File size: 128,606 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 |
{
"paper_id": "I17-1039",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:38:57.648452Z"
},
"title": "Towards Neural Machine Translation with Partially Aligned Corpora",
"authors": [
{
"first": "Yining",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "National Laboratory of Pattern Recognition",
"institution": "CASIA",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": "yining.wang@nlpr.ia.ac.cn"
},
{
"first": "Yang",
"middle": [],
"last": "Zhao",
"suffix": "",
"affiliation": {
"laboratory": "National Laboratory of Pattern Recognition",
"institution": "CASIA",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": "yang.zhao@nlpr.ia.ac.cn"
},
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "National Laboratory of Pattern Recognition",
"institution": "CASIA",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": "jjzhang@nlpr.ia.ac.cn"
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": "",
"affiliation": {
"laboratory": "National Laboratory of Pattern Recognition",
"institution": "CASIA",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": "cqzong@nlpr.ia.ac.cn"
},
{
"first": "Zhengshan",
"middle": [],
"last": "Xue",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Toshiba (China) Co.,Ltd",
"location": {}
},
"email": "xuezhengshan2@toshiba.com.cn"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "While neural machine translation (NMT) has become the new paradigm, the parameter optimization requires large-scale parallel data which is scarce in many domains and language pairs. In this paper, we address a new translation scenario in which there only exists monolingual corpora and phrase pairs. We propose a new method towards translation with partially aligned sentence pairs which are derived from the phrase pairs and monolingual corpora. To make full use of the partially aligned corpora, we adapt the conventional NMT training method in two aspects. On one hand, different generation strategies are designed for aligned and unaligned target words. On the other hand, a different objective function is designed to model the partially aligned parts. The experiments demonstrate that our method can achieve a relatively good result in such a translation scenario, and tiny bitexts can boost translation quality to a large extent.",
"pdf_parse": {
"paper_id": "I17-1039",
"_pdf_hash": "",
"abstract": [
{
"text": "While neural machine translation (NMT) has become the new paradigm, the parameter optimization requires large-scale parallel data which is scarce in many domains and language pairs. In this paper, we address a new translation scenario in which there only exists monolingual corpora and phrase pairs. We propose a new method towards translation with partially aligned sentence pairs which are derived from the phrase pairs and monolingual corpora. To make full use of the partially aligned corpora, we adapt the conventional NMT training method in two aspects. On one hand, different generation strategies are designed for aligned and unaligned target words. On the other hand, a different objective function is designed to model the partially aligned parts. The experiments demonstrate that our method can achieve a relatively good result in such a translation scenario, and tiny bitexts can boost translation quality to a large extent.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Neural machine translation (NMT) proposed by Kalchbrenner et al.(2013) , Sutskever et al.(2014) and Cho et al.(2014) has achieved significant progress in recent years. Different from traditional statistical machine translation(SMT) (Koehn et al., 2003; Chiang, 2005; Liu et al., 2006; Zhai et al., 2012) which contains multiple separately tuned components, NMT builds an end-to-end framework to model the whole translation process. For several language pairs, NMT is reaching significantly better translation performance than SMT (Luong et al., 2015b; .",
"cite_spans": [
{
"start": 45,
"end": 70,
"text": "Kalchbrenner et al.(2013)",
"ref_id": "BIBREF11"
},
{
"start": 73,
"end": 95,
"text": "Sutskever et al.(2014)",
"ref_id": "BIBREF27"
},
{
"start": 100,
"end": 116,
"text": "Cho et al.(2014)",
"ref_id": "BIBREF5"
},
{
"start": 232,
"end": 252,
"text": "(Koehn et al., 2003;",
"ref_id": "BIBREF13"
},
{
"start": 253,
"end": 266,
"text": "Chiang, 2005;",
"ref_id": "BIBREF4"
},
{
"start": 267,
"end": 284,
"text": "Liu et al., 2006;",
"ref_id": "BIBREF16"
},
{
"start": 285,
"end": 303,
"text": "Zhai et al., 2012)",
"ref_id": "BIBREF31"
},
{
"start": 530,
"end": 551,
"text": "(Luong et al., 2015b;",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In general, in order to obtain an NMT model \u5916\u4ea4\u90e8\u53d1\u8a00\u4eba\u5218\u5efa\u8d85\u4eca\u5929\u5728\u4f8b\u884c\u7684\u673a\u5236\u62db\u5f85\u4f1a\u4e0a\u8bf4\uff0c \u7f8e\u56fd\u53f8\u6cd5\u90e8\u957f\u6765\u5317\u4eac\u8fdb\u884c\u4e86\u8bbf\u95ee\u3002 Speaking at a regular press briefing Wednesday, Turkish foreign ministry deputy spokesman said that turkey hoped the peace talks would continue as planned.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Partial Aligned Part 1 Figure 1 : An example of our partially aligned training data, in which the source sentence and target sentence are not parallel but they include two parallel parts (highlight in blue and red respectively).",
"cite_spans": [],
"ref_spans": [
{
"start": 23,
"end": 31,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "of great translation quality, we usually need largescale parallel data. Unfortunately, the large-scale parallel data is always insufficient in many domains and language pairs. Without sufficient parallel sentence pairs, NMT tends to learn poor estimates on low-count events. Actually, there have been some effective methods to deal with the situation of translating language pairs with limited resource under different scenarios (Johnson et al., 2016; Sennrich et al., 2016a; . In this paper, we address a new translation scenario in which we do not have any parallel sentences but have massive monolingual corpora and phrase pairs. The previous methods are hard to be used to learn an NMT model under this situation. In this paper, we propose a novel method to learn an NMT model using only monolingual data and phrase pairs.",
"cite_spans": [
{
"start": 429,
"end": 451,
"text": "(Johnson et al., 2016;",
"ref_id": "BIBREF10"
},
{
"start": 452,
"end": 475,
"text": "Sennrich et al., 2016a;",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "Our main idea is that although there does not exist the parallel sentences, we can derive the sentence pairs which are non-parallel but contain the parallel parts (in this paper, we call these sentences as partially aligned sentences) with the monolingual data and phrase pairs. Then we can utilize these partially aligned sentences to train an NMT model. Figure 1 shows an example of our data. Source sentence and target sentence are not fully aligned but contain two translation fragments: (\"\u5916\u4ea4\u90e8\u53d1\u8a00\u4eba\", \"foreign ministry deputy\") and (\"\u5728 \u4f8b \u884c \u7684 \u8bb0 \u8005 \u62db \u5f85 \u4f1a \u4e0a \u8bf4\", \"speaking at a regular press\"). Intuitively, these kinds of sentence pairs are useful in building an NMT model.",
"cite_spans": [],
"ref_spans": [
{
"start": 356,
