File size: 110,679 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
{
    "paper_id": "I17-1032",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:38:08.983083Z"
    },
    "title": "ES-LDA: Entity Summarization using Knowledge-based Topic Modeling",
    "authors": [
        {
            "first": "Seyedamin",
            "middle": [],
            "last": "Pouriyeh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Georgia",
                "location": {
                    "settlement": "Athens",
                    "region": "GA",
                    "country": "USA"
                }
            },
            "email": "pouriyeh@uga.edu"
        },
        {
            "first": "Mehdi",
            "middle": [],
            "last": "Allahyari",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Sothern University",
                "location": {
                    "settlement": "Statesboro",
                    "country": "Georgia, USA"
                }
            },
            "email": "mallahyari@georgiasouthern.edu"
        },
        {
            "first": "Krys",
            "middle": [],
            "last": "Kochut",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Georgia",
                "location": {
                    "settlement": "Athens",
                    "region": "GA",
                    "country": "USA"
                }
            },
            "email": "kkochut@uga.edu"
        },
        {
            "first": "",
            "middle": [],
            "last": "Gong Cheng",
            "suffix": "",
            "affiliation": {
                "laboratory": "National Key Laboratory for Novel Software Technology",
                "institution": "Nanjing University",
                "location": {
                    "settlement": "Nanjing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Hamid",
            "middle": [
                "Reza"
            ],
            "last": "Arabnia",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Georgia",
                "location": {
                    "settlement": "Athens",
                    "region": "GA",
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "With the advent of the Internet, the amount of Semantic Web documents that describe real-world entities and their inter-links as a set of statements have grown considerably. These descriptions are usually lengthy, which makes the utilization of the underlying entities a difficult task. Entity summarization, which aims to create summaries for real world entities, has gained increasing attention in recent years. In this paper, we propose a probabilistic topic model, ES-LDA, that combines prior knowledge with statistical learning techniques within a single framework to create more reliable and representative summaries for entities. We demonstrate the effectiveness of our approach by conducting extensive experiments and show that our model outperforms the state-of-the-art techniques and enhances the quality of the entity summaries.",
    "pdf_parse": {
        "paper_id": "I17-1032",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "With the advent of the Internet, the amount of Semantic Web documents that describe real-world entities and their inter-links as a set of statements have grown considerably. These descriptions are usually lengthy, which makes the utilization of the underlying entities a difficult task. Entity summarization, which aims to create summaries for real world entities, has gained increasing attention in recent years. In this paper, we propose a probabilistic topic model, ES-LDA, that combines prior knowledge with statistical learning techniques within a single framework to create more reliable and representative summaries for entities. We demonstrate the effectiveness of our approach by conducting extensive experiments and show that our model outperforms the state-of-the-art techniques and enhances the quality of the entity summaries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "With the emergence of Linked Open Data (LOD) 1 as a way of publishing and interacting with the information, many datasets such as DBpedia (Bizer et al., 2009) and YAGO (Hoffart et al., 2013) have been created and are publicly available on the Web. For example, DBpedia as part of LOD is a knowledge base extracted from Wikipedia that consists of Wikipedia resources (entities) described as RDF statements (i.e., RDF triples). The Resource Description Framework (RDF) is the Semantic Web standard data model used for representing information on the Web. An RDF triple is represented in the form of < subject, predicate, object >. The latest English version of DBpedia contains over 4.5 million entities collectively described by over 1.6 billion triples. This means that each entity description has an average of 355 RDF triples. Human users and computer applications need to consider these lengthy descriptions while performing various semantic tasks. Thus, entity summarization, a task of producing more concise, but still sufficient entity description, has garnered a significant amount of attention.",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 158,
                        "text": "(Bizer et al., 2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 168,
                        "end": 190,
                        "text": "(Hoffart et al., 2013)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, with the huge growth of information, summarization techniques are becoming some of the main approaches to making the information more readily available. In fact, summarization techniques aim to facilitate the identification of structure and meaning in data. Researchers in different communities have taken a strong interest in this task and, accordingly, have proposed various methods for a wide variety of summarization techniques in multiple areas. Document summarization (Nenkova and McKeown, 2012) , database summarization (Bu et al., 2005) , and graph summarization (Navlakha et al., 2008) are just a few examples that have been studied by different communities. RDF data summarization and in particular entity summarization, has attracted considerable attentions in recent years as it can benefit many other tasks in the natural language processing area, including entity recognition (Zhao and Kit, 2008) , entity disambiguation (Dai et al., 2011) , and many others. Several approaches have been developed to summarize RDF data with respect to entities, including RELIN (Cheng et al., 2011) , FACES (Gunaratna et al., 2015) , and LinkSUM (Thalhammer et al., 2016) . RDF summarization differs from document summarization in the sense that RDF triples are structured and do not have many frequently used words to help the summarization task, which makes RDF summarization more challenging.",
                "cite_spans": [
                    {
                        "start": 484,
                        "end": 511,
                        "text": "(Nenkova and McKeown, 2012)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 537,
                        "end": 554,
                        "text": "(Bu et al., 2005)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 581,
                        "end": 604,
                        "text": "(Navlakha et al., 2008)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 900,
                        "end": 920,
                        "text": "(Zhao and Kit, 2008)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 945,
                        "end": 963,
                        "text": "(Dai et al., 2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1086,
                        "end": 1106,
                        "text": "(Cheng et al., 2011)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1115,
                        "end": 1139,
                        "text": "(Gunaratna et al., 2015)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1154,
                        "end": 1179,
                        "text": "(Thalhammer et al., 2016)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Topic modeling has become a popular method for uncovering the hidden themes from text corpora. Topic models usually consider each document as a mixture of topics, where a topic is a probability distribution over words. When the topic proportions of documents are estimated, they can be used as the themes (high-level semantics) of the documents. Topic models have been widely used for various text mining tasks, such as machine translation (Su et al., 2015) , word embedding (Batmanghelich et al., 2016; Das et al., 2015) , automatic topic labeling (Wan and Wang, 2016; Allahyari and Kochut, 2015; Allahyari et al., 2017b) , and others (Allahyari et al., 2017a) .",
                "cite_spans": [
                    {
                        "start": 440,
                        "end": 457,
                        "text": "(Su et al., 2015)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 475,
                        "end": 503,
                        "text": "(Batmanghelich et al., 2016;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 504,
                        "end": 521,
                        "text": "Das et al., 2015)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 549,
                        "end": 569,
                        "text": "(Wan and Wang, 2016;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 570,
