref_id": "BIBREF64"
                    },
                    {
                        "start": 522,
                        "end": 548,
                        "text": "Pitler and McDonald (2015)",
                        "ref_id": "BIBREF53"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 560,
                        "end": 567,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments on CoNLL Treebanks",
                "sec_num": "4.4"
            },
            {
                "text": "In recent years, several different neural network based models have been proposed and successfully applied to dependency parsing. Among these neural models, there are three approaches most similar to our model -the two graphbased parsers with BLSTM feature representation (Kiperwasser and Goldberg, 2016; Wang and Chang, 2016) , and the neural bi-affine attention parser (Dozat and Manning, 2016) . Kiperwasser and Goldberg (2016) proposed a graph-based dependency parser which uses BLSTM for word-level representations. Wang and Chang (2016) used a similar model with a way to learn sentence segment embedding based on an extra forward LSTM network. Both of these two parsers trained the parsing models by optimizing margin-based objectives. There are three main differences between their models and ours. First, they only used linear form score function, instead of using the bi-linear term between the vectors of heads and modifiers. Second, They did not employ CNNs to model character-level information. Third, we proposed a probabilistic model over non-projective trees on the top of neural representations, while they trained their models with a margin-based objective. Dozat and Manning (2016) proposed neural parsing model using bi-affine score function, which is similar to the bi-linear form score function in our model. Our model mainly differ from this model by using CNN to model character-level information. Moreover, their model formalized dependency parsing as independently selecting the head of each word with cross-entropy objective, while our probabilistic parsing model jointly encodes and decodes parsing trees for given sentences.",
                "cite_spans": [
                    {
                        "start": 272,
                        "end": 304,
                        "text": "(Kiperwasser and Goldberg, 2016;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 305,
                        "end": 326,
                        "text": "Wang and Chang, 2016)",
                        "ref_id": "BIBREF59"
                    },
                    {
                        "start": 371,
                        "end": 396,
                        "text": "(Dozat and Manning, 2016)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 399,
                        "end": 430,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 521,
                        "end": 542,
                        "text": "Wang and Chang (2016)",
                        "ref_id": "BIBREF59"
                    },
                    {
                        "start": 1176,
                        "end": 1200,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "In this paper, we proposed a neural probabilistic model for non-projective dependency parsing, using the BLSTM-CNNs architecture for representation learning. Experimental results on 17 treebanks across 14 languages show that our parser significantly improves the accuracy of both dependency structures (UAS) and edge labels (LAS), over several previously state-of-the-art systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "http://ilk.uvt.nl/conll/software.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research was supported in part by DARPA grant FA8750-12-2-0342 funded under the DEFT program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Polyglot: Distributed word representations for multilingual nlp",
                "authors": [
                    {
                        "first": "Rami",
                        "middle": [],
                        "last": "Al-Rfou",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Perozzi",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Skiena",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of CoNLL-2013",
                "volume": "",
                "issue": "",
                "pages": "183--192",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilingual nlp. In Proceedings of CoNLL- 2013. Sofia, Bulgaria, pages 183-192.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Globally normalized transition-based neural networks",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Andor",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Alberti",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "Aliaksei",
                        "middle": [],
                        "last": "Severyn",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Presta",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of ACL-2016",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally nor- malized transition-based neural networks. In Pro- ceedings of ACL-2016 (Volume 1: Long Papers).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Improved transition-based parsing by modeling characters instead of words with lstms",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of EMNLP-2015",
                "volume": "",
                "issue": "",
                "pages": "349--359",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by model- ing characters instead of words with lstms. In Pro- ceedings of EMNLP-2015. Lisbon, Portugal, pages 349-359.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Training with exploration improves a greedy stack lstm parser",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of EMNLP-2016",
                "volume": "",
                "issue": "",
                "pages": "2005--2010",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training with exploration im- proves a greedy stack lstm parser. In Proceedings of EMNLP-2016. Austin, Texas, pages 2005-2010.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning long-term dependencies with gradient descent is difficult",
                "authors": [
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Patrice",
                        "middle": [],
