File size: 120,241 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
{
    "paper_id": "I17-1016",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:39:30.945899Z"
    },
    "title": "Improving Neural Machine Translation through Phrase-based Forced Decoding",
    "authors": [
        {
            "first": "Jingyi",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "jingyizhang@nict.go.jp"
        },
        {
            "first": "Masao",
            "middle": [],
            "last": "Utiyama",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "mutiyama@nict.go.jp"
        },
        {
            "first": "Eiichro",
            "middle": [],
            "last": "Sumita",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institute of Information and Communications Technology",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "eiichiro.sumita@nict.go.jp"
        },
        {
            "first": "Graham",
            "middle": [],
            "last": "Neubig",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "gneubig@cs.cmu.edu"
        },
        {
            "first": "Satoshi",
            "middle": [],
            "last": "Nakamura",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology",
                "location": {
                    "country": "Japan"
                }
            },
            "email": "s-nakamura@is.naist.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Compared to traditional statistical machine translation (SMT), neural machine translation (NMT) often sacrifices adequacy for the sake of fluency. We propose a method to combine the advantages of traditional SMT and NMT by exploiting an existing phrase-based SMT model to compute the phrase-based decoding cost for an NMT output and then using this cost to rerank the n-best NMT outputs. The main challenge in implementing this approach is that NMT outputs may not be in the search space of the standard phrase-based decoding algorithm, because the search space of phrase-based SMT is limited by the phrase-based translation rule table. We propose a soft forced decoding algorithm, which can always successfully find a decoding path for any NMT output. We show that using the forced decoding cost to rerank the NMT outputs can successfully improve translation quality on four different language pairs.",
    "pdf_parse": {
        "paper_id": "I17-1016",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Compared to traditional statistical machine translation (SMT), neural machine translation (NMT) often sacrifices adequacy for the sake of fluency. We propose a method to combine the advantages of traditional SMT and NMT by exploiting an existing phrase-based SMT model to compute the phrase-based decoding cost for an NMT output and then using this cost to rerank the n-best NMT outputs. The main challenge in implementing this approach is that NMT outputs may not be in the search space of the standard phrase-based decoding algorithm, because the search space of phrase-based SMT is limited by the phrase-based translation rule table. We propose a soft forced decoding algorithm, which can always successfully find a decoding path for any NMT output. We show that using the forced decoding cost to rerank the NMT outputs can successfully improve translation quality on four different language pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Neural machine translation (NMT), which uses a single large neural network to model the entire translation process, has recently been shown to outperform traditional statistical machine translation (SMT) such as phrase-based machine translation (PBMT) on several translation tasks (Koehn et al., 2003; Bahdanau et al., 2015; Sennrich et al., 2016a) . Compared to traditional SMT, NMT generally produces more fluent translations, but often sacrifices adequacy, such as translating source words into completely unrelated target words, over-translation or under-translation (Koehn and Knowles, 2017) .",
                "cite_spans": [
                    {
                        "start": 281,
                        "end": 301,
                        "text": "(Koehn et al., 2003;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 302,
                        "end": 324,
                        "text": "Bahdanau et al., 2015;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 325,
                        "end": 348,
                        "text": "Sennrich et al., 2016a)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 571,
                        "end": 596,
                        "text": "(Koehn and Knowles, 2017)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There are a number of methods that combine the two paradigms to address their respective weaknesses. For example, it is possible to incorporate neural features into traditional SMT models to disambiguate hypotheses (Neubig et al., 2015; Stahlberg et al., 2016) . However, the search space of traditional SMT is usually limited by translation rule tables, reducing the ability of these models to generate hypotheses on the same level of fluency as NMT, even after reranking. There are also methods that incorporate knowledge from traditional SMT into NMT, such as lexical translation probabilities (Arthur et al., 2016; , phrase memory (Tang et al., 2016; Zhang et al., 2017) , and n-gram posterior probabilities based on traditional SMT translation lattices (Stahlberg et al., 2017) . These improve the adequacy of NMT outputs, but do not impose hard alignment constraints like traditional SMT systems and therefore cannot effectively solve all over-translation or under-translation problems.",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 236,
                        "text": "(Neubig et al., 2015;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 237,
                        "end": 260,
                        "text": "Stahlberg et al., 2016)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 597,
                        "end": 618,
                        "text": "(Arthur et al., 2016;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 635,
                        "end": 654,
                        "text": "(Tang et al., 2016;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 655,
                        "end": 674,
                        "text": "Zhang et al., 2017)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 758,
                        "end": 782,
                        "text": "(Stahlberg et al., 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a method that exploits an existing phrase-based translation model to compute the phrase-based decoding cost for a given NMT translation. 1 That is, we force a phrase-based translation system to take in the source sentence and generate an NMT translation. Then we use the cost of this phrase-based forced decoding to rerank the NMT outputs. The phrasebased decoding cost will heavily punish completely unrelated translations, over-translations, and under-translations, as they will not be able to be found in the translation phrase table.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One challenge in implementing this method is that the NMT output may not be in the search space of the phrase-based translation model, which is limited by the phrase-based translation rule table. To solve this problem, we propose a soft forced decoding algorithm, which is based on the standard phrase-based decoding algorithm and integrates new types of translation rules (deleting a source word or inserting a target word). The proposed forced decoding algorithm can always successfully find a decoding path and compute a phrase-based decoding cost for any NMT output. Another challenge is that we need a diverse NMT n-best list for reranking. Because beam search for NMT often lacks diversity in the beam -candidates only have slight differences, with most of the words overlapping -we use a random sampling method to obtain a more diverse n-best list.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We test the proposed method on English-to-Chinese, English-to-Japanese, English-to-German and English-to-French translation tasks, obtaining large improvements over a strong NMT baseline that already incorporates discrete lexicon features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our baseline NMT model is similar to the attentional model of Bahdanau et al. (2015) , which includes an encoder, a decoder and an attention (alignment) model. Given a source sentence F = {f 1 , ..., f J }, the encoder learns an annotation h j = h j ; \u2190 h j for f j using a bi-directional recurrent neural network.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 84,