                        "end": 597,
                        "text": "Allahyari and Kochut, 2015;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 598,
                        "end": 622,
                        "text": "Allahyari et al., 2017b)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 636,
                        "end": 661,
                        "text": "(Allahyari et al., 2017a)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a novel topic model, called ES-LDA, that integrates prior knowledge with the topic modeling within a single framework for RDF entity summarization. In our approach, each entity, which is considered as a document, is a multinomial distribution over the predicates (properties), where each predicate is a probability distribution over the subjects and objects of the triples in the RDF data. We rank the triples based on their probability distributions and choose the top-k triples that best describe the underlying entity as its summary. We evaluated our approach against state-of-the-art techniques and our experiments indicate that our approach outperforms other methods in terms of the quality of summarization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of the paper is organized as follows: Section 2 presents an overview of related work. Section 3 introduces the baseline for this paper. In Section 4, we define the main problem and propose our model in detail and afterwards, in Section 5, we explain the configurations of our model and describe the experiments. Finally, in Sections 6 and Section 7, we discuss the results and conclude the paper, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Summarization methods can be divided into two main categories, which are called extractive and none-extractive (abstractive) summarization. In extractive approaches, which are usually applicable in text and ontology summarization (Jones, 2007) (Zhang et al., 2007) , a set of features is extracted directly from the input data. On the other hand, in non-extractive methods, which generally are employed in graph (Navlakha et al., 2008) and database (Bu et al., 2005) summarization, new sentences from the input data are generated (Hahn and Mani, 2000) to form a summary. In this research, we focus on extractive summarization. The concept of entity summarization in the form of RDF graph data has attracted more attention in recent years. Cheng et al. (Cheng et al., 2011) proposed entity summarization method, called RE-LIN, based on the PageRank algorithm to extract representative triples, called representative features for RDF graph entities. Because of the centrality based ranking issue, RELIN highlights the most similar and central triples, while in summarization, the diversity of summarized triples is the key point. SUMMARUM (Thalhammer and Rettinger, 2014) is a system for a better navigation within Linked Data through the ranking of triples. This system also uses the PageRank algorithm to rank triples according to the popularity of resources with the help of Wikipedia pages. Two aforementioned approaches could not meet the diversity requirement in the summarization process. FACES (Gunaratna et al., 2015) , on the other hand, tries to keep a balance between the centrality and diversity of the selected triples for each entity. It utilizes a clustering algorithm, called Cobweb (Fisher, 1987) , to cluster related triples before ranking them to keep the diversity in the summarization. The recent version of SUMMARUM, which is called LinkSUM (Thalhammer et al., 2016) , focused more on the objects instead of the diversity of properties for entities and showed a better result on the same dataset, in comparison with FACES. Beside the aforementioned techniques dedicated to entity summarization, there are various ranking models and tools, including TripleRank (Franz et al., 2009) and TRank (Tonon et al., 2013) that rank triples and concepts, respectively, incorporating ranking algorithms. However, Cheng et al. (2011) indicated that these methods are not appropriate for the entity summarization problem, which needs ranking of feature sets based on their importance to identify the underlying entity.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 243,
                        "text": "(Jones, 2007)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 244,
                        "end": 264,
                        "text": "(Zhang et al., 2007)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 412,
                        "end": 435,
                        "text": "(Navlakha et al., 2008)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 449,
                        "end": 466,
                        "text": "(Bu et al., 2005)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 530,
                        "end": 551,
                        "text": "(Hahn and Mani, 2000)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 739,
                        "end": 772,
                        "text": "Cheng et al. (Cheng et al., 2011)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1137,
                        "end": 1169,
                        "text": "(Thalhammer and Rettinger, 2014)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1500,
                        "end": 1524,
                        "text": "(Gunaratna et al., 2015)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1698,
                        "end": 1712,
                        "text": "(Fisher, 1987)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1862,
                        "end": 1887,
                        "text": "(Thalhammer et al., 2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 2181,
                        "end": 2201,
                        "text": "(Franz et al., 2009)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 2212,
                        "end": 2232,
                        "text": "(Tonon et al., 2013)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 2322,
                        "end": 2341,
                        "text": "Cheng et al. (2011)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "An RDF data graph is a collection of nodes and edges that connect the nodes together. Nodes are usually recognized by unique IDs which are called Uniform Resource Identifiers (URIs) or exact values (i.e. numbers, dates, etc) namely Lit- Table 1 : J.C.Penny entity predicates and corresponding objects with the top-5 ES-LDA summary.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 237,
                        "end": 244,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "erals. An RDF graph is represented in a form of a collection of triples, each including a Subject, Predicate, and Object. In an RDF graph, an entity is defined as a subject with all predicates and corresponding objects to those predicates, collectively forming the entity's description. As Table 1 shows, the J.C.Penny entity is represented by its predicates (properties) and the corresponding objects in the triple format. For example, the triple < J.C.P enny, industry, Retail > introduces J.C.Penny's industry as Retail (due to space limitations we have dropped the first part of the URIs).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 290,
                        "end": 297,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "Definition 1 (Entity summary): Given an entity e and a positive integer k, a summary of the entity e, denoted Sum(e, k), is the top-k subset of all predicates and corresponding objects that are most relevant to that entity. As Table1 shows the top-5 summary for J.C.Penny entity, which is represented through foundedBy, industry, keyPerson, location, and type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "The Latent Dirichlet Allocation (LDA) is a generative probabilistic model for extracting thematic information (topics) from a collection of documents. LDA assumes that each document is made up of various topics, where each topic is a probability distribution over words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "Let",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "D = {d 1 , d 2 , . . . , d |D| } be a corpus of documents and V = {w 1 , w 2 , . . . , w |V| } a vocabulary (words) of the corpus. A topic z j , 1 \u2264 j \u2264 K is represented as a multino- mial probability distribution over the |V| words, p(w i |z j ), |V| i p(w i |z j ) = 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "LDA generates the words in a two-stage process: words are gener-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "\u21b5 \u2713 z w N D K 1 Figure 1: LDA Graphical Representation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "ated from topics and topics are generated by documents. More formally, the distribution of words, given the document, is calculated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(w i |d) = K j=1 p(w i |z j )p(z j |d)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "The graphical model of LDA is shown in Figure  1 and the generative process for the corpus D is:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 48,