                        "last": "Simard",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Frasconi",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Transactions on",
                "volume": "5",
                "issue": "2",
                "pages": "157--166",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gra- dient descent is difficult. Neural Networks, IEEE Transactions on 5(2):157-166.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing",
                "authors": [
                    {
                        "first": "Bernd",
                        "middle": [],
                        "last": "Bohnet",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of EMNLP-2012",
                "volume": "",
                "issue": "",
                "pages": "1455--1465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernd Bohnet and Joakim Nivre. 2012. A transition- based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Pro- ceedings of EMNLP-2012. Jeju Island, Korea, pages 1455-1465.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "CoNLL-X shared task on multilingual dependency parsing",
                "authors": [
                    {
                        "first": "Sabine",
                        "middle": [],
                        "last": "Buchholz",
                        "suffix": ""
                    },
                    {
                        "first": "Erwin",
                        "middle": [],
                        "last": "Marsi",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceeding of CoNLL-2006",
                "volume": "",
                "issue": "",
                "pages": "149--164",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceeding of CoNLL-2006. New York, NY, pages 149-164.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A fast and accurate dependency parser using neural networks",
                "authors": [
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of EMNLP-2014",
                "volume": "",
                "issue": "",
                "pages": "740--750",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural net- works. In Proceedings of EMNLP-2014. Doha, Qatar, pages 740-750.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Bi-directional attention with agreement for dependency parsing",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of EMNLP-2016",
                "volume": "",
                "issue": "",
                "pages": "2204--2214",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional attention with agreement for dependency parsing. In Proceedings of EMNLP-2016. Austin, Texas, pages 2204-2214.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Named entity recognition with bidirectional lstm-cnns",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Nichols",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "357--370",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional lstm-cnns. Transac- tions of the Association for Computational Linguis- tics 4:357-370.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "On the properties of neural machine translation",
                "authors": [
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Bart",
                        "middle": [],
                        "last": "Van Merri\u00ebnboer",
                        "suffix": ""
                    },
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1409.1259"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kyunghyun Cho, Bart Van Merri\u00ebnboer, Dzmitry Bah- danau, and Yoshua Bengio. 2014. On the properties of neural machine translation: Encoder-decoder ap- proaches. arXiv preprint arXiv:1409.1259 .",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Fast and accurate deep network learning by exponential linear units (elus)",
                "authors": [
                    {
                        "first": "Djork-Arn\u00e9",
                        "middle": [],
                        "last": "Clevert",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Unterthiner",
                        "suffix": ""
                    },
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1511.07289"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Djork-Arn\u00e9 Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 .",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Natural language processing (almost) from scratch",
                "authors": [
                    {
                        "first": "Ronan",
                        "middle": [],
                        "last": "Collobert",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "L\u00e9on",
                        "middle": [],
                        "last": "Bottou",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Karlen",
                        "suffix": ""
                    },
                    {
                        "first": "Koray",
                        "middle": [],
                        "last": "Kavukcuoglu",
                        "suffix": ""
                    },
                    {
                        "first": "Pavel",
                        "middle": [],
                        "last": "Kuksa",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "The Journal of Machine Learning Research",
                "volume": "12",
                "issue": "",
                "pages": "2493--2537",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ronan Collobert, Jason Weston, L\u00e9on Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. The Journal of Machine Learning Research 12:2493-2537.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Rmsprop and equilibrated adaptive learning rates for non-convex optimization",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yann N Dauphin",
                        "suffix": ""
                    },
                    {
                        "first": "Junyoung",
                        "middle": [],
                        "last": "Harm De Vries",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Chung",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1502.04390"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yann N Dauphin, Harm de Vries, Junyoung Chung, and Yoshua Bengio. 2015. Rmsprop and equili- brated adaptive learning rates for non-convex opti- mization. arXiv preprint arXiv:1502.04390 .",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Generating typed dependency parses from phrase structure parses",