"end": 364,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "To use these partially aligned sentences, the training method should be different from the original methods which are designed for parallel corpora. In this work, we adapt the conventional NMT training method mainly from two perspectives. On one hand, different generation strategies are designed for aligned and unaligned target words. For aligned words, our method guides the translation process based on both the context of source side and previously predicted words. When generating the unaligned target words , our model only depends on the words previously generated without considering the context of source side. On the other hand, we redesign the objective function so as to emphasize the partially aligned parts in addition to maximizing the log-likelihood of the target sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "The contributions of our paper are twofold: 1) Our approach addresses a new translation scenario, where there only exists monolingual data and phrase pairs. We propose a method to train an NMT model under this scenario. The method is simple and easy to implement, which can be used in arbitrary attention-based NMT framework.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "2) Empirical experiments on the Chinese-English translation tasks under this scenario show that our method can achieve a relatively good result. Moreover, if we only add a tiny parallel corpus, the method can obtain significant improvements in terms of translation quality.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Partial Aligned Part 2",
"sec_num": null
},
{
"text": "Our approach can be easily applied to any endto-end attention-based NMT framework. In this work, we follow the neural machine translation architecture by Bahdanau et al. (2015) , which we will summarize in this section. Given the source sentence X = {x 1 , x 2 , ..., x T x } and the target sentence Y = {y 1 , y 2 , ..., y T y }. The goal of machine translation is to transform source sentence into the target sentence. The end-to-end NMT framework consists of two recurrent neural networks, which are respectively called encoder and decoder. First, the encoder network encodes the X into context vectors C. Then, the decoder network generates the target translation sentences one word each time based on the context vectors C and target words previously generated. More specifically, that is p(y i |y <i , C).",
"cite_spans": [
{
"start": 154,
"end": 176,
"text": "Bahdanau et al. (2015)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "In encoding stage, it transforms X into a sequence of vectors",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "h enc = h k 1 , h k 2 , h k 3 , .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": ".., h k T using m stacked LSTM (Hochreiter and Schmidhuber, 1997) layers. Finally, the encoder chooses the hidden states of the top encoder layer as",
"cite_spans": [
{
"start": 31,
"end": 65,
"text": "(Hochreiter and Schmidhuber, 1997)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "h top = {h m 1 , h m 2 , h m 3 , .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": ".., h m T } that we will use in attention mechanism to calculate context vector later.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "In decoding stage, it generates one target word at a time from conditional probability p(y i |y <i , C; \u03b8) also via m stacked LSTM layers parameterized by \u03b8. Supposing we have obtained the context vector, the conditional probability p(y i |y <i , C; \u03b8) is calculated as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p(y i |y <i , C; \u03b8) = p(y i |y <i , c i ) = sof tmax(g(W y i , z m i , c i ))",
"eq_num": "(1)"
}
],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "Where W y i is embedding of the target word, z m i is current hidden states of top layer in decoder network. Note that the first hidden states of decoder z k 0 are set to the last hidden states of encoder as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "z k 0 = h k T",
"eq_num": "(2)"
}
],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "c i can be computed as a weighted sum of the source-side h s as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "c i = Tx j=1 a ij h m i",
"eq_num": "(3)"
}
],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "Where a ij is alignment probability, which can be calculated in multiple ways (Luong et al., 2015a) . In our method, we use a simple singlelayer feed forward network. This alignment probability measures how relevant i-th context vector of source sentence is in deciding the current symbol in translation. The probability will be further normalized:",
"cite_spans": [
{
"start": 78,
"end": 99,
"text": "(Luong et al., 2015a)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "a ij = exp(e ij ) T x k=1 exp(e ik ))",
"eq_num": "(4)"
}
],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "A detailed introduction of the encoder-decoder framework is described in Bahdanau et al. (2015) . In order to train NMT system, we use parallel data to optimize the network parameters by maximizing the conditional log-likelihood:",
"cite_spans": [
{
"start": 73,
"end": 95,
"text": "Bahdanau et al. (2015)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "L(\u03b8, D) = 1 N N n=1 Ty i log(p(y (n) i |p(y (n) <i , X (n) , \u03b8))",
"eq_num": "(5)"
}
],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "3 NMT with Partially Aligned Data",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "In \u00a72 we gave a brief description of the attentionbased NMT models whose network parameters are trained using parallel sentence pairs. However, in the translation scenario where there only exists monolingual corpora and phrase pairs, the conventional NMT framework is hard to be used in training a model. In this section, we first explain how we actually obtain the partially aligned corpora with aligned positions using phrase pairs and monolingual corpora, then introduce our method to train the NMT models using the partially aligned sentences according to the particular properties of the corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Review of Neural Machine Translation",
"sec_num": "2"
},
{
"text": "Assuming there exists abundant phrase pairs and monolingual sentences in source and target languages, we define our approach to extract partially aligned sentence pairs for training. Given a phrase pair (ph s, ph t), ph s may appear in a source-side monolingual sentence X, and ph t may appear in a target-side monolingual sentence Y. Then, X and Y are non-parallel but contain the parallel part. We call these kinds of data the partially aligned sentences. In this work, we collect the partially aligned sentences by searching the phrase pairs in both of the source and target monolingual data simultaneously. In order to reduce the time of the searching process, the monolingual training corpora are first split into many parts. Then, we retrieve the source phrase in each part to restrict the source range of partially aligned corpus. With the retrieved results, we can search the final results of the partially aligned sentences pairs easily. In this way we can construct our corpora, in which only one or more phrases are aligned in every sentence pairs. We denote a partially aligned sentence (",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "X = x 1 , x 2 , ...x T x ,Y = y 1 , y 2 , ..., y T y ),",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "in which a set of the phrase pairs aligned with each other. We call these pairs partially aligned part:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "P (k) x = x k1 , ..., x kp P (k) y = y k1 , ..., x kq (6) P (k)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "x and P (k)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "y are the phrases in the source and target sentences respectively, and they are translation equivalents.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constructing partially Aligned Corpora",