                        "text": "Figure  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "1. For each topic k \u2208 {1, 2, . . . , K}, sample a word distribution \u03c6 k \u223c Dir(\u03b2) 2. For each document d \u2208 {1, 2, . . . , D}, (a) Sample a topic distribution \u03b8 d \u223c Dir(\u03b1) (b) For each word w n , where n \u2208 {1, 2, . . . , N }, in document d, i. Sample a topic z i \u223c Mult(\u03b8 d ) ii. Sample a word w n \u223c Mult(\u03c6 z i )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "In the LDA model, the word-topic distribution p(w|z) and topic-document distribution p(z|d) are learned entirely in an unsupervised manner, without any prior knowledge about what words are re-lated to the topics and what topics are related to individual documents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dirichlet Allocation (LDA)",
                "sec_num": "3.1"
            },
            {
                "text": "In this section, we first describe the problem and then define how to utilize topic models for RDF graphs. Then, we formally introduce our ES-LDA model and explain how to integrate prior knowledge from RDF data graph within a topic model for entity summarization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "4"
            },
            {
                "text": "Generating summaries for voluminous Semantic Web data, and in particular RDF data, for quick identification of entities has gained considerable attention as a challenging problem in the Semantic Web community. In the literature, Entity Summarization is defined as selecting a small but representative subset of the original triples associated with an entity. In this context, given an RDF data set comprising a collection of entities, where each entity is described by a set of its properties (i.e., all triples with the entity as the subject), our goal is to choose top-k representative triples for each entity. In other words, since all triples associated with an entity (as its description) share the same subject, our objective is to select top-k predicates and their corresponding objects among these triples that best summarize the entity's description.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Definition",
                "sec_num": "4.1"
            },
            {
                "text": "Topic models were originally introduced for text documents, however, they have been applied to other types of data, such as images , and recently (Sleeman et al., 2015) used topic modeling for RDF graphs. The first step in applying topic models is to define documents and word-like elements as the basic building blocks of documents. Since an RDF graph is usually represented as a set of triples, where each triple t consists of a subject s, predicate p, and an object o, in the form of <s, p, o>, we can consider a collection of such triples as a \"document\".",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 168,
                        "text": "(Sleeman et al., 2015)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Models for RDF Graphs",
                "sec_num": "4.2"
            },
            {
                "text": "Definition 2 (document): A document d is defined as a set of triples,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Models for RDF Graphs",
                "sec_num": "4.2"
            },
            {
                "text": "d = {t 1 , t 2 , \u2022 \u2022 \u2022 , t n },",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Models for RDF Graphs",
                "sec_num": "4.2"
            },
            {
                "text": "that describe a single entity e. In other words, all triples of a document d have the same subject.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Models for RDF Graphs",
                "sec_num": "4.2"
            },
            {
                "text": "\"Words\" of a document can be extracted from different parts of its triples. We define a \"word\" w as the subject or object of a triple t in document d. Therefore, each document is represented by a \"bag of words\" including all the subjects and objects of its triples. In this paper, all subjects in the triples of a document are the same, because each document corresponds to a single entity, hence, in practice each document is a \"bag of objects\" 2 Topic models usually utilize some data preprocessing, such as punctuation removal, downcasting, and abbreviation expansion, etc., to enhance the final performance. We also performed preprocessing on the RDF data and filtered out the schema and dataset dependent predicates, such as sameAs, wikiPageExternalLink, subject, wikiPageWikiLink, in addition to literals. Since we work with RDF graphs that differ from typical text documents in the sense that RDF data are represented as triples, we need to address several challenges mentioned in (Sleeman et al., 2015) to be able to run topic models on RDF data. These challenges include sparseness, use of unnatural language, and the lack of context. RDF data can be affected by Sparseness. We consider documents as sets of triples associated with a single entity. Such a set can be very large, leading to a large bag of words with a semantic theme, or small (sparse), resulting in a poor bag of words with less contextual information. It is also possible that a document with a high number of triples ends up having a small bag of words after pre-processing; for example based on Table 1 , J.C.Penny entity comes with United States, James Cash Penney, Retail, Ron Johnson, Plano, Texas, United States, S&P 500 and Public company as a bag of words for J.C.Penny entity, which shows sparseness in this document. Unnatural Language can be problematic for RDF data. A typical text document contains sentences where each sentence has a natural structure. These extra components of a sentence usually provide a further \"context\" for understanding words that are ambiguous or have multiple meanings, such as polysemous or homonymous ones. The aforementioned example for the J.C.Penny entity also confirms the unnatural language problem. The \"lack of context\" can further impact RDF data because they are potentially sparse, described by unnatural language, and often using words that have multiple meanings, difficult to differentiate (J.C.Penny bag of words example). Additionally, triples are more prone to pre-processing, because it is not uncom- RDF data resemble short texts in terms of the aforementioned challenges. Sparseness in a short text causes the model to be less discriminative to recognize how words are related and the limited context makes it hard for the model to identify the meanings of the words in such short text documents (Yan et al., 2013) . In order to alleviate these issues, researchers usually take two approaches. They either augment the short text or design custom versions of the LDA model that address their specific problems. In this paper, we have used both approaches. We describe how to supplement the RDF data in the following section and describe the details of our model in section 4.4.",
                "cite_spans": [
                    {
                        "start": 988,
                        "end": 1010,
                        "text": "(Sleeman et al., 2015)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 2834,
                        "end": 2852,
                        "text": "(Yan et al., 2013)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1574,
                        "end": 1581,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Topic Models for RDF Graphs",
                "sec_num": "4.2"
            },
            {
                "text": "As topic modeling is based on statistics of the cooccurrence of terms (Sleeman et al., 2015) , when we are dealing with short texts with a very limited number of repetitions, which is the case with RDF data, we need to find a way to supplement the data to elevate the performance of the topic modeling approach. We augment the documents using two different methods. In the first method, we increase the frequency of the words in each document. But the question is \"How many times each word of a document should be repeated?\". Entities in DBpedia have been organized into a category network, therefore, every entity has a number of categories associated with it. The relationship between an entity and a category is defined by the \"http://purl.org/dc/terms/subject\" predicate. Since each word of a document is an object of a triple, and accordingly, an entity in DBpedia, it is related to several categories. We assume that objects (words) of a document that have more categories are likely more important. Thus, We expand each document by increasing the frequency of each object by the number of its categories. In the second method, instead of repeating each object a certain number of times, we enlarge each document by adding categories of the objects as extra words, directly to the document. There are multiple advantages of supplementing each document by adding object categories: (i) the sparseness in the document, related to each entity, is lowered as we are adding a number of related words to it; (ii) we reduce the ambiguity in the document, because adding extra categories alleviates the lack of context and helps distinguish the appropriate meanings of the words with multiple connotations; and lastly (iii), adding object categories makes the documents semantically more relevant to their topical themes. We evaluated our model using both methods and the results demonstrate that the first method gives significantly better summaries than the second method.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 92,