                "authors": [
                    {
                        "first": "Marie-Catherine De",
                        "middle": [],
                        "last": "Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Maccartney",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of LREC-2006",
                "volume": "",
                "issue": "",
                "pages": "449--454",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marie-Catherine De Marneffe, Bill MacCartney, Christopher D. Manning, et al. 2006. Generat- ing typed dependency parses from phrase structure parses. In Proceedings of LREC-2006. pages 449- 454.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Deep biaffine attention for neural dependency parsing",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1611.01734"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency pars- ing. arXiv preprint arXiv:1611.01734 .",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Easy victories and uphill battles in coreference resolution",
                "authors": [
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Durrett",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of EMNLP-2013",
                "volume": "",
                "issue": "",
                "pages": "1971--1982",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Greg Durrett and Dan Klein. 2013. Easy victories and uphill battles in coreference resolution. In Proceed- ings of EMNLP-2013. Seattle, Washington, USA, pages 1971-1982.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Transitionbased dependency parsing with stack long shortterm memory",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    },
                    {
                        "first": "Austin",
                        "middle": [],
                        "last": "Matthews",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of ACL-2015",
                "volume": "1",
                "issue": "",
                "pages": "334--343",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition- based dependency parsing with stack long short- term memory. In Proceedings of ACL-2015 (Volume 1: Long Papers). Beijing, China, pages 334-343.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Word sense disambiguation via propstore and ontonotes for event mention detection",
                "authors": [
                    {
                        "first": "Yiu-Chang",
                        "middle": [],
                        "last": "Nicolas R Fauceglia",
                        "suffix": ""
                    },
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and Representation",
                "volume": "",
                "issue": "",
                "pages": "11--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicolas R Fauceglia, Yiu-Chang Lin, Xuezhe Ma, and Eduard Hovy. 2015. Word sense disambiguation via propstore and ontonotes for event mention detec- tion. In Proceedings of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and Representation. Denver, Colorado, pages 11-15.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A theoretically grounded application of dropout in recurrent neural networks",
                "authors": [
                    {
                        "first": "Yarin",
                        "middle": [],
                        "last": "Gal",
                        "suffix": ""
                    },
                    {
                        "first": "Zoubin",
                        "middle": [],
                        "last": "Ghahramani",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yarin Gal and Zoubin Ghahramani. 2016. A theoret- ically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Understanding the difficulty of training deep feedforward neural networks",
                "authors": [
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Glorot",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "International conference on artificial intelligence and statistics",
                "volume": "",
                "issue": "",
                "pages": "249--256",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xavier Glorot and Yoshua Bengio. 2010. Understand- ing the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics. pages 249-256.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "Massimiliano",
                        "middle": [],
                        "last": "Ciaramita",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "Daisuke",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [
                            "Ant\u00f2nia"
                        ],
                        "last": "Mart\u00ed",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Meyers",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Pad\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jan\u0161t\u011bp\u00e1nek",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of CoNLL-2009: Shared Task",
                "volume": "",
                "issue": "",
                "pages": "1--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jan Haji\u010d, Massimiliano Ciaramita, Richard Johans- son, Daisuke Kawahara, Maria Ant\u00f2nia Mart\u00ed, Llu\u00eds M\u00e0rquez, Adam Meyers, Joakim Nivre, Sebastian Pad\u00f3, Jan\u0160t\u011bp\u00e1nek, et al. 2009. The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of CoNLL- 2009: Shared Task. pages 1-18.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural computation",
                "volume": "9",
                "issue": "8",
                "pages": "1735--1780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation 9(8):1735-1780.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "An empirical exploration of recurrent network architectures",
                "authors": [
                    {
                        "first": "Rafal",
                        "middle": [],
                        "last": "Jozefowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Wojciech",
                        "middle": [],
                        "last": "Zaremba",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 32nd International Conference on Machine Learning (ICML-15)",
                "volume": "",
                "issue": "",