"sec_num": "3.1"
},
{
"text": "In \u00a73.1, we acquired the partially aligned corpora with the phrase pairs and monolingual sentences. Now, we need to use them to train the NMT model. As the traditional NMT model is designed for the parallel sentences, it is not suitable for partially aligned sentences. Thus we redesign the traditional NMT model as follows. Figure 2 shows the basic framework of our training method. Our model has 4 different parts from conventional NMT model, including initial states, generation process, objective functions and vocabulary size.",
"cite_spans": [],
"ref_spans": [
{
"start": 325,
"end": 333,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Model Descriptions",
"sec_num": "3.2"
},
{
"text": "The first difference is the initial hidden states of decoder. In the conventional NMT model, the initial hidden states of decoder z k 0 is set to the last hidden state in encoder h k T x , including initial states, generation process, objective functions and vocabulary size. shown in Eq. (2). For parallel sentences, this setting is reasonable, while for partially aligned sentence, this initial method is inappropriate. The reason is that the hidden state of last word in source sentence is irrelevant to the target sentence, considering the fact that under our scenario, the target side sentences may entirely uncorrelated to the source sentences. Thus, in our model, z k 0 is set to a zero vector as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Initial States",
"sec_num": "3.2.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "Z k 0 = 0",
"eq_num": "(7)"
}
],
"section": "Initial States",
"sec_num": "3.2.1"
},
{
"text": "In Figure 2 , the hidden state of \"<start>\" symbol is set to zero vector when y 1 does not belong to parallel part of the sentence pair.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Initial States",
"sec_num": "3.2.1"
},
{
"text": "The second difference is the generation process. In the conventional NMT system, the model generates each target word based on the context vector c i and previously predicted words y <i as shown in Eq. (1). This generation strategy is unsuitable for the partially aligned corpora, since there exists many unaligned target words. Intuitively, when the model generates the non-parallel parts, it is unnecessary to take the context vector c i into consideration. As Figure 2 illustrated, (x 2 ,x 3 ) and (y 2 ,y 3 ) are parallel parts in this partially aligned sentence pair, and we use context vector which is generated by attention mechanism only when the decoder outputs y 2 and y 3 . Therefore, the decoder in our model can be described as follows:",
"cite_spans": [],
"ref_spans": [
{
"start": 463,
"end": 471,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Generation Process",
"sec_num": "3.2.2"
},
{
"text": "c i = T x j a ij h i if y i \u2208 P (k) y 0 if y i / \u2208 P (k) y (8)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Generation Process",
"sec_num": "3.2.2"
},
{
"text": "where a ij is calculated as Eq. (2), P",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Generation Process",
"sec_num": "3.2.2"
},
{
"text": "(k) y",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Generation Process",
"sec_num": "3.2.2"
},
{
"text": "is the target partial part, as shown in Eq. (5). In Eq. (8), our model generates the aligned target words based on the context vector c i and previously predicted words y <i . When generating the unaligned target words, the model sets the context vector c i to zero, indicating that the model generates these words only based on the LSTM-based RNN language model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Generation Process",
"sec_num": "3.2.2"
},
{
"text": "Third, we redesign the objective function. Given the parallel data, the objective function is to maximize the log-likelihood of each target word as shown in Eq. (5). For the partially aligned sentence, besides the source and target sentence, we know the phrase alignment information. Hence, apart from maximizing the log-likelihood of each target word, we also hope to make the source and target words in partially aligned part align to each other. As shown in Figure 2 , when predicting the words y 2 and y 3 , we want to attend more information of corresponding words x 2 and x 3 . Thus, we inject an auxiliary object function to achieve it. More specifically, our objective function is de-signed as follows:",
"cite_spans": [],
"ref_spans": [
{
"start": 461,
"end": 469,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "L P (\u03b8, D) = 1 N N n=1 { Ty i log(p(y (n) i |p(y (n) <i , X (n) ; \u03b8)) + \u03bb \u00d7 (a (n) , a (n) ); \u03b8)} (9)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "Where a (n) is defined in Eq. 4, is a loss function that encourages the agreement between a (n) and a (n) . a (n) is the supervised attention determined by alignment relationship between P X and P Y , and can be calculated as follows:",
"cite_spans": [
{
"start": 102,
"end": 105,
"text": "(n)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "a (n) i,j = 1 if x j \u2208 P X and y i \u2208 P Y 0 others (10)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "\u03bb > 0 is a hyper-parameter that balances the preference between likelihood and agreement. In this paper, it is set to 0.3. As shown in Eq. 8, our objective function does not only consider to maximize the loglikelihood of the target sentence, but also encourages the alignment a ij produced by NMT to have a larger agreement with the prior alignment information. This objective function is similar to that used by the supervised attention method (Mi et al., 2016a; . Inspired by , the agreement between a (n) and a (n) can be defined in different ways:",
"cite_spans": [
{
"start": 445,
"end": 463,
"text": "(Mi et al., 2016a;",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2022 Multiplication (MUL) (a (n) , a (n) i,j ; \u03b8) = \u2212 T y i=0 T x j=0 a(\u03b8) (n) i,j \u00d7 a (n) i,j (11) where a (n) i,j is computed by Eq. (10) \u2022 Mean Squared Error (MSE) (a (n) , a (n) i,j ; \u03b8) = \u2212 T y i=0 T x j=0 1 2 (a(\u03b8) (n) i,j \u2212 a (n) i,j ) 2",
"eq_num": "(12)"
}
],
"section": "Objective Function",
"sec_num": "3.2.3"
},
{
"text": "The last difference is the vocabulary size during decoding. To make use of phrase pairs as much as possible, we extract a number of special phrase pairs whose source and target are both one word.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Limited Vocabulary",
"sec_num": "3.2.4"
},
{
"text": "In decoding phase, as what Mi et al. (2016b) have done, we can use these special phrase pairs to reduce the vocabulary size when computing the final score distribution. In this way, we can not only acquire more accurate translation of each word, but also accelerate the decoding speed. The vocabulary size can be reduced as follows:",
"cite_spans": [
{
"start": 27,
"end": 44,
"text": "Mi et al. (2016b)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Limited Vocabulary",
"sec_num": "3.2.4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "V = V 1 \u222a V 2",
"eq_num": "(13)"
}
],
"section": "Limited Vocabulary",
"sec_num": "3.2.4"
},
{