                        "text": "Bahdanau et al. (2015)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "The decoder generates the target translation from left to right. The probability of generating next word e i is, 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P N M T e i |e i\u22121 1 , F = sof tmax (g (e i\u22121 , t i , s i ))",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "where t i is a decoding state for time step i, computed by,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "t i = f (t i\u22121 , e i\u22121 , s i )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "s i is a source representation for time i, calculated as,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s i = J j=1 \u03b1 i,j \u2022 h j",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "where \u03b1 i,j scores how well the inputs around position j and the output at position i match, computed as,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b1 i,j = exp (a (t i\u22121 , h j )) J k=1 exp (a (t i\u22121 , h k ))",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "As we can see, NMT only learns an attention (alignment) distribution for each target word over all source words and does not provides exact mutually-exclusive word or phrase level alignments. As a result, it is known that attentional NMT systems make mistakes in over-or undertranslation (Cohn et al., 2016; Mi et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 288,
                        "end": 307,
                        "text": "(Cohn et al., 2016;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 308,
                        "end": 324,
                        "text": "Mi et al., 2016)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "3 Phrase-based Forced Decoding for NMT",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attentional NMT",
                "sec_num": "2"
            },
            {
                "text": "In phrase-based SMT (Koehn et al., 2003) , a phrase-based translation rule r includes a source phrase, a target phrase and a translation score S (r). Phrase-based translation rules can be extracted from the word-aligned training set and then used to translate new sentences. Word alignments for the training set can be obtained by IBM models (Brown et al., 1993) . Phrase-based decoding uses a list of translation rules to translate source phrases in the input sentence and generate target phrases from left to right. A basic concept in phrase-based decoding is hypotheses. As shown in Figure 1 , the hypothesis H 1 consists of two rules r 1 and r 2 . The score of a hypothesis S (H) can be calculated as the product of the scores of all applied rules. 3 An existing hypothesis can be expanded into a new hypothesis by applying a new rule. As shown in Figure 1 , H 1 can be expanded into H 2 , H 3 and H 4 . H 2 cannot be further expanded, because it covers all source words, while H 3 and H 4 can (and must) be further expanded. The decoder starts with an initial empty hypothesis H 0 and selects the hypothesis with the highest score from all completed hypotheses.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 40,
                        "text": "(Koehn et al., 2003)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 342,
                        "end": 362,
                        "text": "(Brown et al., 1993)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 753,
                        "end": 754,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 586,
                        "end": 594,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 852,
                        "end": 860,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Phrase-based SMT",
                "sec_num": "3.1"
            },
            {
                "text": "During decoding, hypotheses are stored in stacks. For a source sentence with J words, the decoder builds J stacks. The hypotheses that cover j source words are stored in stack s j . The decoder expands hypotheses in s 1 , s 2 , ..., s J in turn as shown in Algorithm 1. Here, EXPAND(H) is expanding H to get new hypotheses and putting the new hypotheses into corresponding stacks. For each stack, a beam of the best n hypotheses is kept to speed up the decoding process. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based SMT",
                "sec_num": "3.1"
            },
            {
                "text": "S(H1)=S(r1)*S(r2) S(H4)=S(r1)*S(r2)*S(r5) S(H3)=S(r1)*S(r2)*S(r4) S(H2)=S(r1)*S(r2)*S(r3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based SMT",
                "sec_num": "3.1"
            },
            {
                "text": "Phrase Table   Figure 1: An example of phrase-based decoding. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 7,
                        "end": 21,
                        "text": "Table   Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Phrase-based SMT",
                "sec_num": "3.1"
            },
            {
                "text": "As stated in the introduction, our goal is not to generate new hypotheses with phrase-based SMT, but instead use the phrase-based model to calculate scores for NMT output. In order to do so, we can perform forced decoding, which is very similar to the algorithm in the previous section but discards all partial hypotheses that do not match the NMT output. However, the NMT output is not limited by the phrase-based rule table, so there may be no decoding path that completely matches the NMT output when using only the phrase-based rules.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "To remedy this problem, inspired by previous work in forced decoding for training phrase-based SMT systems (Wuebker et al., 2010 (Wuebker et al., , 2012 we propose a soft forced decoding algorithm that can always successfully find a decoding path for a source sentence F and an NMT translation E.",
                "cite_spans": [
                    {
                        "start": 107,
                        "end": 128,
                        "text": "(Wuebker et al., 2010",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 129,
                        "end": 152,
                        "text": "(Wuebker et al., , 2012",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "First, we introduce two new types of rules R 1 and R 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "R 1 A source word f can be translated into a special word null. This corresponds to deleting f during translation. The score of deleting f is cal-culated as,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "s (f \u2192 null) = unalign (f ) |T | (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "where unalign (f ) is how many times f is unaligned in the word-aligned training set T and |T | is the number of sentence pairs in T .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "R 2 A target word e can be translated from a special word null, which corresponds to inserting e during translation. The score of inserting e is calculated as,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s (null \u2192 e) = unalign (e) |T |",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "where unalign (e) is how many times e is unaligned in T . One motivation for Equations 5 and 6 is that function words usually have high frequencies, but do not have as clear a correspondence with a word in the other language as content words. As a result, in the training set function words are more often unaligned than content words. As an example, Table 1 and Table 2 show how many times different words occur and how many times they are unaligned in the word-aligned training set of English-to-Chinese and English-to-French tasks in our experiments. As we can see, generally there are less unaligned words in the English-to-French task, however, function words are more likely to be unaligned in both tasks. Based on Equation 5 and Equation 6, the scores of deleting or inserting \"of\" and \"a\" will be higher.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 351,
                        "end": 370,
                        "text": "Table 1 and Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "In our forced decoding, we choose to model the score of each translation rule that exists in the phrase table as the product of direct and inverse phrase translation probabilities. To make sure that Words of a practice water Occur 1.3M 1.0M 2.2K 29K Unaligned 0.51M 0.41M 0.25K 3.5K Table 2 : The number of times that words occur in the English-to-French training corpus and the number of times that they are unaligned.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 283,