                "pages": "2342--2350",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration of recur- rent network architectures. In Proceedings of the 32nd International Conference on Machine Learn- ing (ICML-15). pages 2342-2350.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "Diederik",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 .",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Simple and accurate dependency parsing using bidirectional lstm feature representations",
                "authors": [
                    {
                        "first": "Eliyahu",
                        "middle": [],
                        "last": "Kiperwasser",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "313--327",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional lstm feature representations. Transactions of the Association for Computational Linguistics 4:313-327.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Efficient thirdorder dependency parsers",
                "authors": [
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of ACL-2010",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Terry Koo and Michael Collins. 2010. Efficient third- order dependency parsers. In Proceedings of ACL- 2010. Uppsala, Sweden, pages 1-11.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Structured prediction models via the matrix-tree theorem",
                "authors": [
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Globerson",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of EMNLP-2007",
                "volume": "",
                "issue": "",
                "pages": "141--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. 2007. Structured prediction mod- els via the matrix-tree theorem. In Proceedings of EMNLP-2007. Prague, Czech Republic, pages 141- 150.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Dual decomposition for parsing with non-projective head automata",
                "authors": [
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Sontag",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of EMNLP-2010",
                "volume": "",
                "issue": "",
                "pages": "1288--1298",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual decomposition for parsing with non-projective head automata. In Proceedings of EMNLP-2010. Cam- bridge, MA, pages 1288-1298.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Distilling an ensemble of greedy dependency parsers into one mst parser",
                "authors": [
                    {
                        "first": "Adhiguna",
                        "middle": [],
                        "last": "Kuncoro",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Lingpeng",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of EMNLP-2016",
                "volume": "",
                "issue": "",
                "pages": "1744--1753",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Dis- tilling an ensemble of greedy dependency parsers into one mst parser. In Proceedings of EMNLP- 2016. Austin, Texas, pages 1744-1753.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Low-rank tensors for scoring dependency structures",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Xin",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL-2014",
                "volume": "1",
                "issue": "",
                "pages": "1381--1391",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-rank tensors for scor- ing dependency structures. In Proceedings of ACL- 2014 (Volume 1: Long Papers). Baltimore, Mary- land, pages 1381-1391.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Two/too simple adaptations of word2vec for syntax problems",
                "authors": [
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "W"
                        ],
                        "last": "Black",
                        "suffix": ""
                    },
                    {
                        "first": "Isabel",
                        "middle": [],
                        "last": "Trancoso",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of NAACL-2015",
                "volume": "",
                "issue": "",
                "pages": "1299--1304",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proceedings of NAACL-2015. Denver, Colorado, pages 1299-1304.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Effective approaches to attentionbased neural machine translation",
                "authors": [
                    {
                        "first": "Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of EMNLP-2015",
                "volume": "",
                "issue": "",
                "pages": "1412--1421",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thang Luong, Hieu Pham, and Christopher D. Man- ning. 2015. Effective approaches to attention- based neural machine translation. In Proceedings of EMNLP-2015. Lisbon, Portugal, pages 1412-1421.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Dropout with expectation-linear regularization",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Yingkai",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiting",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Yaoliang",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Yuntian",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 5th International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard Hovy. 2017. Dropout with expectation-linear regularization. In Proceed- ings of the 5th International Conference on Learn- ing Representations (ICLR-2017). Toulon, France.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Efficient inner-toouter greedy algorithm for higher-order labeled dependency parsing",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of EMNLP-2015",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Eduard Hovy. 2015. Efficient inner-to- outer greedy algorithm for higher-order labeled de- pendency parsing. In Proceedings of EMNLP-2015.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "End-to-end sequence labeling via bi-directional lstm-cnns-crf",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of ACL-2016",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Eduard Hovy. 2016. End-to-end se- quence labeling via bi-directional lstm-cnns-crf. In Proceedings of ACL-2016 (Volume 1: Long Papers).",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Unsupervised ranking model for entity coreference resolution",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengzhong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of NAACL-2016",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma, Zhengzhong Liu, and Eduard Hovy. 2016. Unsupervised ranking model for entity coreference resolution. In Proceedings of NAACL-2016. San Diego, California, USA.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Unsupervised dependency parsing with transferring distribution via parallel guidance and entropy regularization",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL-2014",