"text": "Where V 1 contains the most frequently target words and V 2 is a target words set. This set V 2 is made up of all the target words of the special phrase pairs whose corresponding source words belong to the source sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Limited Vocabulary",
"sec_num": "3.2.4"
},
{
"text": "In this section, we perform the experiment on Chinese-English translation tasks to test our method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "4"
},
{
"text": "We evaluate our approach on large-scale monolingual data set from LDC corpus, which includes 13M Chinese sentences and 10M English sentences. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.1"
},
{
"text": "Considering the fact that the amount of manually annotated phrase pairs is not enough, in order to imitate the environment of experiment, we extract phrase pairs from parallel corpora automatically to make up for the shortage of quantity. To do this, we use Moses (Koehn et al., 2007) in its training step to learn a phrase table from LDC corpus, which includes 0.63M sentence pairs. In order to simulate the experiment as far as possible, we adopt three strategies to filter low quality phrase pairs: 1) the phrases containing the punctuation should be filtered out. (The special phrase parirs introduced in \u00a73.2.4 should be retain) 2) the length of source phrase and target phrase should be greater than 3. 3) only the phrase pairs whose translation probability exceed 0.5 should be retain. In this way, we can get 3M phrase pairs in our experiment. According to our analysis, the average length of phrases are 4.15 and 4.70 on source and target side respectively. When we search the phrase pairs in monolingual sentences, an obstacle is that one phrase pair will get different source sentences with same target sentence or same source sentence with different target sentences. Therefore, for one phrase pair, we have to restrict the number n of both source sentences and target sentences. To balance the search speed of the phrase pairs in monolingual corpora and the amount of partially aligned sentences, we set the hyper-parameter n to 7. We can search for 5M partially aligned sentences in our experiment. We also calculate the average length ratio of aligned phrases against the whole sentence, which is only 21% and 23% respectively on source and target side.",
"cite_spans": [
{
"start": 264,
"end": 284,
"text": "(Koehn et al., 2007)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Preparing and Preprocessing",
"sec_num": "4.2"
},
{
"text": "To ensure the quality of the partially aligned corpora, we also set the number of phrases that aligned to each other in one sentence pair must be greater than a threshold. Here, the threshold is set to 2. That is to say the partially aligned sentence pair should contain at least two aligned phrase pairs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Preparing and Preprocessing",
"sec_num": "4.2"
},
{
"text": "We build our described method based on the Zoph RNN toolkit 1 written in C++/CUDA. Both encoder and decoder consist of two stacked LSTM layers. We set minibatch size to 128. The word embedding dimension of both source and target sides is 1000, and the dimensions of hidden layers unit is set to 1000. In our baseline model, we limit the vocabulary of both source and target languages to 30K most frequent words, and other words are replaced by a special symbol \"UNK\". We run our model on the training corpus 20 iterations in total with stochastic gradient decent algorithm. We set learning rate to 0.1 at the beginning and halve the threshold while the perplexity increases on the development set. Dropout is applied to our model, and the rate is set to 0. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Details",
"sec_num": "4.3"
},
{
"text": "We conduct our experiment on the dataset mentioned above, and we list the training methods used as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "1) Phrase NMT Model: As mentioned above, the only parallel resource is phrase pairs. We use attention-based NMT system to train only on the 3M phrase pairs to get our baseline result.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "2) Partially Aligned Model(MUL):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "We train our NMT model using the objective function of multiplication method on the partially aligned sentences.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "3) Partially Aligned Model(MSE):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "We train our NMT model using the objective function of Mean Squared Error(MSE) method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Methods",
"sec_num": "4.4"
},
{
"text": "Partially Aligned Model(MSE) + Limited-Vocab: It is similar to Partially Aligned Model(MSE) and the only difference is that we restrict the final score distribution on a limited target vocabulary, which is described in \u00a73.2.4.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "4)",
"sec_num": null
},
{
"text": "Phrase NMT Model + LimitedVocab: It is the method that LimitedVocab is used in Phrase NMT model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "5)",
"sec_num": null
},
{
"text": "We present the translation results in BLEU scores of different systems in Table 2 . Our first concern is whether the proposed model can actually improve the translation quality. As Table 2 shows, we find that our partially aligned model (both MUL supervised method and MSE supervised method) is superior to the Phrase NMT Model, which indicates that our Partially Aligned method is effective in improving the translation quality.",
"cite_spans": [],
"ref_spans": [
{
"start": 74,
"end": 81,
"text": "Table 2",
"ref_id": "TABREF2"
},
{
"start": 181,
"end": 188,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "\u5e03\u4ec0\u8bf4\uff1a\"\u6b64\u9879\u8ba1\u5212\u5c06\u5bf9\u52b3\u52a8\u5927\u4f17\u63d0\u4f9b \u51cf\u7a0e\u4f18\u60e0\u3002\"",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "The bush says the <UNK> tax concessions be made a possible member Bush said, the scheme will provide tax concessions to the community.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "Source sentence:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "Phrase NMT model:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "Our model: Figure 3 : A translation example comparing between phrase NMT model and our partially aligned method. Figure 3 lists a comparison example of Phrase NMT model and our model. Obviously, our model can achieve the correct translation while the Phrase NMT model generates the unfaithful result. It demonstrates that our model is actually having the ability to learn translation adequacy from aligned parts and fluency from both aligned and unaligned parts.",
"cite_spans": [],
"ref_spans": [
{
"start": 11,
"end": 19,
"text": "Figure 3",
"ref_id": null
},
{
"start": 113,
"end": 121,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "In \u00a73.2, we described two objective functions in our model. We focus on the difference of these two approaches. As a comparison, MSE method (Row 3) outperforms the MUL method (Row 2) with an average improvement of 0.8 BLEU points, indicating that MSE method is more effective as an object function for our partially aligned model. In the following experiment, we adopt the MSE method as the new objective function used in our model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase NMT Model vs. Partially Aligned Method",
"sec_num": "5.1"
},
{