                        "end": 290,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "the scale of the scores for R 1 and R 2 match the other phrase (which are the product of two probabilities), we use the square of the score in Equation 5/6 as the rule score for R 1 /R 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "Algorithm 2 shows the forced decoding algorithm that integrates the new rules. Because the translation E is given for the forced decoding algorithm, the proposed forced decoding algorithm keeps I stacks, where I is the length of E. In other words, the stack size is corresponding to the target word size during forced decoding while the stack size is corresponding to the source word size during standard phrase-based decoding. The stack s i in Algorithm 2 contains all hypotheses in which the first i target words have been generated. We expand hypotheses in s 1 , s 2 , ..., s I in turn. When expanding a hypothesis H old in s i , besides expanding it using the original rule table EXPAND(H old ), 4 we also expand H old by inserting the next target word e i+1 at the end of H old to get an additional hypothesis H new and put H new into s i+1 . For a final hypothesis in stack s I , it may not cover all source words. We update its score by translating uncovered words into null.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "Because different decoding paths can generate the same final translation, there can be different decoding paths that fit the NMT translation E. We use the score of the single decoding path with the highest decoding score as the forced decoding score for E. We rerank the n-best NMT outputs using the phrase-based forced decoding score according to Equation 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "log P (E|F ) = w1 \u2022 log Pn (E|F ) + w2 \u2022 log S d (E|F ) (7)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "where P n (E|F ) is the original NMT translation probability as calculated by Equation 1;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Pn (E|F ) = I i=1 PNMT ei|e i\u22121 1 , F",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "S d (E|F ) is the forced decoding score, which is the score of the decoding pathD with the highest decoding score as described above;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "S d (E|F ) = r\u2208D S (r)",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "w 1 and w 2 are weights that can be tuned on the n-best list of the development set. The easiest way to get an n-best list for NMT is by using the n-best translations from beam search, which is the standard decoding algorithm for NMT. While beam search is likely to find the highest-scoring hypothesis, it often lacks diversity in the beam: candidates only have slight differences, with most of the words overlapping. In order to obtain a more diverse list of hypotheses for reranking, we additionally augment the 1-best hypothesis discovered by beam search with translations sampled from the NMT conditional probability distribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "The standard method for sampling hypotheses in NMT is ancestral sampling, where we randomly select a word from the vocabulary according to P N M T e i |e i\u22121 1 , F (Shen et al., 2016) . This will make a diverse list of hypotheses, but may reduce the probability of selecting a highly scoring hypothesis, and the whole n-best list may not contain any candidate with better translation quality than the standard beam search output.",
                "cite_spans": [
                    {
                        "start": 164,
                        "end": 183,
                        "text": "(Shen et al., 2016)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "Instead, we take an alternative approach that proved empirically better in our experiments: at each time step i, we use sampling to randomly select the next word from e and e according to Equation 10. Here, e and e are the two target words with the highest probability according to Equation 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P rdm (e ) = P N M T (e |e i\u22121 1 ,F ) P N M T (e |e i\u22121 1 ,F )+PNMT (e |e i\u22121 1 ,F ) P rdm (e ) = P N M T (e |e i\u22121 1 ,F ) P N M T (e |e i\u22121 1 ,F )+PNMT (e |e i\u22121 1 ,F )",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "The sampling process ends when /s is selected as the next word. We repeat the decoding process 1, 000 times to sample 1, 000 outputs for each source sentence. We additionally add the 1-best output of standard beam search, making the size of the list used for reranking to be 1, 001.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Forced Decoding for NMT",
                "sec_num": "3.2"
            },
            {
                "text": "We evaluated the proposed approach for Englishto-Chinese (en-zh), English-to-Japanese (en-ja), English-to-German (en-de) and English-to-French (en-fr) translation tasks. For the en-zh and enja tasks, we used datasets provided for the patent machine translation task at NTCIR-9 (Goto et al., 2011) . 5 For the en-de and en-fr tasks, we used version 7 of the Europarl corpus as training data, WMT 2014 test sets as our development sets and WMT 2015 test sets as our test sets. The detailed statistics for training, development and test sets are given in Table 3 . The word segmentation was done by BaseSeg (Zhao et al., 2006) for Chinese and Mecab 6 for Japanese.",
                "cite_spans": [
                    {
                        "start": 277,
                        "end": 296,
                        "text": "(Goto et al., 2011)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 299,
                        "end": 300,
                        "text": "5",
                        "ref_id": null
                    },
                    {
                        "start": 604,
                        "end": 623,
                        "text": "(Zhao et al., 2006)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 552,
                        "end": 559,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Settings",
                "sec_num": "5.1"
            },
            {
                "text": "We built attentional NMT systems with Lamtram 7 . Word embedding size and hidden layer size are both 512. We used Byte-pair encoding (BPE) (Sennrich et al., 2016b) and set the vocabulary size to be 50K. We used the Adam algorithm for optimization.",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 163,
                        "text": "(Sennrich et al., 2016b)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Settings",
                "sec_num": "5.1"
            },
            {
                "text": "To obtain a phrase-based translation rule table for our forced decoding algorithm, we used GIZA++ (Och and Ney, 2003) and grow-diagfinal-and heuristic to obtain symmetric word alignments for the training set. Then we extracted the rule table using Moses (Koehn et al., 2007) . Table 4 shows results of the phrase-based SMT system 8 , the baseline NMT system, the lexicon integration method (Arthur et al., 2016) and the proposed reranking method. We tested three features for reranking: the NMT score P n , the forced decoding score S d and a word penalty (WP) feature, which is the length of the translation. The best NMT system and the systems that have no significant difference from the best NMT system at the p < 0.05 level using bootstrap resampling (Koehn, 2004) are shown in bold font.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 117,
                        "text": "(Och and Ney, 2003)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 254,
                        "end": 274,
                        "text": "(Koehn et al., 2007)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 390,
                        "end": 411,
                        "text": "(Arthur et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 756,
                        "end": 769,
                        "text": "(Koehn, 2004)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 277,
                        "end": 284,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Settings",
                "sec_num": "5.1"
            },
            {
                "text": "As we can see, integrating lexical translation probabilities improved the baseline NMT system 1.000 1.024 1.001 1.001 1.011 1.007 0.999 0.989 NMT+lex+rerank(Pn+S d +WP) 0.990 1.014 1.000 0.986 1.000 0.989 1.000 0.992 Table 6 : Ratio of translation length to reference length for different system outputs in Table 4. and reranking with the three features all together achieved further improvements for all four language pairs. Even on English-to-Chinese and English-to-Japanese tasks, where the NMT system outperformed the phrase-based SMT system by 7-8 BLEU scores, using the forced decoding score for reranking NMT outputs can still achieve significant improvements. With or without the word penalty feature, using both P n and S d for reranking gave better results than only using P n or S d alone. We also show METEOR and chrF scores on the test sets in Table 5 . Our reranking method improved both METEOR and chrF significantly.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 217,