                "volume": "",
                "issue": "",
                "pages": "1337--1348",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Fei Xia. 2014. Unsupervised depen- dency parsing with transferring distribution via par- allel guidance and entropy regularization. In Pro- ceedings of ACL-2014. Baltimore, Maryland, pages 1337-1348.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Fourth-order dependency parsing",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of COLING 2012: Posters",
                "volume": "",
                "issue": "",
                "pages": "785--796",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Hai Zhao. 2012a. Fourth-order depen- dency parsing. In Proceedings of COLING 2012: Posters. Mumbai, India, pages 785-796.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Probabilistic models for high-order projective dependency parsing",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1502.04174"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Hai Zhao. 2012b. Probabilistic models for high-order projective dependency parsing. Tech- nical Report, arXiv:1502.04174 .",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Building a large annotated corpus of English: the Penn Treebank",
                "authors": [
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [
                            "Ann"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "313--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: the Penn Treebank. Computa- tional Linguistics 19(2):313-330.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Turning on the turbo: Fast third-order nonprojective turbo parsers",
                "authors": [
                    {
                        "first": "Andre",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Almeida",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of ACL-2013",
                "volume": "2",
                "issue": "",
                "pages": "617--622",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andre Martins, Miguel Almeida, and Noah A. Smith. 2013. Turning on the turbo: Fast third-order non- projective turbo parsers. In Proceedings of ACL- 2013 (Volume 2: Short Papers). Sofia, Bulgaria, pages 617-622.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Dual decomposition with many overlapping components",
                "authors": [
                    {
                        "first": "Andre",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Figueiredo",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Aguiar",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of EMNLP-2011",
                "volume": "",
                "issue": "",
                "pages": "238--249",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andre Martins, Noah Smith, Mario Figueiredo, and Pedro Aguiar. 2011. Dual decomposition with many overlapping components. In Proceedings of EMNLP-2011. Edinburgh, Scotland, UK., pages 238-249.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Online large-margin training of dependency parsers",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Koby",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL-2005",
                "volume": "",
                "issue": "",
                "pages": "91--98",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online large-margin training of de- pendency parsers. In Proceedings of ACL-2005. Ann Arbor, Michigan, USA, pages 91-98.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Universal dependency annotation for multilingual parsing",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Yvonne",
                        "middle": [],
                        "last": "Quirmbach-Brundage",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    },
                    {
                        "first": "Keith",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Oscar",
                        "middle": [],
                        "last": "T\u00e4ckstr\u00f6m",
                        "suffix": ""
                    },
                    {
                        "first": "Claudia",
                        "middle": [],
                        "last": "Bedini",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of ACL-2013",
                "volume": "",
                "issue": "",
                "pages": "92--97",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan McDonald, Joakim Nivre, Yvonne Quirmbach- Brundage, Yoav Goldberg, Dipanjan Das, Kuz- man Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar T\u00e4ckstr\u00f6m, Claudia Bedini, N\u00faria Bertomeu Castell\u00f3, and Jungmee Lee. 2013. Uni- versal dependency annotation for multilingual pars- ing. In Proceedings of ACL-2013. Sofia, Bulgaria, pages 92-97.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Non-projective dependency parsing using spanning tree algorithms",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "Kiril",
                        "middle": [],
                        "last": "Ribarov",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of HLT/EMNLP-2005",
                "volume": "",
                "issue": "",
                "pages": "523--530",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005b. Non-projective dependency pars- ing using spanning tree algorithms. In Proceedings of HLT/EMNLP-2005. Vancouver, Canada, pages 523-530.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Recurrent neural network based language model",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Karafi\u00e1t",
                        "suffix": ""
                    },
                    {
                        "first": "Lukas",
                        "middle": [],