"text": "In Table 2 , an interesting result is that using a reduced vocabulary can significantly improve the performance (+1.36 BLEU points), but it can only achieve 0.12 BLEU points improvement for Phrase NMT model. According to Mi et al. (2016b) , this approach is useful in conventional NMT model. Our result is in agreement with their findings, and the improvement is more prominent in our partially aligned model. Under our scenario, compared to the parallel corpora, fewer parallel parts appear in sentence pairs. The faithfulness of our translation result is relatively poor while the fluency is relatively good. With the limited relevant vocabulary, the faithfulness of the translation results is much improved. ",
"cite_spans": [
{
"start": 221,
"end": 238,
"text": "Mi et al. (2016b)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Effect of Limited Vocabulary",
"sec_num": "5.2"
},
{
"text": "The performance of our partially aligned model with different lengths is another problem we care about. We randomly select 1000 sentences from translation results of test set (MT03-08), which are trained by the Partially Aligned Model(MSE)+ReduceDict method. We classify them into five categories according to the length. Figure 4 shows the results of the experiment.",
"cite_spans": [],
"ref_spans": [
{
"start": 322,
"end": 330,
"text": "Figure 4",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Result of Different Sentence Lengths",
"sec_num": "5.3"
},
{
"text": "We find that the sentences with shorter length (lower than 40) yield better results than the long sentences. When the length of sentences exceeds 80, the quality of translation is rather poor. The reason is that we mainly use phrase pairs in our method, and the length of phrase is relative short compared to whole sentence. So our model is more suitable for the translation of short sentences. When we translate long sentences, the parameters in our model are not adjusted for tuning, and our approach can not produce translation of high quality.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Result of Different Sentence Lengths",
"sec_num": "5.3"
},
{
"text": "We concern that when we have a tiny parallel corpus, whether the small scale parallel corpus can boost the translation performance of the partially aligned method. Here, we fine-tune the partially aligned translation model on these corpora. The details of these corpora are introduced in Table 3 .",
"cite_spans": [],
"ref_spans": [
{
"start": 288,
"end": 295,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Effect of Adding Small Parallel Corpus",
"sec_num": "5.4"
},
{
"text": "Chinese English parallel #Sent. 0.1M #Word 3.00M",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus",
"sec_num": null
},
{
"text": "3.86M Vocab 0.07M 0.04M Table 3 : The statistics of small-scale parallel datasets.",
"cite_spans": [],
"ref_spans": [
{
"start": 24,
"end": 31,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Corpus",
"sec_num": null
},
{
"text": "The result is presented in Table 4 . We can observe that the translation result tends to be poor by only using a small-scale parallel corpora. It indicates that conventional NMT system cannot learn a good model on the small-scale datasets. However, when fine-tuning our partially aligned model with this small parallel corpus, we can get a surprising improvement. The results suggest that when under a scenario in which we only have monolingual corpora and phrase pairs, even a few bitexts can boost translation quality to a large extent.",
"cite_spans": [],
"ref_spans": [
{
"start": 27,
"end": 34,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Corpus",
"sec_num": null
},
{
"text": "We investigate the effect of the different corpora size on the final translation results. According to Table 4 , when the number of parallel sentences is quite small (lower than 60K), we can acquire a measurable improvement (more than 10 BLEU) compared to the conventional NMT system result. Especially, when the size of sentence pairs is 40K and 60K, our method obtains the enormous improvement over the NMT model by +13.82 BLEU points and +13.21 BLEU points respectively. When using more than 60K sentence pairs, we still get a relatively high promotion of translation quality. However, the promotion is not very remarkable as Row1-3 reveal in Table 4 . We can see when the number of parallel corpora is 100K(Row 5), the improvement over NMT Model is +3.95 BLEU points, which indicates that as the size of parallel corpora increases, the improvement of fine-tuning model is decreasing.",
"cite_spans": [],
"ref_spans": [
{
"start": 103,
"end": 110,
"text": "Table 4",
"ref_id": null
},
{
"start": 646,
"end": 653,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Corpus",
"sec_num": null
},
{
"text": "Most of existing work in neural machine translation focus on integrating SMT strategies Zhou et al., 2017; Wang et al., 2017; Shen et al., 2015) , handling rare words Sennrich et al., 2016b; Luong et al., 2015b) and designing the better framework (Tu et al., 2016; Luong et al., 2015a; Meng et al., 2016 Table 4 : Effect of different data size of parallel corpus. Method NMT Model means the result of conventional NMT system trained on these low-count parallel sentences. Partially Aligned Model(MSE) + Para means the result of our model fine-tuned by these parallel sentences. different scenarios has drawn intensive attention in recent years. Actually, there have been some effective methods to deal with them. We divide the related work into three categories:",
"cite_spans": [
{
"start": 88,
"end": 106,
"text": "Zhou et al., 2017;",
"ref_id": "BIBREF34"
},
{
"start": 107,
"end": 125,
"text": "Wang et al., 2017;",
"ref_id": "BIBREF29"
},
{
"start": 126,
"end": 144,
"text": "Shen et al., 2015)",
"ref_id": "BIBREF26"
},
{
"start": 167,
"end": 190,
"text": "Sennrich et al., 2016b;",
"ref_id": "BIBREF25"
},
{
"start": 191,
"end": 211,
"text": "Luong et al., 2015b)",
"ref_id": "BIBREF19"
},
{
"start": 247,
"end": 264,
"text": "(Tu et al., 2016;",
"ref_id": "BIBREF28"
},
{
"start": 265,
"end": 285,
"text": "Luong et al., 2015a;",
"ref_id": "BIBREF18"
},
{
"start": 286,
"end": 303,
"text": "Meng et al., 2016",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 304,
"end": 311,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Related Work",
"sec_num": "6"
},
{
"text": "Pivot-based scenario assumes that there only exists source-pivot and pivot-target parallel corpora, which can be used to train source-to-pivot and pivot-to-target translation models. propose to translate source language into pivot language, and then the pivot language will be translated into target language. According to the fact that parallel sentences should have close probabilities of generating a sentence in a third language, Chen et al. (2017) construct a Teacher-Student framework, in which existing pivot-target NMT model guides the learning process of the source-target model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pivot-based Scenario",
"sec_num": "6.1"
},
{
"text": "In multilingual scenario, there exists multiple language pairs but no source-target sentence pairs. Johnson et al. (2016) use parallel corpora of multiple languages to train a universal NMT model. This universal model learns translation knowledge from multiple different languages, which makes zero-shot translation feasible. Firat et al. (2016) present a multi-way, multilingual model to resolve the zero-resource translation. They use other language to train a multi-way NMT model. The model generates pseudo parallel corpora to finetune attention mechanism, so as to achieve better translation.",