                        "text": "(Sleeman et al., 2015)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supplementing RDF Data",
                "sec_num": "4.3"
            },
            {
                "text": "ES-LDA is a probabilistic generative model for modeling entities in RDF graphs. The key idea behind our model is twofold: (1) we exploit statistical topic models as the underlying quantitative framework for entity summarization; and (2) ES-LDA incorporates the prior knowledge from the RDF knowledge base directly into the topic model. The plate notation is shown in Figure 2 . In our model, each document is a multinomial distribution over the predicates. If we consider predicates as topics, at the document level, our model is the same as standard LDA. However, we set the number of topics in ES-LDA to be the number of unique predicates in the corpus. Unlike the standard LDA, where each topic is a multinomial distribution over the vocabulary from the Dirichlet prior \u03b2, in our model each predicate is a multinomial distribution over all the subjects and objects of the RDF graph. In our approach, a document consists of a set of triples describing a single entity, i.e. all these triples share the same subject. Thus, we constrain the documents to only have the objects of related triples and also restrict the predicates to be defined only over the objects. In addition, for each predicate r, we further smooth its distribution by \u039b r . \u039b is a matrix that has encoded the background knowledge about predicate-object values from DBpedia. Section 4.5 explains how \u039b is constructed. The generative process of ES-LDA is shown in Algorithm 1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 367,
                        "end": 375,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Proposed Model",
                "sec_num": "4.4"
            },
            {
                "text": "Following this process, the joint probability of generating a corpus D = {d 1 , d 2 , . . . , d |D| }, the predicate assignments r given the hyperparameters \u03b1, \u03b2 and the prior matrix \u039b is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Model",
                "sec_num": "4.4"
            },
            {
                "text": "P (o, s, r|\u03b1, \u03b2, \u039b) = \u03c6 P (\u03c6|\u03b2; \u039b) d r d P (o d |r d , \u03c6)P (s d |r d , \u03c6) \u00d7 \u03b8 P (\u03b8|\u03b1)P (r d |\u03b8, \u03c6)d\u03b8d\u03c6",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Model",
                "sec_num": "4.4"
            },
            {
                "text": "(2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Model",
                "sec_num": "4.4"
            },
            {
                "text": "In the ES-LDA model, each predicate has a probability distribution over the objects of the RDF graph. Entity summarization is the task of choosing the top-k predicate-object pairs that best describe an entity. Presumably, if an object is associated with more categories in DBpedia, it is likely more important. We create the the \u039b matrix to encode the prior weight of the predicate-object pairs and utilize it to smooth the predicate-object distributions \u03c6 by incorporating this domain knowledge into the topic model. We build the \u039b matrix of size R \u00d7O, where R is the number of predicates and O is the number of objects in the RDF graph. Let f be an indicator function where f (i, j) = 1 if there is a triple in RDF graph with predicate i and object j, and 1 otherwise, for 1 \u2264 i \u2264 R and 1 \u2264 j \u2264 O. Additionally, let c be the number of categories assigned to object j. Then, we define \u039b ij as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constructing Predicate-Object Prior Matrix \u039b",
                "sec_num": "4.5"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u039b ij = c if f (i, j) = 1 1 otherwise.",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Constructing Predicate-Object Prior Matrix \u039b",
                "sec_num": "4.5"
            },
            {
                "text": "For example, the \"Barack Obama\" entity has multiple predicate-object pairs in DBpedia, including \"profession-author\", \"profession-lawyer\" and \"profession-professor\" pairs. According to DBpedia, c author = 2, c lawyer = 4 and c prof essor = 2. It is reasonable to expect a higher probability for the \"profession-lawyer\" pair as it seems to be slightly more important than the other two pairs for \"Barack Obama\". As a result, \u039b prof ession\u2212lawyer = 4, which promotes \"profession-lawyer\" in Eq. 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constructing Predicate-Object Prior Matrix \u039b",
                "sec_num": "4.5"
            },
            {
                "text": "Since the posterior inference of the LDA is intractable, we need to find an algorithm for estimating the posterior inference. A variety of algorithms have been used to estimate the parameters of topic models, such as variational EM and Gibbs sampling (Griffiths and Steyvers, 2004) . In this paper we use the collapsed Gibbs sampling procedure for our ES-LDA topic model. Collapsed Gibbs sampling (Griffiths and Steyvers, 2004) is a Markov Chain Monte Carlo (MCMC) (Robert and Casella, 2004) algorithm, which constructs a Markov chain over the latent variables in the model and converges to the posterior distribution, after a number of iterations. In our case, we aim to construct a Markov chain that converges to the posterior distribution over r conditioned on observed subjects s, objects o, hyperparameters \u03b1, \u03b2, and the prior matrix \u039b.",
                "cite_spans": [
                    {
                        "start": 251,
                        "end": 281,
                        "text": "(Griffiths and Steyvers, 2004)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "In our modified version of the learning algorithm to infer p(o i |r j ) and p(r j |d), we (1) constrain the objects that are not paired with a predicate to have 0 probability, i.e. p(o i |r j ) = 0, if (r i , o j ) / \u2208 RDF graph, and (2) P (s|r j ) = 1, since all the triples of a document have the same subject s. We derive the posterior inference from Eq. 2 as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (r|o, s, \u03b1, \u03b2, \u039b) = P (r, o, s|\u03b1, \u03b2, \u039b) P (o|\u03b1, \u03b2, \u039b) \u221d P (r, o|\u03b1, \u03b2, \u039b) \u221d P (r)P (o|r)P (s|r) (4) P (r i = r|o i = o, r \u2212i , o \u2212i , \u03b1, \u03b2, \u039b) \u221d n (d) r,\u2212i + \u03b1 r r (n (d) r ,\u2212i + \u03b1 r ) \u00d7 n (r) o,\u2212i + \u039b ro \u03b2 o o (n (r) o ,\u2212i + \u039b ro \u03b2 o )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "n (r)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "o is the number of times object o is assigned to predicate r. n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "(d) r",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "denotes the number of times predicate r is associated with document d. The subscript \u2212i indicates that the contribution of the current object o i being sampled is removed from the counts. After Gibbs sampling, we can use the sampled predicate to estimate the probability of a predicate, given a document, \u03b8 dr and the probability of an object, given a predicate, \u03c6 ro :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b8 dr = n (d) r + \u03b1 r r (n (d) r + \u03b1 r )",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03c6 ro = n (r) o + \u039b ro \u03b2 o o (n (r) o + \u039b ro \u03b2 o )",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "5 Experiments",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "We evaluated our ES-LDA model against the stateof-the-art LinkSUM (Thalhammer et al., 2016) and FACES (Gunaratna et al., 2015) systems. Our goal was to show that the ES-LDA model produces results that are closer to human judgment, in comparison with the other approaches. We used the same dataset 3 that was used in the experiments conducted with FACES, as well as LinkSUM models. The dataset contained 50 entities randomly selected from DBpedia (English version 3.9) in domains including politician, actors, scientist, song, film, country, city, river, company, game, etc.. 15 people in the field of Semantic Web were selected as reviewers and each entity was evaluated by at least 7 reviewers to produce the top-5 and top-10 summaries. The average number of properties for each entity was 44.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 91,
                        "text": "(Thalhammer et al., 2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 102,
                        "end": 126,