                        "last": "Burget",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Interspeech",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Martin Karafi\u00e1t, Lukas Burget, Jan Cernock\u1ef3, and Sanjeev Khudanpur. 2010. Recur- rent neural network based language model. In Inter- speech. volume 2, page 3.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Supervised noun phrase coreference research: The first fifteen years",
                "authors": [
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of ACL-2010. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1396--1411",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vincent Ng. 2010. Supervised noun phrase coreference research: The first fifteen years. In Proceedings of ACL-2010. Association for Computational Linguis- tics, Uppsala, Sweden, pages 1396-1411.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Deterministic dependency parsing of English text",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Scholz",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING-2004",
                "volume": "",
                "issue": "",
                "pages": "64--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre and Mario Scholz. 2004. Deterministic dependency parsing of English text. In Proceedings of COLING-2004. Geneva, Switzerland, pages 64- 70.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "On the difficulty of training recurrent neural networks",
                "authors": [
                    {
                        "first": "Razvan",
                        "middle": [],
                        "last": "Pascanu",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of ICML-2013",
                "volume": "",
                "issue": "",
                "pages": "1310--1318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neu- ral networks. In Proceedings of ICML-2013. pages 1310-1318.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "A linear-time transition system for crossing interval trees",
                "authors": [
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Pitler",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of NAACL-2015",
                "volume": "",
                "issue": "",
                "pages": "662--671",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emily Pitler and Ryan McDonald. 2015. A linear-time transition system for crossing interval trees. In Pro- ceedings of NAACL-2015. Denver, Colorado, pages 662-671.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Learning character-level representations for part-of-speech tagging",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Cicero",
                        "suffix": ""
                    },
                    {
                        "first": "Bianca",
                        "middle": [],
                        "last": "Santos",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zadrozny",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ICML-2014",
                "volume": "",
                "issue": "",
                "pages": "1818--1826",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cicero D Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging. In Proceedings of ICML-2014. pages 1818-1826.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Probabilistic models of nonprojective dependency trees",
                "authors": [
                    {
                        "first": "David",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of EMNLP-2007. Prague, Czech Republic",
                "volume": "",
                "issue": "",
                "pages": "132--140",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David A. Smith and Noah A. Smith. 2007. Proba- bilistic models of nonprojective dependency trees. In Proceedings of EMNLP-2007. Prague, Czech Re- public, pages 132-140.",
                "links": null
            },
            "BIBREF56": {
                "ref_id": "b56",
                "title": "Dropout: A simple way to prevent neural networks from overfitting",
                "authors": [
                    {
                        "first": "Nitish",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Hinton",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Krizhevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "The Journal of Machine Learning Research",
                "volume": "15",
                "issue": "1",
                "pages": "1929--1958",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929-1958.",
                "links": null
            },
            "BIBREF57": {
                "ref_id": "b57",
                "title": "The conll-2008 shared task on joint parsing of syntactic and semantic dependencies",
                "authors": [
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Meyers",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of CoNLL-2008",
                "volume": "",
                "issue": "",
                "pages": "159--177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihai Surdeanu, Richard Johansson, Adam Meyers, Llu\u00eds M\u00e0rquez, and Joakim Nivre. 2008. The conll- 2008 shared task on joint parsing of syntactic and semantic dependencies. In Proceedings of CoNLL- 2008. pages 159-177.",
                "links": null
            },
            "BIBREF58": {
                "ref_id": "b58",
                "title": "Graph theory",
                "authors": [
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Thomas Tutte",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "",
                "volume": "11",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William Thomas Tutte. 1984. Graph theory, vol- ume 11. Addison-Wesley Menlo Park.",
                "links": null
            },
            "BIBREF59": {
                "ref_id": "b59",
                "title": "Graph-based dependency parsing with bidirectional lstm",
                "authors": [
                    {
                        "first": "Wenhui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of ACL-2016",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenhui Wang and Baobao Chang. 2016. Graph-based dependency parsing with bidirectional lstm. In Pro- ceedings of ACL-2016 (Volume 1: Long Papers).",
                "links": null
            },
            "BIBREF61": {
                "ref_id": "b61",
                "title": "A novel dependency-to-string model for statistical machine translation",