"cite_spans": [
{
"start": 100,
"end": 121,
"text": "Johnson et al. (2016)",
"ref_id": "BIBREF10"
},
{
"start": 326,
"end": 345,
"text": "Firat et al. (2016)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Multilingual Scenario",
"sec_num": "6.2"
},
{
"text": "In this scenario, an NMT model of good quality has been trained on existing parallel corpora, but a preferable translation result is still in need by incorporating additional data resource. G\u00fcl\u00e7ehre et al. (2015) propose to incorporate target-side corpora as a language model. Sennrich et al. (2016a) attempt to enhance the decoder network model of NMT by incorporating the target-side monolingual data. Luong et at. (2016) explore the sequence autoencoders and skip-thought vectors method to exploit the monolingual data of source language. propose two approaches, self-training algorithm and multitask learning framework, to incorporate sourceside monolingual data. Besides that, Cheng et al. (2016) have explored the usage of both source and target monolingual data using a semisupervised method to reconstruct both source and target side monolingual language, where two NMT frameworks will be used.",
"cite_spans": [
{
"start": 190,
"end": 212,
"text": "G\u00fcl\u00e7ehre et al. (2015)",
"ref_id": "BIBREF7"
},
{
"start": 277,
"end": 300,
"text": "Sennrich et al. (2016a)",
"ref_id": "BIBREF24"
},
{
"start": 682,
"end": 701,
"text": "Cheng et al. (2016)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Monolingual Data Scenario",
"sec_num": "6.3"
},
{
"text": "Above methods are designed for different scenarios, and their work can achieve great results on these scenarios. However, when in the scenario we propose in this work, that is we only have monolingual sentences and some phrase pairs, their methods are hard to be utilized to train an NMT model. Under this scenario, monolingual data can be acquired easily, and high quality phrase pairs can be obtained using some effective methods (Zhang et al., 2014) . To learn a good NMT model in our translation scenario, we adapt the conventional training procedure by designing a different generation mechanism and a different objective function.",
"cite_spans": [
{
"start": 432,
"end": 452,
"text": "(Zhang et al., 2014)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Monolingual Data Scenario",
"sec_num": "6.3"
},
{
"text": "In this paper, we have presented a new translation scenario for NMT in which we have only monolingual data and bilingual phrase pairs. We obtain large-scale partially aligned sentence pairs from the monolingual data and phrase pairs by an information retrieval algorithm. The generation process and objective function are specially designed in NMT training to take full advantage of the partially aligned corpora. The empirical experiments show that the proposed method is capable to achieve a relatively good result. We further find that only a little amount of parallel sentences can significantly boost the translation quality.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "We also notice that the proposed approach with only partially aligned data cannot obtain high translation quality. In the future, we plan to design better approaches to model the partially aligned corpus. We also attempt to evaluate our approach on other language pairs, especially low-resource language pairs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "https://github.com/isi-nlp/ZophRNN",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "The research work has been funded by the Natural Science Foundation of China under Grant No. 61333018 and No. 61402478, and it is also supported by the Strategic Priority Research Program of the CAS under Grant No. XDB02070007",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Neural machine translation by jointly learning to align and translate",
"authors": [
{
"first": "Dzmitry",
"middle": [],
"last": "Bahdanau",
"suffix": ""
},
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of ICLR",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of ICLR 2015.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A teacher-student framework for zeroresource neural machine translation",
"authors": [
{
"first": "Yun",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Yong",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Victor",
"suffix": ""
},
{
"first": "O",
"middle": [
"K"
],
"last": "",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yun Chen, Yong Cheng, Yang Liu, and Li Victor, O.K. 2017. A teacher-student framework for zero- resource neural machine translation. In Proceedings of ACL 2017.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Joint training for pivot-based neural machine translation",
"authors": [
{
"first": "Yong",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Qian",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of IJCAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yong Cheng, Yang Liu, Qian Yang, Maosong Sun, and Wei Xu. 2017. Joint training for pivot-based neural machine translation. In Proceedings of IJCAI 2017.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Semisupervised learning for neural machine translation",
"authors": [
{
"first": "Yong",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Zhongjun",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Hua",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2016. Semi- supervised learning for neural machine translation. In Proceedings of ACL 2016.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A hierarchical phrase-based model for statistical machine translation",
"authors": [
{
"first": "David",
"middle": [],
"last": "Chiang",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In Pro- ceedings of ACL 2005.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Learning phrase representations using rnn encoder-decoder for statistical machine translation",
"authors": [
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Bart",
"middle": [],
"last": "Van Merri\u00ebnboer Caglar Gulcehre",
"suffix": ""
},
{
"first": "Dzmitry",
"middle": [],
"last": "Bahdanau",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kyunghyun Cho, Bart van Merri\u00ebnboer Caglar Gul- cehre, Dzmitry Bahdanau, Fethi Bougares Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In Proceedings of EMNLP 2014.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Zero-resource translation with multi-lingual neural machine translation",
"authors": [
{
"first": "Orhan",
"middle": [],
"last": "Firat",
"suffix": ""
},
{
"first": "Baskaran",
"middle": [],
"last": "Sankaran",
"suffix": ""
},
{
"first": "Yaser",
"middle": [],
"last": "Alonaizan",
"suffix": ""
},
{
"first": "T",
"middle": [
"Yarman"
],
"last": "Fatos",
"suffix": ""
},
{
"first": "Kyunghyun",
"middle": [],
"last": "Vural",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Cho",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Orhan Firat, Baskaran Sankaran, Yaser Alonaizan, Fatos T. Yarman Vural, and Kyunghyun Cho. 2016. Zero-resource translation with multi-lingual neural machine translation. In Proceedings of EMNLP 2016.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "On using monolingual corpora in neural machine translation",
"authors": [
{
"first": "Caglar",
"middle": [],
"last": "G\u00fcl\u00e7ehre",
"suffix": ""
},
{
"first": "Orhan",
"middle": [],
"last": "Firat",
"suffix": ""
},
{
"first": "Kelvin",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Lo\u0131c",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Huei-Chi",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Fethi",