                        "text": "(Gunaratna et al., 2015)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "Based on the two types of RDF supplement methods we discussed in 4.3, we applied two different configurations for the proposed model. In the first experiment, ES-LDA @config-1, we configured the system to supplement each entity (document) by repeating each object based on the number of categories that the object has in the DBpedia knowledge base. For example, for the triple < J.C.P enney, industry, Retail > we repeated Retail object, 5 times in that document, as Retail has five different categories in DBpedia (i.e. \"Retailers, Retailing, French words and phrases, Merchandising, Marketing\" )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "In the second experiment, ES-LDA @config-2, we configured the system to supplement each entity (document) by adding the corresponding category(ies) of each object into the document. In this case, each entity is defined as a bag of words including objects and categories of each object. For example, for the aforementioned triple, in addition to the Retail we included \"Retailers, Retailing, French words and phrases, Merchandising, Marketing\" as the corresponding categories to the Retail object.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "For the other parameters, we assumed a symmetric Dirichlet prior and set \u03b2 = 0.01 and \u03b1 = 50/R, where R is the total number of unique predicates. We ran the Gibbs sampling algorithm for 1000 iterations and computed the posterior inference after the last sampling iteration. We selected the top-5 and top-10 most probable properties for each entity and calculate the quality of the summary for each entity through equation 8.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "Quality(Sum(e)) = 1 n n i=1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "|Sum(e) \u2229 Sum I i (e)| (8)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "In our experiments, we used the quality of the summary proposed in (Cheng et al., 2011) , in which n ideal summaries Sum I i (e) generated by expert users for i = 1, ..., n and the summaries generated by the system Sum(e) were compared. The average of the overlap between an ideal summary and a summary generated by the system is denoted as the quality of the summary, which is 0 \u2264 Quality(Sum(e)) \u2264 k in the top-k settings.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 87,
                        "text": "(Cheng et al., 2011)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference using Gibbs Sampling",
                "sec_num": "4.6"
            },
            {
                "text": "The summary in our model is defined as sets of representative triples that can summarize each entity (sets of triples with the same subject) in a way close to a human-created summary. We decided to use the last part of a URI to compare the generated summaries with the expert summaries and produce ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Results",
                "sec_num": "5.1"
            },
            {
                "text": "Top-5 Top-10 ES-LDA @ config-1 1.20 3.50 ES-LDA @ config-2 1.10",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "3.26 LinkSUM@ config-1 1.20",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "3.15 LinkSUM@ config-2 1.20 3.20 FACES 0.93 2.92 the Summary Quality for each entity and average them. As (Thalhammer et al., 2016) reproduced the FACES overall Summary Quality based on this criteria and also applied it to their model, we decided to use their result as it was completely aligned with our summary definition.",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 131,
                        "text": "(Thalhammer et al., 2016)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "In Table 2 , we compare the quality of the results from LinkSUM, FACES, and ES-LDA with two distinct configurations (supplementing by object reputation and object categories). As Table 2 shows, the quality of our model outperforms the FACES approach, in both cases. The ES-LDA @ config-2 demonstrates a comparable result with the two configurations of LinkSUM, while ES-LDA @ config-1 outperforms LinkSUM. For some of the entities, the predicates that ES-LDA selected as top-5 most probable did not exist in the FACES dataset. It forced us to calculate the quality of summary for some of the entities with just 4 predicates instead of 5. We believe to be the only reason why top-5 Quality of Summary was lower than or equal to LinkSUM. Although, we had the same issue for the top-10 results, overall, ES-LDA shows a better performance in two configurations.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 179,
                        "end": 186,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "We evaluated our approach against the stateof-the-art summarization techniques, including LinkSUM and FACES. LinkSUM primarily focuses on the most relevant facts for each entity, while FACES tries to keep a balance between diversity and relevancy in entity summarization. There is usually a trade-off between diversity and relevancy of the selected predicates. Our ES-LDA model maintains both diversity and relevancy, while representing each entity through top-k predicates. As shown in Table 2 , our model outperforms the state-of-the-art approaches. Table 3 illustrates a sample of entities from the dataset along with their top-10 predicates, for all approaches. As Table 3 shows, the LinkSUM model is focusing more on the objects, while predicate repetition is permitted. For example, <Marie Curie, birthPlace, Warsaw>, <Marie Curie, birthPlace, Russian Empire>, and <Marie Curie, birthPlace, Congress Polandare> are representing Marie Curie's birth place. Although, they differ in terms of objects, it is arguable that referring to the same predicate with multiple objects that are more likely relevant reduces the chance of other important triples that could potentially appear in the summary. It should be noted that in the current ES-LDA configuration, we have not considered predicate repetition, thus, all the predicates of the triples appearing in the resultant summary are unique. FACES on the other hand, considers predicate diversity and tries to keep a balance between the diversity and relevancy but the overall quality of the FACES model is lower than LinkSUM and ES-LDA. In the FACES model, there are selected predicates which seems to be less informative in the sense to be top-10 representative for a particular entity. For example, which is referring to a png file, could be replaced with more descriptive one. Additionally, our proposed technique features several unique characteristics: (1) the ES-LDA is a knowledgebased probabilistic model that combines prior knowledge with statistical learning technique into a unified framework for entity summarization;",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 487,
                        "end": 494,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 552,
                        "end": 559,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 669,
                        "end": 676,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "(2) for each entity, it ranks all predicates based on their importance by computing marginal probabilities for the predicates. Table 4 illustrates the top-5 predicates for a sample of two entities; and finally (3), each predicate can be represented as a probability distribution over objects in the ES-LDA model, which allows us to describe the relations (predicates) of the RDF graph based on its nodes as shown in Table 5 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 127,
                        "end": 134,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 416,
                        "end": 423,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "We have proposed a knowledge-based probabilistic topic model, called ES-LDA, based on the RDF entity representation for entity summarization. In our experiments, we have applied two different configurations: one based on object repetitions and the other based on adding object's categories, to alleviate common RDF data problems including sparseness, unnatural language, and lack of context. We conducted extensive experiments, which show the quality of the top-10 triples in both configurations outperforms the state-of-the-art techniques, LinkSUM and FACES, while for the top-5 quality we surpassed FACES and equaled the LinkSUM results. There are many interesting future research directions of this work. It would be interesting to investigate how this model and a much richer set of topic models that combine prior knowledge with statistical learning techniques could be used for various tasks in the Semantic Web domain, such as ontology summarization, ontology tagging, and finding similar ontologies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "\"bag of words\" and \"bag of objects\" are interchangeably used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://wiki.knoesis.org/index.php/FACES",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Gong Cheng was partially funded by the NSFC under Grant 61572247.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic topic labeling using ontology-based topic models",
                "authors": [
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Allahyari",
                        "suffix": ""
                    },
                    {
                        "first": "Krys",
                        "middle": [],
                        "last": "Kochut",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "14th International Conference on Machine Learning and Applications (ICMLA)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mehdi Allahyari and Krys Kochut. 2015. Automatic topic labeling using ontology-based topic models. In 14th International Conference on Machine Learn- ing and Applications (ICMLA), 2015. IEEE.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A brief survey of text mining: Classification, clustering and extraction techniques",