                "authors": [
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Haitao",
                        "middle": [],
                        "last": "Mi",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of EMNLP-2011. Edinburgh",
                "volume": "",
                "issue": "",
                "pages": "216--226",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun Xie, Haitao Mi, and Qun Liu. 2011. A novel dependency-to-string model for statistical machine translation. In Proceedings of EMNLP-2011. Edin- burgh, Scotland, UK., pages 216-226.",
                "links": null
            },
            "BIBREF62": {
                "ref_id": "b62",
                "title": "Building a large-scale annotated chinese corpus",
                "authors": [
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Fu-Dong",
                        "middle": [],
                        "last": "Chiou",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of COLING-2002",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nianwen Xue, Fu-Dong Chiou, and Martha Palmer. 2002. Building a large-scale annotated chinese cor- pus. In Proceedings of COLING-2002. pages 1-8.",
                "links": null
            },
            "BIBREF63": {
                "ref_id": "b63",
                "title": "Adadelta: an adaptive learning rate method",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Matthew",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zeiler",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1212.5701"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew D Zeiler. 2012. Adadelta: an adaptive learn- ing rate method. arXiv preprint arXiv:1212.5701 .",
                "links": null
            },
            "BIBREF64": {
                "ref_id": "b64",
                "title": "Enforcing structural diversity in cube-pruned dependency parsing",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL-2014",
                "volume": "2",
                "issue": "",
                "pages": "656--661",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hao Zhang and Ryan McDonald. 2014. Enforcing structural diversity in cube-pruned dependency pars- ing. In Proceedings of ACL-2014 (Volume 2: Short Papers). Baltimore, Maryland, pages 656-661.",
                "links": null
            },
            "BIBREF65": {
                "ref_id": "b65",
                "title": "Dependency parsing as head selection",
                "authors": [
                    {
                        "first": "Xingxing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianpeng",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.01280"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata. 2016. Dependency parsing as head selection. arXiv preprint arXiv:1606.01280 .",
                "links": null
            },
            "BIBREF66": {
                "ref_id": "b66",
                "title": "Greed is good if randomized: New inference for dependency parsing",
                "authors": [
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of EMNLP-2014",
                "volume": "",
                "issue": "",
                "pages": "1013--1024",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2014. Greed is good if randomized: New inference for dependency parsing. In Proceedings of EMNLP-2014. Doha, Qatar, pages 1013-1024.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "An example labeled dependency tree."
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "The convolution neural network for extracting character-level representations of words. Dashed arrows indicate a dropout layer applied before character embeddings are input to CNN."
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "5: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art parsers. \"Best Published\" includes the most accurate parsers in term of UAS among Koo et al. (2010), Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al. (2014), Zhang and McDonald (2014), Pitler and McDonald (2015), Ma and Hovy (2015), and Cheng et al. (2016)."
            },
            "TABREF0": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "2.2.2 Bi-directional LSTM LSTM Unit. Recurrent neural networks (RNNs) are a powerful family of connectionist models that have been widely applied in NLP tasks, such as language modeling"
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td/><td/><td colspan=\"2\">English</td><td/><td/><td colspan=\"2\">Chinese</td><td/><td/><td colspan=\"2\">German</td><td/></tr><tr><td/><td>Dev</td><td/><td colspan=\"2\">Test</td><td>Dev</td><td/><td colspan=\"2\">Test</td><td>Dev</td><td/><td colspan=\"2\">Test</td></tr><tr><td>Model</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td><td>UAS</td><td>LAS</td></tr><tr><td>Basic</td><td>94.51</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "text": "92.23 94.62 92.54 84.33 81.65 84.35 81.63 90.46 87.77 90.69 88.42 +Char 94.74 92.55 94.73 92.75 85.07 82.63 85.24 82.46 92.16 89.82 92.24 90.18 +POS 94.71 92.60 94.83 92.96 88.98 87.55 89.05 87.74 91.94 89.51 92.19 90.05 Full 94.77 92.66 94.88 92.98 88.51 87.16 88.79 87.47 92.37 90.09 92.58 90.54"
            },
            "TABREF4": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Parsing performance (UAS and LAS) of different versions of our model on both the development and test sets for three languages."
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Parsing performance on PTB with different training objective functions."
            },
            "TABREF7": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>English</td><td>Chinese</td><td>German</td></tr></table>",
                "text": "+Char model obtains better performance than the Basic model on all the three languages, showing that character-level representations are important for dependency parsing. Second, on English and German, +Char and +POS achieves comparable performance, while on Chinese +POS significantly outperforms +Char model. Finally, the Full model achieves the best accuracy on English and German, but on Chinese +POS obtains the best. Thus, we guess that the POS information is more useful"
            },
            "TABREF8": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "UAS and LAS of four versions of our model on test sets for three languages, together with top-performance parsing systems."