                        "end": 224,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 307,
                        "end": 315,
                        "text": "Table 4.",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 857,
                        "end": 864,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5.2"
            },
            {
                "text": "The Word Penalty Feature The word penalty feature generally improved the reranking results, especially when only the NMT score P n was used for reranking. As we can see, using only P n for reranking decreased the translation quality com-pared to the standard beam search result of NMT. Because the search spaces of beam search and random sampling are quite different, the best beam search output does not necessarily have the highest NMT score compared to random sampling outputs. Therefore, even the P n reranking results do have higher NMT scores, but have lower BLEU scores according to Table 4 . To explain why this happened, we show the ratio of translation length to reference length in Table 6 . As we can see, the P n reranking outputs are much shorter. This is because NMT generally prefers shorter translations, since Equation 8 multiplies all target word probabilities together. So the word penalty feature can improve the P n reranking results considerably, by preferring longer sentences. Because the forced decoding score S d as shown in Equation 9 does not obviously prefer shorter or longer sentences, when S d was used for reranking, the word penalty Source for hypophysectomized (hypop hy sec to mized) rats , the drinking water additionally contains 5 % glucose .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 590,
                        "end": 597,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 693,
                        "end": 700,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5.2"
            },
            {
                "text": "\u5bf9\u4e8e(for) \u53bb(remove) \u5782\u4f53(hypophysis) \u5927(big) \u9f20(rat) \uff0c \u996e\u7528\u6c34(drinking water) \u4e2d(in) \u53e6 \u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002 PBMT \u7528\u4e8e(for) \u5927(big) \u9f20(rat) \u5782\u4f53(hypophysis) HySecto\uff0c(Hy Sec to \uff0c) \u996e\u7528\u6c34(drinking water) \u53e6\u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002 NMT \u5bf9\u4e8e(for) \u8fc7(pass) \u76f2\u80a0(cecum) \u7684(of) \u5927(big) \u9f20(rat) \uff0c \u996e\u7528\u6c34(drinking water) \u53e6\u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002 NMT+lex \u5bf9\u4e8e(for) \u4f4e(low) \u916a(cheese) \u86cb\u767d(protein) \u5207\u9664(remove) \u7684(of) \u5927(big) \u9f20(rat) \uff0c \u996e\u7528 \u6c34(drinking water) \u53e6\u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002 NMT+lex+Pn NMT+lex+Pn+WP NMT+lex+S d \u5bf9\u4e8e(for) \u5782\u4f53(hypophysis) \u5728(is) \u5207\u9664(remove) \u5927(big) \u9f20(rat) \u4e2d(in) \uff0c \u996e\u7528\u6c34(drinking water) \u53e6\u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "NMT+lex+S d +WP NMT+lex+Pn+S d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "\u5bf9\u4e8e(for) \u5782\u4f53(hypophysis) \u5728(is) \u5207\u9664(remove) \u7684(of) \u5927(big) \u9f20(rat) \u4e2d(in) \uff0c \u996e\u7528 \u6c34(drinking water) \u53e6\u5916(also) \u542b\u6709(contain) 5 \uff05 \u8461\u8404\u7cd6(glucose) \u3002 NMT+lex+Pn+S d +WP Table 7 : An example of improving inaccurate rare word translation by using S d for reranking. feature became less helpful. When both P n and S d were used for reranking, the word penalty feature only achieved further significant improvement on the English-to-Japanese task. Table 9 : Forced decoding paths for T 1 and T 2 : used rules and log scores. The translation rules with shade are used only for T 1 or T 2 . Table 7 gives translation examples of our reranking method from the English-to-Chinese task. The source English word \"hypophysectomized\" is an unknown word which does not occur in the training set. By employing BPE, this word is split into \"hypop\", \"hy\", \"sec\", \"to\" and \"mized\". The correct translation for \"hypophysectomized\" is \"\u53bb(remove) \u5782 \u4f53(hypophysis)\" as shown in the reference sentence. The original attentional NMT translated it into incorrect translation \"\u8fc7(pass) \u76f2 \u80a0(cecum)\". After integrating lexicons, the NMT system translated it into \"\u4f4e(low) \u916a(cheese) \u86cb\u767d(protein) \u5207 \u9664(remove)\". The last word \"\u5207 \u9664(remove)\" is correct, but the rest of the translation is still wrong. Only by using the forced decoding score S d for reranking, we get the more accurate translation \"\u5782\u4f53(hypophysis) \u5728(is) \u5207\u9664(remove)\".",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 148,
                        "end": 155,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 423,
                        "end": 430,
                        "text": "Table 9",
                        "ref_id": null
                    },
                    {
                        "start": 564,
                        "end": 571,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "To further demonstrate how the reranking method works, Table 9 shows translation rules and their log-scores contained in the forced decoding paths found for T 1 , the NMT translation without reranking and T 2 , the NMT translation using both P n and S d for reranking. As we can see, the four rules r a , r b , r c and r d used for T 1 have low scores. r a is an unlikely translation. In r b , r c and r d , \"\u916a(cheese)\", \"\u86cb\u767d(protein)\" and \"hypop\" are content words, which are unlikely to be deleted or inserted during translation. Table 9 also shows that the translation of function words is very flexible. The score of inserting a function word \"\u7684(of)\" is very high. The translation rule \"the \u2192\u5728(is)\" used for T 2 is incorrect, but its score is relatively high, because function words are often Source such changes in reaction conditions include , but are not limited to , an increase in temperature or change in ph . Reference \u6240(such) incorrectly aligned in the training set. The reason why function words are more likely to be incorrectly aligned to each other is that they usually have high frequencies and do not have clear correspondences between different languages.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 55,
                        "end": 62,
                        "text": "Table 9",
                        "ref_id": null
                    },
                    {
                        "start": 531,
                        "end": 538,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "\u8ff0(said) \u53cd \u5e94(reaction) \u6761 \u4ef6(condition) \u7684(of) \u6539 \u53d8(change) \u5305 \u62ec(include) \u4f46(but) \u4e0d(not) \u9650 \u4e8e(limit) \u6e29\u5ea6(temperature) \u7684(of) \u589e\u52a0(increase) \u6216(or) pH \u503c(value) \u7684(of) \u6539\u53d8(change) \u3002 PBMT \u4e2d(in) \u7684(of) \u8fd9 \u79cd(such) \u53d8 \u5316(change) \u7684(of) \u53cd \u5e94(reaction) \u6761 \u4ef6(condition) \u5305 \u62ec(include) \uff0c \u4f46(but) \u4e0d(not) \u9650 \u4e8e(limit) \uff0c \u589e\u52a0(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "In T 1 , \"hypophysectomized (hypop hy sec to mized)\" is incorrectly translated into \"\u4f4e(low) \u916a(cheese) \u86cb\u767d(protein) \u5207\u9664(remove)\". However, from Table 9, we can see that the forced decoding algorithm learns it as unlikely translation (hy\u2192\u4f4e(low)), over-translation (null\u2192\u916a(cheese), null\u2192\u86cb \u767d(protein)) and under-translation (hypop\u2192null, sec\u2192null), because there is no translation rule between \"hypop\" \"sec\" and \"\u916a(cheese)\" \"\u86cb\u767d(protein)\". Because content words are unlikely to be deleted or inserted during translation, they have low forced decoding scores. So using the forced decoding score for reranking NMT outputs can naturally improve over-translation or under-translation as shown in Table 8 . As we can see, without using S d for reranking, NMT under-translated \"temperature\" and over-translated \"ph\" twice, which will be assigned low scores by forced decoding. By using S d for reranking, the correct translation was selected.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 684,