                "authors": [
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Allahyari",
                        "suffix": ""
                    },
                    {
                        "first": "Seyedamin",
                        "middle": [],
                        "last": "Pouriyeh",
                        "suffix": ""
                    },
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Assefi",
                        "suffix": ""
                    },
                    {
                        "first": "Saied",
                        "middle": [],
                        "last": "Safaei",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [
                            "D"
                        ],
                        "last": "Trippe",
                        "suffix": ""
                    },
                    {
                        "first": "Juan",
                        "middle": [
                            "B"
                        ],
                        "last": "Gutierrez",
                        "suffix": ""
                    },
                    {
                        "first": "Krys",
                        "middle": [],
                        "last": "Kochut",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1707.02919"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D Trippe, Juan B Gutierrez, and Krys Kochut. 2017a. A brief survey of text min- ing: Classification, clustering and extraction tech- niques. arXiv preprint arXiv:1707.02919 .",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A knowledgebased topic modeling approach for automatic topic labeling",
                "authors": [
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Allahyari",
                        "suffix": ""
                    },
                    {
                        "first": "Seyedamin",
                        "middle": [],
                        "last": "Pouriyeh",
                        "suffix": ""
                    },
                    {
                        "first": "Krys",
                        "middle": [],
                        "last": "Kochut",
                        "suffix": ""
                    },
                    {
                        "first": "Hamid",
                        "middle": [
                            "R"
                        ],
                        "last": "Arabnia",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "INTERNATIONAL JOURNAL OF AD-VANCED COMPUTER SCIENCE AND APPLICA-TIONS",
                "volume": "8",
                "issue": "9",
                "pages": "335--349",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mehdi Allahyari, Seyedamin Pouriyeh, Krys Kochut, and Hamid R Arabnia. 2017b. A knowledge- based topic modeling approach for automatic topic labeling. INTERNATIONAL JOURNAL OF AD- VANCED COMPUTER SCIENCE AND APPLICA- TIONS 8(9):335-349.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Nonparametric spherical topic modeling with word embed",
                "authors": [
                    {
                        "first": "Kayhan",
                        "middle": [],
                        "last": "Batmanghelich",
                        "suffix": ""
                    },
                    {
                        "first": "Ardavan",
                        "middle": [],
                        "last": "Saeedi",
                        "suffix": ""
                    },
                    {
                        "first": "Karthik",
                        "middle": [],
                        "last": "Narasimhan",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Gershman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1604.00126"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kayhan Batmanghelich, Ardavan Saeedi, Karthik Narasimhan, and Sam Gershman. 2016. Nonpara- metric spherical topic modeling with word embed- dings. arXiv preprint arXiv:1604.00126 .",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Dbpedia-a crystallization point for the web of data",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Bizer",
                        "suffix": ""
                    },
                    {
                        "first": "Jens",
                        "middle": [],
                        "last": "Lehmann",
                        "suffix": ""
                    },
                    {
                        "first": "Georgi",
                        "middle": [],
                        "last": "Kobilarov",
                        "suffix": ""
                    },
                    {
                        "first": "S\u00f6ren",
                        "middle": [],
                        "last": "Auer",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Becker",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Cyganiak",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Hellmann",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Web Semantics: science, services and agents on the world wide web",
                "volume": "7",
                "issue": "",
                "pages": "154--165",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Bizer, Jens Lehmann, Georgi Kobilarov, S\u00f6ren Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann. 2009. Dbpedia-a crystal- lization point for the web of data. Web Semantics: science, services and agents on the world wide web 7(3):154-165.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Modeling annotated data",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Michael I Jordan",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval",
                "volume": "",
                "issue": "",
                "pages": "127--134",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David M Blei and Michael I Jordan. 2003. Model- ing annotated data. In Proceedings of the 26th an- nual international ACM SIGIR conference on Re- search and development in informaion retrieval. ACM, pages 127-134.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Mdl summarization with holes",
                "authors": [
                    {
                        "first": "Shaofeng",
                        "middle": [],
                        "last": "Bu",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "S"
                        ],
                        "last": "Laks",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond T",
                        "middle": [],
                        "last": "Lakshmanan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 31st international conference on Very large data bases. VLDB Endowment",
                "volume": "",
                "issue": "",
                "pages": "433--444",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shaofeng Bu, Laks VS Lakshmanan, and Raymond T Ng. 2005. Mdl summarization with holes. In Pro- ceedings of the 31st international conference on Very large data bases. VLDB Endowment, pages 433-444.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Relin: relatedness and informativeness-based centrality for entity summarization. The Semantic Web-ISWC",
                "authors": [
                    {
                        "first": "Gong",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Thanh",
                        "middle": [],
                        "last": "Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Yuzhong",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "114--129",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gong Cheng, Thanh Tran, and Yuzhong Qu. 2011. Re- lin: relatedness and informativeness-based centrality for entity summarization. The Semantic Web-ISWC 2011 pages 114-129.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Entity disambiguation using a markov-logic network",
                "authors": [
                    {
                        "first": "Hong-Jie",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Tzong-Han",
                        "suffix": ""
                    },
                    {
                        "first": "Wen-Lian",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "846--855",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hong-Jie Dai, Richard Tzong-Han Tsai, Wen-Lian Hsu, et al. 2011. Entity disambiguation using a markov-logic network. In IJCNLP. pages 846-855.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Gaussian lda for topic models with word embeddings",
                "authors": [
                    {
                        "first": "Rajarshi",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Manzil",
                        "middle": [],
                        "last": "Zaheer",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "ACL (1)",
                "volume": "",
                "issue": "",
                "pages": "795--804",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaussian lda for topic models with word embed- dings. In ACL (1). pages 795-804.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Knowledge acquisition via incremental conceptual clustering",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Douglas",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Fisher",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Machine learning",
                "volume": "2",
                "issue": "2",