"middle": [],
"last": "Bougares",
"suffix": ""
},
{
"first": "Holger",
"middle": [],
"last": "Schwenk",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Caglar G\u00fcl\u00e7ehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Lo\u0131c Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2015. On us- ing monolingual corpora in neural machine transla- tion. CoRR, abs/1503.03535.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Improved neural machine translation with smt features",
"authors": [
{
"first": "Wei",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Zhongjun",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Hua",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Haifeng",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of AAAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. 2016. Improved neural machine translation with smt features. In Proceedings of AAAI 2016.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Long short-term memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural computation",
"volume": "9",
"issue": "8",
"pages": "1735--1780",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735-1780.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Google's multilingual neural machine translation system: Enabling zero-shot translation",
"authors": [
{
"first": "Melvin",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Yonghui",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Nikhil",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Fernanda",
"middle": [],
"last": "Thorat",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Vi\u00e9gas",
"suffix": ""
},
{
"first": "Greg",
"middle": [],
"last": "Wattenberg",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Corrado",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1611.04558"
]
},
"num": null,
"urls": [],
"raw_text": "Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho- rat, Fernanda Vi\u00e9gas, Martin Wattenberg, and Greg Corrado. 2016. Google's multilingual neural ma- chine translation system: Enabling zero-shot trans- lation. arXiv preprint arXiv:1611.04558.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Recurrent continuous translation models",
"authors": [
{
"first": "Nal",
"middle": [],
"last": "Kalchbrenner",
"suffix": ""
},
{
"first": "Phil",
"middle": [],
"last": "Blunsom",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of EMNLP 2013",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation models. In Proceedings of EMNLP 2013.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Moses: Open source toolkit for statistical machine translation",
"authors": [
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Hieu",
"middle": [],
"last": "Hoang",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Callison-Burch",
"suffix": ""
},
{
"first": "Marcello",
"middle": [],
"last": "Federico",
"suffix": ""
},
{
"first": "Nicola",
"middle": [],
"last": "Bertoldi",
"suffix": ""
},
{
"first": "Brooke",
"middle": [],
"last": "Cowan",
"suffix": ""
},
{
"first": "Wade",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Christine",
"middle": [],
"last": "Moran",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Zens",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of ACL 2007",
"volume": "",
"issue": "",
"pages": "177--180",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. 2007. Moses: Open source toolkit for statistical machine translation. In Pro- ceedings of ACL 2007, pages 177-180.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Statistical phrase-based translation",
"authors": [
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Franz",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Marcu",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of ACL-NAACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceedings of ACL-NAACL 2013.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Towards zero unknown word in neural machine translation",
"authors": [
{
"first": "Xiaoqing",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of IJCAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016. Towards zero unknown word in neural machine translation. In Proceedings of IJCAI 2016.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Neural machine translation with supervised attention",
"authors": [
{
"first": "Lemao",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Masao",
"middle": [],
"last": "Utiyama",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Finch",
"suffix": ""
},
{
"first": "Eiichiro",
"middle": [],
"last": "Sumita",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of COL-ING",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lemao Liu, Masao Utiyama, Andrew Finch, and Ei- ichiro Sumita. 2016. Neural machine translation with supervised attention. In Proceedings of COL- ING 2016.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Treeto-string alignment template for statistical machine translation",
"authors": [
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Shouxun",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree- to-string alignment template for statistical machine translation. In Proceedings of ACL 2006.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Multi-task sequence to sequence learning",
"authors": [
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Oriol",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Lukasz",
"middle": [],
"last": "Vinyals",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kaiser",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ICLR",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. 2016. Multi-task se- quence to sequence learning. In Proceedings of ICLR 2016.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Effective approaches to attentionbased neural machine translation",
"authors": [
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Hieu",
"middle": [],
"last": "Pham",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015a. Effective approaches to attention- based neural machine translation. In Proceedings of EMNLP 2015.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Addressing the rare word problem in neural machine translation",
"authors": [
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Oriol",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wojciech",
"middle": [],
"last": "Vinyals",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zaremba",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech Zaremba. 2015b. Addressing the rare word problem in neural machine translation. In Proceedings of ACL 2015.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Interactive attention for neural machine translation",
"authors": [
{
"first": "Fandong",
"middle": [],
"last": "Meng",
"suffix": ""
},
{
"first": "Zhengdong",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Hang",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of COLING",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fandong Meng, Zhengdong Lu, Hang Li, and Qun Liu. 2016. Interactive attention for neural machine trans- lation. In In Proceedings of COLING 2016.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Supervised attentions for neural machine translation",
"authors": [
{
"first": "Haitao",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "Zhiguo",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Abe",
"middle": [],
"last": "Ittycheriah",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016a. Supervised attentions for neural machine translation. In Proceedings of EMNLP 2016.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Vocabulary manipulation for neural machine translation",