                        "end": 691,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "We did human evaluation on 100 sentences randomly selected from the English-to-Chinese test set to test the effectiveness of our forced decoding method. We compared the outputs of two systems:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "\u2022 NMT+lex+rerank(P n +WP) \u2022 NMT+lex+rerank(P n +S d +WP)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "For each source sentence, we compared the two system outputs. Table 10 shows the numbers of sentences that our forced decoding feature helped to reduce completely unrelated translation, over-translation and under-translation. The last line of Table 10 means that for 73 source sentences, our forced decoding feature neither reduced nor caused more unrelated/over/under translation. That is our forced decoding feature never caused more unrelated/over/under translation for the sampled 100 sentences, which shows that our method is very robust for improving unrelated/over/under translation. Reranking PBMT Outputs with NMT We also did experiments that use the NMT score as an additional feature to rerank PBMT outputs (unique 1, 000-best list). The results are shown in Table 11 . We also copy results of baseline PBMT and NMT from Table 4 for direct comparison. As we can see, using NMT to rerank PBMT outputs achieved improvements over the baseline PBMT system. However, when the baseline NMT system is significantly better than the baseline PBMT system (en-zh, en-ja), even using NMT to rerank PBMT outputs still achieved lower translation quality compared to the baseline NMT system. 6 Related Work Wuebker et al. (2010 Wuebker et al. ( , 2012 applied forced decoding on the training set to improve the training process of phrase-based SMT and prune the phrasebased rule table. They also used word insertions and deletions for forced decoding, but they used a high penalty for all insertions and deletions. In contrast, our soft forced decoding algorithm for NMT outputs uses a small penalty for function words and a high penalty for content words, because function words are usually translated very flexibly and more likely to be inserted or deleted compared to content words. For example, the under-translation of a content word can hurt the adequacy of the translation heavily. But function words may naturally disappear during translation (e.g. the English word \"the\" disappears in Chinese). By assigning a high penalty to words that should not be deleted or inserted during translation, our soft forced decoding method aims to improve the adequacy of NMT, which is very different from previous forced decoding methods that are used to improve general SMT training (Yu et al., 2013; Xiao et al., 2016) . A major difference of traditional SMT and NMT is that the alignment model in traditional SMT provides exact word or phrase level alignments between the source and target sentences while the attention model in NMT only computes an alignment probability distribution for each target word over all source words, which is the main reason why NMT is more likely to produce completely unrelated translations, over-translation or under-translation compared to traditional SMT. To relieve NMT of these problems, there are methods that modify the NMT neural network structure (Tu et al., 2016; Alkhouli et al., 2016) while we rerank NMT outputs by exploiting knowledge from traditional SMT.",
                "cite_spans": [
                    {
                        "start": 1203,
                        "end": 1223,
                        "text": "Wuebker et al. (2010",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1224,
                        "end": 1247,
                        "text": "Wuebker et al. ( , 2012",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 2273,
                        "end": 2290,
                        "text": "(Yu et al., 2013;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 2291,
                        "end": 2309,
                        "text": "Xiao et al., 2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 2879,
                        "end": 2896,
                        "text": "(Tu et al., 2016;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 2897,
                        "end": 2919,
                        "text": "Alkhouli et al., 2016)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 62,
                        "end": 70,
                        "text": "Table 10",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 243,
                        "end": 251,
                        "text": "Table 10",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 770,
                        "end": 778,
                        "text": "Table 11",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 832,
                        "end": 839,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "There are also existing methods that rerank NMT outputs by using target-bidirectional NMT models Sennrich et al., 2016a) . Their reranking method aims to overcome the issue of unbalanced accuracy in NMT outputs while our reranking method aims to solve the inadequacy problem of NMT.",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 120,
                        "text": "Sennrich et al., 2016a)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reference",
                "sec_num": null
            },
            {
                "text": "In this paper, we propose to exploit an existing phrase-based SMT model to compute the phrasebased decoding cost for NMT outputs and then use the phrase-based decoding cost to rerank the nbest NMT outputs, so we can combine the advantages of both PBMT and NMT. Because an NMT output may not be in the search space of standard phrase-based SMT, we propose a forced decoding algorithm, which can always successfully find a decoding path for any NMT output by deleting source words and inserting target words. Results show that using the forced decoding cost to rerank NMT outputs improved translation accuracy on four different language pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "In fact, our method can take in the output of any upstream system, but we experiment exclusively with using it to rerank NMT output.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "g, f and a in Equation 1, 2 and 4 are nonlinear, potentially multi-layered, functions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In actual phrase-based decoding it is common to integrate reordering probabilities in the forced decoding score defined in Equation 9. However, because NMT generally produces more properly ordered sentences than traditional SMT, in this work we do not consider reordering probabilities in our forced decoding algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The new introduced word inserting/deleting rules are not used when performing EXPAND(H old ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that NTCIR-9 only contained a Chinese-to-English translation task, we used English as the source language in our experiments. In NTCIR-9, the development and test sets were both provided for the zh-en task while only the test set was provided for the en-ja task. We used the sentences from the NTCIR-8 en-ja and ja-en test sets as the development set in our experiments.6 http://sourceforge.net/projects/mecab/files/ 7 https://github.com/neubig/lamtram",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We used the default Moses settings for phrase-based SMT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Alignment-based neural machine translation",
                "authors": [
                    {
                        "first": "Tamer",
                        "middle": [],
                        "last": "Alkhouli",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel",
                        "middle": [],
                        "last": "Bretschner",
                        "suffix": ""
                    },
                    {
                        "first": "Jan-Thorsten",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Hethnawi",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Guta",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the First Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "54--65",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe- ter, Mohammed Hethnawi, Andreas Guta, and Her- mann Ney. 2016. Alignment-based neural machine translation. In Proceedings of the First Conference on Machine Translation, pages 54-65.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Incorporating discrete translation lexicons into neural machine translation",