                "pages": "139--172",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas H Fisher. 1987. Knowledge acquisition via in- cremental conceptual clustering. Machine learning 2(2):139-172.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Triplerank: Ranking semantic web data by tensor decomposition. The Semantic Web-ISWC",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Antje",
                        "middle": [],
                        "last": "Schultz",
                        "suffix": ""
                    },
                    {
                        "first": "Sergej",
                        "middle": [],
                        "last": "Sizov",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Staab",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "213--228",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Franz, Antje Schultz, Sergej Sizov, and Stef- fen Staab. 2009. Triplerank: Ranking semantic web data by tensor decomposition. The Semantic Web- ISWC 2009 pages 213-228.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Finding scientific topics",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Griffiths",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Steyvers",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the National academy of Sciences of the United States of America",
                "volume": "101",
                "issue": "1",
                "pages": "5228--5235",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas L Griffiths and Mark Steyvers. 2004. Find- ing scientific topics. Proceedings of the National academy of Sciences of the United States of America 101(Suppl 1):5228-5235.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Faces: diversity-aware entity summarization using incremental hierarchical conceptual clustering",
                "authors": [
                    {
                        "first": "Kalpa",
                        "middle": [],
                        "last": "Gunaratna",
                        "suffix": ""
                    },
                    {
                        "first": "Krishnaprasad",
                        "middle": [],
                        "last": "Thirunarayan",
                        "suffix": ""
                    },
                    {
                        "first": "Amit P",
                        "middle": [],
                        "last": "Sheth",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kalpa Gunaratna, Krishnaprasad Thirunarayan, and Amit P Sheth. 2015. Faces: diversity-aware entity summarization using incremental hierarchical con- ceptual clustering .",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The challenges of automatic summarization",
                "authors": [
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    },
                    {
                        "first": "Inderjeet",
                        "middle": [],
                        "last": "Mani",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Computer",
                "volume": "33",
                "issue": "11",
                "pages": "29--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Udo Hahn and Inderjeet Mani. 2000. The challenges of automatic summarization. Computer 33(11):29-36.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Yago2: A spatially and temporally enhanced knowledge base from wikipedia",
                "authors": [
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Hoffart",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Fabian",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Suchanek",
                        "suffix": ""
                    },
                    {
                        "first": "Gerhard",
                        "middle": [],
                        "last": "Berberich",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Weikum",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Artificial Intelligence",
                "volume": "194",
                "issue": "",
                "pages": "28--61",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. 2013. Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artificial Intelligence 194:28-61.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Automatic summarising: The state of the art",
                "authors": [
                    {
                        "first": "Karen Sp\u00e4rck",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Information Processing & Management",
                "volume": "43",
                "issue": "6",
                "pages": "1449--1481",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karen Sp\u00e4rck Jones. 2007. Automatic summarising: The state of the art. Information Processing & Man- agement 43(6):1449-1481.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Graph summarization with bounded error",
                "authors": [
                    {
                        "first": "Saket",
                        "middle": [],
                        "last": "Navlakha",
                        "suffix": ""
                    },
                    {
                        "first": "Rajeev",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Nisheeth",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 ACM SIGMOD international conference on Management of data",
                "volume": "",
                "issue": "",
                "pages": "419--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saket Navlakha, Rajeev Rastogi, and Nisheeth Shri- vastava. 2008. Graph summarization with bounded error. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data. ACM, pages 419-432.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A survey of text summarization techniques",
                "authors": [
                    {
                        "first": "Ani",
                        "middle": [],
                        "last": "Nenkova",
                        "suffix": ""
                    },
                    {
                        "first": "Kathleen",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Mining text data",
                "volume": "",
                "issue": "",
                "pages": "43--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ani Nenkova and Kathleen McKeown. 2012. A sur- vey of text summarization techniques. In Mining text data, Springer, pages 43-76.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Monte Carlo statistical methods",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Christian",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Casella",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "319",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian P Robert and George Casella. 2004. Monte Carlo statistical methods, volume 319. Citeseer.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Topic modeling for rdf graphs",
                "authors": [
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Sleeman",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Finin",
                        "suffix": ""
                    },
                    {
                        "first": "Anupam",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "LD4IE@ ISWC",
                "volume": "",
                "issue": "",
                "pages": "48--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jennifer Sleeman, Tim Finin, and Anupam Joshi. 2015. Topic modeling for rdf graphs. In LD4IE@ ISWC. pages 48-62.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A context-aware topic model for statistical machine translation",
                "authors": [
                    {
                        "first": "Jinsong",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Deyi",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xianpei",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Hongyu",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Junfeng",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "ACL (1)",
                "volume": "",
                "issue": "",
                "pages": "229--238",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jinsong Su, Deyi Xiong, Yang Liu, Xianpei Han, Hongyu Lin, Junfeng Yao, and Min Zhang. 2015. A context-aware topic model for statistical machine translation. In ACL (1). pages 229-238.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Linksum: using link analysis to summarize entity data",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Thalhammer",
                        "suffix": ""
                    },
                    {
                        "first": "Nelia",
                        "middle": [],
                        "last": "Lasierra",
                        "suffix": ""
                    },
                    {
                        "first": "Achim",
                        "middle": [],
                        "last": "Rettinger",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "International Conference on Web Engineering",
                "volume": "",
                "issue": "",
                "pages": "244--261",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andreas Thalhammer, Nelia Lasierra, and Achim Ret- tinger. 2016. Linksum: using link analysis to sum- marize entity data. In International Conference on Web Engineering. Springer, pages 244-261.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Browsing dbpedia entities with summaries",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Thalhammer",