"authors": [
{
"first": "Haitao",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "Zhiguo",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Abe",
"middle": [],
"last": "Ittycheriah",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016b. Vocabulary manipulation for neural machine trans- lation. In Proceedings of ACL 2016.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Bleu: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of ACL 2002",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic evalu- ation of machine translation. In Proceedings of ACL 2002, pages 311-318.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Improving neural machine translation models with monolingual data",
"authors": [
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Improving neural machine translation mod- els with monolingual data. In Proceedings of ACL 2016.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Neural machine translation of rare words with subword units",
"authors": [
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation of rare words with subword units. In Proceedings of ACL 2016.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Minimum risk training for neural machine translation",
"authors": [
{
"first": "Shiqi",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Yong",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Zhongjun",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Hua",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2015. Minimum risk training for neural machine translation. In Pro- ceedings of ACL 2015.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Sequence to sequence learning with neural networks",
"authors": [
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Oriol",
"middle": [],
"last": "Vinyals",
"suffix": ""
},
{
"first": "Quoc V",
"middle": [],
"last": "Le",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of NIPS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural net- works. In Proceedings of NIPS 2014.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Coverage-based neural machine translation",
"authors": [
{
"first": "Zhaopeng",
"middle": [],
"last": "Tu",
"suffix": ""
},
{
"first": "Zhengdong",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xiaohua",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Hang",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Coverage-based neural machine translation. In Proceedings of ACL 2016.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Neural machine translation advised by statistical machine translation",
"authors": [
{
"first": "Xing",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Zhengdong",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Zhaopeng",
"middle": [],
"last": "Tu",
"suffix": ""
},
{
"first": "Hang",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Deyi",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of AAAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li, Deyi Xiong, and Min Zhang. 2017. Neural machine translation advised by statistical machine transla- tion. In Proceedings of AAAI 2017.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
"authors": [
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Macherey",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Klaus",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Macherey",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.08144"
]
},
"num": null,
"urls": [],
"raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural ma- chine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Tree-based translation without using parse trees",
"authors": [
{
"first": "Feifei",
"middle": [],
"last": "Zhai",
"suffix": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of COLING",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Feifei Zhai, Jiajun Zhang, Yu Zhou, Chengqing Zong, et al. 2012. Tree-based translation without using parse trees. In Proceedings of COLING 2012.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Bilingually-constrained phrase embeddings for machine translation",
"authors": [
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Shujie",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Mu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ming",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and Chengqing Zong. 2014. Bilingually-constrained phrase embeddings for machine translation. In Pro- ceedings of ACL 2014.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Exploiting source-side monolingual data in neural machine translation",
"authors": [
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiajun Zhang and Chengqing Zong. 2016. Exploit- ing source-side monolingual data in neural machine translation. In Proceedings of EMNLP 2016.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Neural system combination for machine translation",
"authors": [
{
"first": "Long",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wenpeng",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of ACL 2017",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Long Zhou, Wenpeng Hu, Jiajun Zhang, and Chengqing Zong. 2017. Neural system combina- tion for machine translation. In Proceedings of ACL 2017.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "The framework of our training method for partially aligned sentence, in which (x 2 ,x 3 ) and (y 2 ,y 3 ) are parallel parts.",
"type_str": "figure",
"num": null,
"uris": null
},
"FIGREF1": {
"text": "Translation results (BLEU score) of different lengths.",
"type_str": "figure",
"num": null,
"uris": null
},
"TABREF0": {
"type_str": "table",
"num": null,
"text": "",
"content": "<table><tr><td>Corpus</td><td/><td>Chinese</td><td>English</td></tr><tr><td/><td colspan=\"2\">#Sent. 13.33M</td><td>10.03M</td></tr><tr><td>monolingual</td><td colspan=\"3\">#Word 327.10M 276.07M</td></tr><tr><td/><td>Vocab</td><td>1.83M</td><td>1.07M</td></tr><tr><td colspan=\"4\">Table 1: The statistics of monolingual dataset on</td></tr><tr><td>the LDC corpus.</td><td/><td/></tr></table>",
"html": null
},
"TABREF2": {
"type_str": "table",
"num": null,
"text": "Translation results (BLEU score) for different translation methods.",
"content": "<table><tr><td>testing, we employ beam search algorithm, and the</td></tr><tr><td>beam size is 12.</td></tr></table>",
"html": null
},
"TABREF3": {
"type_str": "table",
"num": null,
"text": "Partially Aligned Model(MSE) + Para 12.36 15.07 11.64 14.61 13.42 Partially Aligned Model(MSE) + Para 14.12 17.84 13.66 17.26 15.72",
"content": "<table><tr><td>#Sent.</td><td>Method</td><td colspan=\"5\">MT03 MT04 MT05 MT06 Ave</td></tr><tr><td>20K</td><td>NMT Model</td><td>1.60</td><td>1.22</td><td>1.05</td><td>1.70</td><td>1.39</td></tr><tr><td>40K</td><td>NMT Model</td><td>1.87</td><td>2.00</td><td>1.47</td><td>2.24</td><td>1.90</td></tr><tr><td>60K</td><td colspan=\"6\">NMT Model Partially Aligned Model(MSE) + Para 15.54 19.62 15.16 19.25 17.39 3.72 5.04 3.49 4.47 4.18</td></tr><tr><td>80K</td><td colspan=\"6\">NMT Model Partially Aligned Model(MSE) + Para 17.16 21.18 16.65 20.61 18.90 7.96 11.85 8.16 10.53 9.63</td></tr><tr><td>100K</td><td colspan=\"6\">NMT Model Partially Aligned(MSE) Model + Para 18.30 22.50 17.92 21.55 20.07 14.50 18.21 14.29 17.49 16.12</td></tr><tr><td/><td/><td/><td/><td/><td/><td>). As for</td></tr><tr><td/><td/><td colspan=\"5\">translation scenarios, training NMT model under</td></tr></table>",
"html": null
}
}
}
} |