                "authors": [
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Arthur",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1557--1567",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philip Arthur, Graham Neubig, and Satoshi Nakamura. 2016. Incorporating discrete translation lexicons into neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Nat- ural Language Processing, pages 1557-1567.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Neural machine translation by jointly learning to align and translate",
                "authors": [
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In International Con- ference on Learning Representations.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The mathematics of statistical machine translation: Parameter estimation",
                "authors": [
                    {
                        "first": "Vincent J Della",
                        "middle": [],
                        "last": "Peter F Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen A Della",
                        "middle": [],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Robert L",
                        "middle": [],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "263--311",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. 1993. The mathemat- ics of statistical machine translation: Parameter esti- mation. Computational Linguistics, 19(2):263-311.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Incorporating structural alignment biases into an attentional neural translation model",
                "authors": [
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Cohn",
                        "suffix": ""
                    },
                    {
                        "first": "Cong Duy Vu",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Vymolova",
                        "suffix": ""
                    },
                    {
                        "first": "Kaisheng",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "876--885",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy- molova, Kaisheng Yao, Chris Dyer, and Gholamreza Haffari. 2016. Incorporating structural alignment biases into an attentional neural translation model. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 876-885.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Overview of the patent machine translation task at the NTCIR-9 workshop",
                "authors": [
                    {
                        "first": "Isao",
                        "middle": [],
                        "last": "Goto",
                        "suffix": ""
                    },
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Ka",
                        "middle": [
                            "Po"
                        ],
                        "last": "Chow",
                        "suffix": ""
                    },
                    {
                        "first": "Eiichiro",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [
                            "K"
                        ],
                        "last": "Tsou",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proc. NTCIR-9",
                "volume": "",
                "issue": "",
                "pages": "559--578",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Isao Goto, Bin Lu, Ka Po Chow, Eiichiro Sumita, and Benjamin K Tsou. 2011. Overview of the patent ma- chine translation task at the NTCIR-9 workshop. In Proc. NTCIR-9, pages 559-578.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Improved neural machine translation with SMT features",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Thirtieth AAAI conference on artificial intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. 2016. Improved neural machine translation with SMT features. In Thirtieth AAAI conference on ar- tificial intelligence.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Statistical significance tests for machine translation evaluation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "388--395",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proceedings of the 2004 Conference on Empirical Methods in Nat- ural Language Processing, pages 388-395.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Moses: Open source toolkit for statistical machine translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    },
                    {
                        "first": "Nicola",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "Brooke",
                        "middle": [],
                        "last": "Cowan",
                        "suffix": ""
                    },
                    {
                        "first": "Wade",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Christine",
                        "middle": [],
                        "last": "Moran",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Ondrej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Constantin",
                        "suffix": ""
                    },
                    {
                        "first": "Evan",
                        "middle": [],
                        "last": "Herbst",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions",
                "volume": "",
                "issue": "",
                "pages": "177--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the As- sociation for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Ses- sions, pages 177-180.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Six challenges for neural machine translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Knowles",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First Workshop on Neural Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "28--39",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn and Rebecca Knowles. 2017. Six chal- lenges for neural machine translation. In Pro- ceedings of the First Workshop on Neural Machine Translation, pages 28-39.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Statistical phrase-based translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Franz",
                        "middle": [
                            "Josef"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology",
                "volume": "1",
                "issue": "",
                "pages": "48--54",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computa- tional Linguistics on Human Language Technology- Volume 1, pages 48-54.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Agreement on targetbidirectional neural machine translation",
                "authors": [
                    {
                        "first": "Lemao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Masao",
                        "middle": [],
                        "last": "Utiyama",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Finch",
                        "suffix": ""
                    },
                    {
                        "first": "Eiichiro",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "411--416",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. 2016. Agreement on target- bidirectional neural machine translation. In Pro- ceedings of the 2016 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 411-416.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Interactive attention for neural machine translation",
                "authors": [
                    {
                        "first": "Fandong",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengdong",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Hang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "2174--2185",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fandong Meng, Zhengdong Lu, Hang Li, and Qun Liu. 2016. Interactive attention for neural ma- chine translation. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 2174-2185.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Coverage embedding models for neural machine translation",
                "authors": [
                    {
                        "first": "Haitao",
                        "middle": [],
                        "last": "Mi",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiguo",
                        "middle": [],
                        "last": "Baskaran Sankaran",
                        "suffix": ""
                    },
                    {