            },
            "TABREF9": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td/><td colspan=\"3\">Turbo Tensor RGB</td><td>In-Out</td><td>Bi-Att</td><td>+POS</td><td>Full</td><td colspan=\"2\">Best Published</td></tr><tr><td/><td>UAS</td><td>UAS</td><td>UAS</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS [LAS]</td><td>UAS</td><td>LAS</td></tr><tr><td>ar</td><td>79.64</td><td>79.95</td><td colspan=\"5\">80.24 60]</td><td>94.02</td><td>-</td></tr><tr><td>zh</td><td>89.98</td><td>92.68</td><td colspan=\"2\">93.04 92.58 [88.51]</td><td>-</td><td colspan=\"2\">93.44 [90.04] 93.40 [90.10]</td><td>93.04</td><td>-</td></tr><tr><td>cs</td><td>90.32</td><td>90.50</td><td colspan=\"5\">90.77 82]</td><td>87.39</td><td>-</td></tr><tr><td>en</td><td>93.22</td><td>93.02</td><td colspan=\"2\">93.25 92.45 [89.43]</td><td>-</td><td colspan=\"2\">94.43 [92.31] 94.66 [92.52]</td><td>93.25</td><td>-</td></tr><tr><td>de</td><td>92.41</td><td>91.97</td><td colspan=\"5\">92.67 90.79 [87.74] 92.71 [89.80] 93.53 [91.55] 93.62 [91.90]</td><td>92.71</td><td>89.80</td></tr><tr><td>ja</td><td>93.52</td><td>93.71</td><td colspan=\"5\">93.56 93.54 [91.80] 93.44 [90.67] 93.82 [92.34] 94.02 [92.60]</td><td>93.80</td><td>-</td></tr><tr><td>pt</td><td>92.69</td><td>91.92</td><td colspan=\"5\">92.36 91.54 [87.68] 92.77 [88.44] 92.59 [89.12] 92.71 [88.92]</td><td>93.03</td><td>-</td></tr><tr><td>sl</td><td>86.01</td><td>86.24</td><td colspan=\"5\">86.72 84.39 [73.74] 86.01 [75.90] 85.73 [76.48] 86.73 [77.56]</td><td>87.06</td><td>-</td></tr><tr><td>es</td><td>85.59</td><td>88.00</td><td colspan=\"5\">88.75 86.44 [83.29] 88.74 [84.03] 88.58 [85.03] 89.20 [85.77]</td><td>88.75</td><td>84.03</td></tr><tr><td>sv</td><td>91.14</td><td>91.00</td><td colspan=\"5\">91.08 89.94 [83.09] 90.50 [84.05] 90.89 [86.58] 91.22 [86.92]</td><td>91.85</td><td>85.26</td></tr><tr><td>tr</td><td>76.90</td><td>76.84</td><td colspan=\"5\">76.68 75.32 [60.39] 78.43 [66.16] 75.88 [61.72] 77.71 [65.81]</td><td>78.43</td><td>66.16</td></tr><tr><td>av</td><td>88.73</td><td>89.08</td><td colspan=\"2\">89.44 88.08 [81.84]</td><td>-</td><td colspan=\"2\">89.47 [84.24] 89.95 [84.99]</td><td>89.83</td><td>-</td></tr></table>",
                "text": "79.60 [67.09] 80.34 [68.58] 80.05 [67.80]  80.80 [69.40] 81.12 bg 93.10 93.50 93.72 92.68 [87.79] 93.96 [89.55] 93.66 [89.79] 94.28 [90.88.01 [79.31] 91.16 [85.14] 91.04 [85.82] 91.18 [85.92] 91.16 85.14 da 91.48 91.39 91.86 91.44 [85.55] 91.56 [85.53] 91.52 [86.57] 91.86 [87.07] 92.00 nl 86.19 86.41 87.39 84.45 [80.31] 87.15 [82.41] 87.41 [84.17] 87.85 [84."
            },
            "TABREF10": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": ""
            }
        }
    }
}