                        "suffix": ""
                    },
                    {
                        "first": "Achim",
                        "middle": [],
                        "last": "Rettinger",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "European Semantic Web Conference",
                "volume": "",
                "issue": "",
                "pages": "511--515",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andreas Thalhammer and Achim Rettinger. 2014. Browsing dbpedia entities with summaries. In Eu- ropean Semantic Web Conference. Springer, pages 511-515.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Trank: Ranking entity types using the web of data",
                "authors": [
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Tonon",
                        "suffix": ""
                    },
                    {
                        "first": "Michele",
                        "middle": [],
                        "last": "Catasta",
                        "suffix": ""
                    },
                    {
                        "first": "Gianluca",
                        "middle": [],
                        "last": "Demartini",
                        "suffix": ""
                    },
                    {
                        "first": "Philippe",
                        "middle": [],
                        "last": "Cudr\u00e9-Mauroux",
                        "suffix": ""
                    },
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Aberer",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "International Semantic Web Conference",
                "volume": "",
                "issue": "",
                "pages": "640--656",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alberto Tonon, Michele Catasta, Gianluca Demartini, Philippe Cudr\u00e9-Mauroux, and Karl Aberer. 2013. Trank: Ranking entity types using the web of data. In International Semantic Web Conference. Springer, pages 640-656.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Automatic labeling of topic models using text summaries",
                "authors": [
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    },
                    {
                        "first": "Tianming",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaojun Wan and Tianming Wang. 2016. Automatic labeling of topic models using text summaries. In ACL (1).",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A biterm topic model for short texts",
                "authors": [
                    {
                        "first": "Xiaohui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Jiafeng",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Yanyan",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Xueqi",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 22nd international conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "1445--1456",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2013. A biterm topic model for short texts. In Proceedings of the 22nd international conference on World Wide Web. ACM, pages 1445-1456.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Ontology summarization based on rdf sentence graph",
                "authors": [
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Gong",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Yuzhong",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 16th international conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "707--716",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiang Zhang, Gong Cheng, and Yuzhong Qu. 2007. Ontology summarization based on rdf sentence graph. In Proceedings of the 16th international con- ference on World Wide Web. ACM, pages 707-716.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Unsupervised segmentation helps supervised learning of character tagging for word segmentation and named entity recognition",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "106--111",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao and Chunyu Kit. 2008. Unsupervised seg- mentation helps supervised learning of character tagging for word segmentation and named entity recognition. In IJCNLP. pages 106-111.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Entity Summarization Model mon for triples to contain unexpected characters.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF0": {
                "content": "<table><tr><td>5</td><td>Draw a predicate distribution \u03b8 d \u223c</td></tr><tr><td/><td>Dir(\u03b1 d )</td></tr><tr><td>6</td><td>foreach subject s and object o of</td></tr><tr><td/><td>document d do</td></tr><tr><td>7</td><td>Draw a predicate r \u223c Mult(\u03b8 d )</td></tr><tr><td>8</td><td>Draw a subject s from predicate</td></tr><tr><td/><td>r, s \u223c Mult(\u03c6 r )</td></tr><tr><td>9</td><td>Draw an object o from predicate</td></tr><tr><td/><td>r, o \u223c Mult(\u03c6 r )</td></tr><tr><td>10</td><td>end</td></tr><tr><td colspan=\"2\">11 end</td></tr></table>",
                "text": "Algorithm 1: ES-LDA Model1 foreach predicate r \u2208 {1, 2, . . . , R} do 2 Draw an object distribution \u03c6 r \u223c Dir(\u03b2 r \u00d7 \u039b r ) 3 end 4 foreach document d \u2208 {1, 2, . . . , D} do",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF1": {
                "content": "<table/>",
                "text": "Overall quality results of different models. Best result are bold.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF2": {
                "content": "<table><tr><td/><td>MARIE CURIE</td><td/><td/><td colspan=\"2\">REIGN OF FIRE</td><td/><td>SEYCHELLES</td><td/></tr><tr><td>ES-LDA</td><td>LinkSUM</td><td>FACES</td><td>ES-LDA</td><td colspan=\"2\">LinkSUM FACES</td><td>ES-LDA</td><td>LinkSUM</td><td>FACES</td></tr><tr><td colspan=\"2\">doctoralStudents birthPlace</td><td>spouse</td><td>starring</td><td>country</td><td>starring</td><td>leaderName</td><td>largestCity</td><td>leaderName</td></tr><tr><td colspan=\"2\">doctoralAdvisor birthPlace</td><td>field</td><td>producer</td><td>starring</td><td>country</td><td colspan=\"3\">governmentType governmentType governmentType</td></tr><tr><td>deathPlace</td><td>field</td><td colspan=\"2\">workInstitutions music</td><td>starring</td><td>distributor</td><td>leaderTitle</td><td colspan=\"2\">governmentType largestCity</td></tr><tr><td>children</td><td>field</td><td>birthPlace</td><td>director</td><td>starring</td><td colspan=\"4\">musicComposer officialLanguage governmentType sovereigntyType</td></tr><tr><td>knownFor</td><td>knownFor</td><td>deathPlace</td><td colspan=\"2\">cinematography studio</td><td>director</td><td>capital</td><td colspan=\"2\">governmentType source</td></tr><tr><td>spouse</td><td>almaMater</td><td colspan=\"2\">doctoralAdvisor country</td><td>producer</td><td>editing</td><td>currency</td><td colspan=\"2\">sovereigntyType capital</td></tr><tr><td>almaMater</td><td>birthPlace</td><td>knownFor</td><td>distributor</td><td>producer</td><td>studio</td><td>timeZone</td><td>source</td><td>leaderTitle</td></tr><tr><td>birthPlace</td><td>knownFor</td><td>almaMater</td><td>studio</td><td>director</td><td>music</td><td>legislature</td><td>capital</td><td>language</td></tr><tr><td>field</td><td colspan=\"3\">doctoralAdvisor doctoralStudents editing</td><td>artist</td><td>producer</td><td>anthem</td><td>language</td><td>languages</td></tr><tr><td colspan=\"2\">establishedEvent knownFor</td><td>thumbnail</td><td>screenplay</td><td>producer</td><td>thumbnail</td><td>callingCode</td><td>timeZone</td><td>legislature</td></tr></table>",
                "text": "Top-10 predicates for three randomly selected entities after applying three different models.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td colspan=\"2\">LEXUS</td><td colspan=\"2\">MORTAL KOMBAT TRILOGY</td></tr><tr><td>Predicate</td><td colspan=\"2\">Probability Predicate</td><td>Probability</td></tr><tr><td colspan=\"2\">foundedBy 0.21</td><td>platforms</td><td>0.30</td></tr><tr><td>owner</td><td>0.17</td><td>publisher</td><td>0.18</td></tr><tr><td>location</td><td>0.15</td><td>developer</td><td>0.17</td></tr><tr><td colspan=\"2\">keyPerson 0.06</td><td colspan=\"2\">computingMedia 0.07</td></tr><tr><td>service</td><td>0.04</td><td>designer</td><td>0.05</td></tr></table>",
                "text": "Probabilities of top-5 predicates for two randomly selected entities.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF4": {
                "content": "<table><tr><td>PARTY</td><td/><td>STARRING</td><td/></tr><tr><td>Object</td><td colspan=\"2\">Probability Object</td><td>Probability</td></tr><tr><td>Democratic Party (United States)</td><td>0.36</td><td colspan=\"2\">Arnold Schwarzenegger 0.05</td></tr><tr><td>Republican Party (United States)</td><td>0.17</td><td>Angelina Jolie</td><td>0.04</td></tr><tr><td>Democratic-Republican Party</td><td>0.12</td><td>Raven Symone</td><td>0.03</td></tr><tr><td colspan=\"2\">Communist Party of the Soviet Union 0.08</td><td colspan=\"2\">Matthew McConaughey 0.02</td></tr><tr><td>Independent(politician)</td><td>0.08</td><td>Alan Arkin</td><td>0.02</td></tr></table>",
                "text": "Distributions of two randomly selected predicates over top-5 objects.",
                "num": null,
                "type_str": "table",
                "html": null
            }
        }
    }
}