                        "first": "Abe",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ittycheriah",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "955--960",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. 2016. Coverage embedding models for neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 955-960.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Neural reranking improves subjective quality of machine translation: NAIST at WAT2015",
                "authors": [
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Makoto",
                        "middle": [],
                        "last": "Morishita",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2nd Workshop on Asian Translation (WAT2015)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Graham Neubig, Makoto Morishita, and Satoshi Naka- mura. 2015. Neural reranking improves subjective quality of machine translation: NAIST at WAT2015. In Proceedings of the 2nd Workshop on Asian Trans- lation (WAT2015).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "19--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1):19-51.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Edinburgh neural machine translation systems for WMT 16",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the First Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "371--376",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Edinburgh neural machine translation sys- tems for WMT 16. In Proceedings of the First Con- ference on Machine Translation, pages 371-376.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Neural machine translation of rare words with subword units",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1715--1725",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation of rare words with subword units. In Proceedings of the 54th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715- 1725.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Minimum risk training for neural machine translation",
                "authors": [
                    {
                        "first": "Shiqi",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Yong",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1683--1692",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2016. Minimum risk training for neural machine translation. In Pro- ceedings of the 54th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 1683-1692.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Neural machine translation by minimising the Bayes-risk with respect to syntactic translation lattices",
                "authors": [
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Stahlberg",
                        "suffix": ""
                    },
                    {
                        "first": "Adri\u00e0",
                        "middle": [],
                        "last": "De Gispert",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Hasler",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter",
                "volume": "2",
                "issue": "",
                "pages": "362--368",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Felix Stahlberg, Adri\u00e0 de Gispert, Eva Hasler, and Bill Byrne. 2017. Neural machine translation by minimising the Bayes-risk with respect to syntactic translation lattices. In Proceedings of the 15th Con- ference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Pa- pers, pages 362-368.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Syntactically guided neural machine translation",
                "authors": [
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Stahlberg",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Hasler",
                        "suffix": ""
                    },
                    {
                        "first": "Aurelien",
                        "middle": [],
                        "last": "Waite",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "299--305",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill Byrne. 2016. Syntactically guided neural machine translation. In Proceedings of the 54th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 299-305.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Neural machine translation with external phrase memory",
                "authors": [
                    {
                        "first": "Yaohua",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Fandong",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengdong",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Hang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Philip Lh",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.01792"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li, and Philip LH Yu. 2016. Neural machine transla- tion with external phrase memory. arXiv preprint arXiv:1606.01792.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Modeling coverage for neural machine translation",
                "authors": [
                    {
                        "first": "Zhaopeng",
                        "middle": [],
                        "last": "Tu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengdong",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaohua",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Hang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "76--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling coverage for neural machine translation. In Proceedings of the 54th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 76-85.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Leave-one-out phrase model training for large-scale deployment",
                "authors": [
                    {
                        "first": "Joern",
                        "middle": [],
                        "last": "Wuebker",
                        "suffix": ""
                    },
                    {
                        "first": "Mei-Yuh",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Seventh Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "460--467",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joern Wuebker, Mei-Yuh Hwang, and Chris Quirk. 2012. Leave-one-out phrase model training for large-scale deployment. In Proceedings of the Sev- enth Workshop on Statistical Machine Translation, pages 460-467.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Training phrase translation models with leavingone-out",
                "authors": [
                    {
                        "first": "Joern",
                        "middle": [],
                        "last": "Wuebker",
                        "suffix": ""
                    },
                    {
                        "first": "Arne",
                        "middle": [],
                        "last": "Mauser",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "475--484",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joern Wuebker, Arne Mauser, and Hermann Ney. 2010. Training phrase translation models with leaving- one-out. In Proceedings of the 48th Annual Meet- ing of the Association for Computational Linguis- tics, pages 475-484.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A loss-augmented approach to training syntactic machine translation systems",
                "authors": [
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Derek",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "IEEE/ACM Transactions on Audio, Speech, and Language Processing",
                "volume": "24",
                "issue": "11",
                "pages": "2069--2083",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tong Xiao, Derek F Wong, and Jingbo Zhu. 2016. A loss-augmented approach to training syntactic ma- chine translation systems. IEEE/ACM Transac- tions on Audio, Speech, and Language Processing, 24(11):2069-2083.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Max-violation perceptron and forced decoding for scalable MT training",
                "authors": [
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Haitao",
                        "middle": [],
                        "last": "Mi",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1112--1123",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao. 2013. Max-violation perceptron and forced decod- ing for scalable MT training. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1112-1123.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Prior knowledge integration for neural machine translation using posterior regularization",
                "authors": [
                    {
                        "first": "Jiacheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Huanbo",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfang",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1514--1523",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu, and Maosong Sun. 2017. Prior knowledge inte- gration for neural machine translation using poste- rior regularization. In Proceedings of the 55th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1514- 1523.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "An improved chinese word segmentation system with conditional random field",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chang-Ning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "162--165",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, et al. 2006. An improved chinese word segmentation system with conditional random field. In Proceedings of the Fifth SIGHAN Workshop on Chinese Language Process- ing, pages 162-165.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "increase) \u7684(of) \u6e29\u5ea6(temperature) \u6216(or) pH \u53d8\u5316(change) \u3002 NMT \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \u4f46(but) \u4e0d(not)\u9650\u4e8e(limit) pH \u6216(or) pH \u7684(of) \u53d8\u5316(change) \u3002 NMT+lex \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \uff0c \u4f46(but) \u4e0d(not) \u9650\u4e8e(limit) \uff0c pH \u7684(of) \u5347\u9ad8(increase) \u6216(or) pH \u53d8\u5316(change) \u3002 NMT+lex+Pn NMT+lex+S d \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \u4f46(but) \u4e0d(not) \u9650\u4e8e(limit) \uff0c \u6e29\u5ea6(temperature) \u7684(of) \u5347\u9ad8(increase) \u6216(or) \u6539\u53d8(change) pH \u503c(value) \u3002 NMT+lex+Pn+S d \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \uff0c \u4f46(but) \u4e0d(not) \u9650\u4e8e(limit) \uff0c \u6e29\u5ea6(temperature) \u7684(of) \u5347\u9ad8(increase) \u6216(or) \u6539\u53d8(change) pH \u503c(value) \u3002 NMT+lex+Pn+WP \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \uff0c \u4f46(but) \u4e0d(not) \u9650\u4e8e(limit) \uff0c pH \u7684(of) \u5347\u9ad8(increase) \u6216(or) \u6539\u53d8(change) pH \u503c(value) \u3002 NMT+lex+S d +WP \u8fd9\u79cd(such) \u53cd\u5e94(reaction) \u6761\u4ef6(condition) \u7684(of) \u53d8\u5316(change) \u5305\u62ec(include) \uff0c \u4f46(but) \u4e0d(not) \u9650\u4e8e(limit) \uff0c \u6e29\u5ea6(temperature) \u7684(of) \u5347\u9ad8(increase) \u6216(or) \u6539\u53d8(change) pH \u503c(value) \u3002 NMT+lex+Pn+S d +WP",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "text": "The number of times that words occur in the English-to-Chinese training corpus and the number of times that they are unaligned.",
                "content": "<table><tr><td>Words</td><td>of</td><td colspan=\"3\">a practice water</td></tr><tr><td>Occur</td><td colspan=\"2\">1.7M 0.83M</td><td>8.8K</td><td>7.4K</td></tr><tr><td colspan=\"3\">Unaligned 0.16M 0.12M</td><td colspan=\"2\">0.38K 0.19K</td></tr></table>",
                "num": null
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "text": "Algorithm 2 Forced phrase-based decoding. Require: Source sentence F with length J and translation E with length I Ensure: Decoding path D initialize H 0 and s 1 , s 2 , ..., s I EXPAND(H 0 ) expand H 0 with rule null\u2192 e 1 for i = 1 to I \u2212 1 do for each hypothesis H ik in s i do EXPAND(H ik ) expand H ik with rule null\u2192 e i+1 for each hypothesis H Ik in s I do update S (H Ik ) for uncovered source words select best hypothesis in s I",
                "content": "<table><tr><td>4 Reranking NMT Outputs with</td></tr><tr><td>Phrase-based Decoding Score</td></tr></table>",
                "num": null
            },
            "TABREF5": {
                "html": null,
                "type_str": "table",
                "text": "",
                "content": "<table/>",
                "num": null
            },
            "TABREF6": {
                "html": null,
                "type_str": "table",
                "text": "27.72 35.67 33.46 12.37 13.95 25.96 27.50 NMT 34.60 32.71 41.67 39.00 12.52 14.05 23.63 23.99 NMT+lex 36.06 34.80 44.47 41.09 13.36 15.60 24.00 24.91 NMT+lex+rerank(Pn) 34.38 33.23 38.92 34.18 12.34 13.59 23.13 23.61 NMT+lex+rerank(S d ) 36.17 34.09 42.91 40.16 13.08 15.29 24.28 25.71 NMT+lex+rerank(Pn+S d ) 37.94 35.59 45.34 41.75 14.56 16.61 25.96 27.12 +WP) 38.69 35.75 46.92 43.17 14.61 16.65 25.98 27.15",
                "content": "<table><tr><td/><td>en-zh</td><td/><td>en-ja</td><td/><td>en-de</td><td/><td>en-fr</td></tr><tr><td/><td>dev</td><td>test</td><td>dev</td><td>test</td><td>dev</td><td>test</td><td>dev</td><td>test</td></tr><tr><td colspan=\"9\">PBMT 30.73 NMT+lex+rerank(Pn+WP) 37.44 34.93 45.81 41.90 13.75 15.46 24.47 25.09</td></tr><tr><td>NMT+lex+rerank(S d +WP)</td><td colspan=\"8\">36.44 33.73 43.52 40.49 13.39 15.71 24.74 26.25</td></tr><tr><td>NMT+lex+rerank(Pn+S d</td><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "num": null
            },
            "TABREF7": {
                "html": null,
                "type_str": "table",
                "text": "Translation results (BLEU). NMT+lex:(Arthur et al., 2016); NMT+lex+rerank: we rerank the n-best outputs of NMT+lex using different features (P n , S d and WP).",
                "content": "<table><tr><td/><td>en-zh</td><td/><td>en-ja</td><td/><td>en-de</td><td>en-fr</td></tr><tr><td/><td colspan=\"2\">METEOR chrF</td><td colspan=\"2\">METEOR chrF</td><td colspan=\"2\">METEOR chrF</td><td>METEOR chrF</td></tr><tr><td>PBMT</td><td>34.70</td><td colspan=\"2\">37.87 35.22</td><td colspan=\"2\">39.45 26.66</td><td>50.02 32.33</td><td>56.36</td></tr><tr><td>NMT</td><td>34.51</td><td colspan=\"2\">39.91 35.07</td><td colspan=\"2\">42.02 24.91</td><td>44.50 29.58</td><td>49.99</td></tr><tr><td>NMT+lex</td><td>35.56</td><td colspan=\"2\">42.22 36.48</td><td colspan=\"2\">44.34 25.49</td><td>45.67 30.10</td><td>50.89</td></tr><tr><td>NMT+lex+rerank(Pn)</td><td>34.56</td><td colspan=\"2\">40.80 32.63</td><td colspan=\"2\">38.57 23.57</td><td>40.35 29.15</td><td>48.64</td></tr><tr><td>NMT+lex+rerank(S d )</td><td>36.02</td><td colspan=\"2\">42.65 36.87</td><td colspan=\"2\">44.85 26.48</td><td>48.73 31.56</td><td>54.42</td></tr><tr><td>NMT+lex+rerank(Pn+S d )</td><td>36.40</td><td colspan=\"2\">43.73 37.22</td><td colspan=\"2\">45.69 26.26</td><td>47.27 31.62</td><td>53.99</td></tr><tr><td>NMT+lex+rerank(Pn+WP)</td><td>36.04</td><td colspan=\"2\">42.86 36.90</td><td colspan=\"2\">44.93 25.03</td><td>44.05 30.21</td><td>50.78</td></tr><tr><td>NMT+lex+rerank(S d +WP)</td><td>36.34</td><td colspan=\"2\">42.78 37.05</td><td colspan=\"2\">45.03 26.16</td><td>47.82 31.32</td><td>53.75</td></tr><tr><td colspan=\"2\">NMT+lex+rerank(Pn+S d +WP) 36.88</td><td colspan=\"2\">44.09 37.94</td><td colspan=\"2\">46.66 26.20</td><td>47.12 31.61</td><td>53.98</td></tr></table>",
                "num": null
            },
            "TABREF8": {
                "html": null,
                "type_str": "table",
                "text": "METEOR and chrF scores on the test sets for different system outputs inTable 4.",
                "content": "<table><tr><td/><td>en-zh</td><td/><td>en-ja</td><td/><td>en-de</td><td/><td>en-fr</td></tr><tr><td/><td>dev</td><td>test</td><td>dev</td><td>test</td><td>dev</td><td>test</td><td>dev</td><td>test</td></tr><tr><td>PBMT</td><td colspan=\"8\">1.008 1.018 1.005 0.998 1.077 1.069 0.986 1.004</td></tr><tr><td>NMT</td><td colspan=\"8\">0.953 0.954 0.960 0.961 1.059 1.038 0.985 0.977</td></tr><tr><td>NMT+lex</td><td colspan=\"8\">0.936 0.966 0.955 0.963 1.054 1.019 1.030 0.977</td></tr><tr><td>NMT+lex+rerank(Pn)</td><td colspan=\"8\">0.875 0.898 0.814 0.775 0.874 0.854 0.904 0.900</td></tr><tr><td>NMT+lex+rerank(S d )</td><td colspan=\"8\">0.973 0.989 0.985 0.981 1.062 1.060 1.030 1.031</td></tr><tr><td>NMT+lex+rerank(Pn+S d )</td><td colspan=\"8\">0.949 0.965 0.945 0.936 1.000 0.992 0.999 0.992</td></tr><tr><td>NMT+lex+rerank(Pn+WP)</td><td colspan=\"8\">0.996 1.019 0.999 0.983 1.000 0.975 0.998 1.001</td></tr><tr><td>NMT+lex+rerank(S</td><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "num": null
            },
            "TABREF10": {
                "html": null,
                "type_str": "table",
                "text": "An example of improving under-translation and over-translation by using S d for reranking.",
                "content": "<table/>",
                "num": null
            },
            "TABREF11": {
                "html": null,
                "type_str": "table",
                "text": "Human evaluation results.",
                "content": "<table/>",
                "num": null
            },
            "TABREF13": {
                "html": null,
                "type_str": "table",
                "text": "Results of using NMT for reranking PBMT outputs.",
                "content": "<table/>",
                "num": null
            }
        }
    }
}